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Abstract
Trajectory modeling refers to characterizing human
movement behavior, serving as a pivotal step in un-
derstanding mobility patterns. Nevertheless, exist-
ing studies typically ignore the confounding effects
of geospatial context, leading to the acquisition of
spurious correlations and limited generalization ca-
pabilities. To bridge this gap, we initially formu-
late a Structural Causal Model (SCM) to decipher
the trajectory representation learning process from
a causal perspective. Building upon the SCM, we
further present a Trajectory modeling framework
(TrajCL) based on Causal Learning, which lever-
ages the backdoor adjustment theory as an inter-
vention tool to eliminate the spurious correlations
between geospatial context and trajectories. Exten-
sive experiments on two real-world datasets verify
that TrajCL markedly enhances performance in tra-
jectory classification tasks while showcasing supe-
rior generalization and interpretability.

1 Introduction
Trajectory data has emerged as an indispensable resource
for understanding human mobility patterns [Jin et al., 2023].
Such data offers invaluable insights into various applications
ranging from traffic management to personalized location-
based services [Dai et al., 2015; Chen et al., 2022]. As
a result, the modeling of this data is the cornerstone for
transforming raw location information into mobility intel-
ligence, thereby supporting various spatial-temporal appli-
cations, e.g., travel mode detection [Zheng et al., 2008;
Zhu et al., 2021], next location prediction [Yin et al., 2016;
Lin et al., 2021], and travel time estimation [Zheng, 2015].

Trajectory representation learning involves extracting use-
ful, generalizable, and concise representations from the se-
quential data points of a human trajectory. Intuitively, its
functionality extends to discerning the intrinsic motion prop-
erties inherent in trajectories. This pursuit is typically re-
alized by deep sequential models, such as Recurrent Neu-
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Figure 1: The impacts of geospatial context on trajectory modeling.

ral Networks [Wu et al., 2017; Liu et al., 2019] and Trans-
formers [Liang et al., 2022; Chang et al., 2023], which effec-
tively capture trajectory dynamics by encoding temporal in-
tervals and spatio-temporal correlations [Liu and Lee, 2017;
Qin et al., 2019; Liu et al., 2019; Liang et al., 2021]. Fur-
thermore, considering the geospatial context associated with
trajectories, e.g., point of interests, road networks, recent en-
deavors are devoted to mining valuable insights from this
auxiliary information [Guo et al., 2020; Ferrero et al., 2020;
Pugliese et al., 2023; Jiang et al., 2023; Wang et al., 2024].

While the integration of the geospatial context has the po-
tential to enhance trajectory representations to a certain de-
gree, it concurrently introduces a confounding factor into the
learning process. This confounder poses the risk of our algo-
rithm learning spurious correlations within the training data,
leading to a degradation in performance and a compromised
ability to generalize. In other words, the model is vulnerable
to overfitting to specific environmental conditions. To eluci-
date this concern, consider an example in Figure 1. Vehicles
frequently come to a halt in congested areas or traffic lights,
exhibiting trajectory patterns (e.g., low speed) akin to those of
pedestrians. In this scenario, there exists an increasing risk of
the model displaying a pronounced inclination towards rec-
ognizing pedestrian patterns in congested areas. This, in turn,
could lead to the spurious correlation (i.e., unwarranted as-
sociation) of geospatial context with trajectory patterns.

In this paper, our target is to mitigate the impact of these
confounding factors induced by the geospaital context, so as
to extract robust and domain-invariant representations from
human trajectories. Primarily, we present a Structural Causal
Model (SCM) to deepen our comprehension of the trajectory
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representation learning process. From a causal perspective,
the SCM elucidates the relationship among the environment
(i.e., geospatial context1), the trajectory, and the representa-
tion outcome. The environment serves as a confounding fac-
tor that establishes a backdoor path between the input trajec-
tory data and the resulting representation.

Building upon the SCM, we present a novel causal learning
framework called TrajCL for learning robust trajectory rep-
resentations. TrajCL utilizes the backdoor adjustment theory
as an intervention tool to eliminate the spurious correlations
between environment and trajectories, which is implemented
by two key steps. Firstly, we design an environmental align-
ment module that leverages geospatial context to guide the
encoders in disentangling causal and confounding represen-
tations. Secondly, we elaborately introduce a causal learning
module to effectively accomplish causal intervention at the
representation level, resulting in robust representations that
exhibit strong generalization capabilities, particularly in few-
shot learning or imbalanced sample learning scenarios.

Our major contributions can be summarized as follows:
• A causal lens for trajectory data. We propose a structural

causal model to unravel the inherent rationale behind the
learning process of trajectories. Based on this causal lens,
a novel framework termed TrajCL is presented to enhance
the robustness of trajectory representations.

• Backdoor adjustment for isolating confounders. Exploiting
the backdoor adjustment theory, we initially design an en-
vironment alignment module to disentangle the causal and
confounding elements from input data, and subsequently
leverage causal intervention to learn robust representations.

• Extensive empirical studies. We conduct thorough experi-
ments on the trajectory classification task over two mobility
datasets. The results affirm that our framework enhances
trajectory modeling in a plug-and-play manner, and pos-
sesses superior generalization ability and interpretability.

2 Related Work
Trajectory Modeling. Extensive research has been dedi-
cated to trajectory modeling, aiming to uncover human mo-
bility patterns. Early heuristic-based approaches only con-
sidered limited features. [Lee and Han, 2008] initially
merged trajectory points within grid units, exploring the spa-
tial characteristics of trajectory substructures. Building upon
this, [Zheng et al., 2008] and [Dodge et al., 2009] respec-
tively extracted local and global features from subgrids and
trajectory points. Moreover, [Xiao et al., 2017] incorporated
semantic information, such as road networks, to classify ve-
hicle trajectories. However, such works heavily rely on hand-
crafted features and make excessive parameter assumptions.
Recently, studies in trajectory modeling have focused on deep
representation learning, benefiting from its superior model-
ing capabilities in sequential data [Chen et al., 2024]. [Liu
and Lee, 2017] and [Jiang et al., 2017] utilized two common
RNN architectures to capture high-order movement patterns.
After that, [Liu et al., 2019] and [Liang et al., 2021] intro-
duced segment-wise convolutional weight mechanisms and

1we use geospatial context and environment interchangeably.

neural differential equations to enforce RNNs, addressing the
modeling of continuous temporal characteristics. [Han et al.,
2021] and [Yao et al., 2022] integrated spatial features from
road networks by graph neural networks, enabling the capture
of long-term dependencies in trajectories. Furthermore, Traj-
Former [Liang et al., 2022] adapted an advanced transformer
architecture to balance speed and accuracy in trajectory mod-
eling. Nevertheless, due to the inherent noise in raw trajec-
tories and environmental biases, obtaining robust trajectory
representations with causal invariance remains challenging.
Causal Inference. Traditional causal inference aims to
study how to learn a causal model that works under dif-
ferent distributions, encompasses causal mechanisms, and
further employs the model for intervention or counterfac-
tual inference [Pearl, 2009]. However, real-world obser-
vations often do not begin with basic inference units (ran-
dom variables connected in a causal graph) but rather with
high-dimensional raw data. Therefore, causal representa-
tion learning [Schölkopf et al., 2021] seeks to integrate deep
learning and causal mechanisms, widely explored in vari-
ous fields such as computer vision [Lippe et al., 2022], rec-
ommendation systems [Wang et al., 2023], graph data min-
ing [Sui et al., 2022] and so on. Nevertheless, research
in spatio-temporal data mining from a causal perspective is
still in its early stages. [Li et al., 2023] investigated dis-
tribution changes in time series by discovering causal struc-
tures, but they neglected to decipher spatial factors. Subse-
quently, [Deng et al., 2023] constructed a causal graph to de-
scribe traffic prediction and analyze the causal relationships
between spatio-temporal features and outcomes. Similarly,
[Xia et al., 2023] applied it to spatio-temporal graph fore-
casting, mitigating confounding effects in the temporal and
spatial domains using causal inference. Still and all, they are
all graph-based models considering causal effects and can-
not adapt to trajectory data as spatio-temporal sequences. In
this study, we adopt causal techniques to model trajectory and
mitigate confounding factors in the environment.

3 A Causal View on Trajectory Modeling
3.1 Formulation
Definition 1 (Trajectory). We denote a trajectory by X =
{pi | i = 1, 2, . . . , n} with a sequence of spatio-temporal
points pi recorded in chronological order. Each point p =
(Lon,Lat, t) is a longitude, latitude, and timestamp triplet.
Definition 2 (Geospatial Context). The geospatial context is
the set E of environment information, where ei ∈ Rm repre-
sents the attributes of the surrounding environment related to
the point pi, and m denotes the number of attributes.
Problem Statement (Trajectory Modeling). Our target is to
learn robust and high-quality trajectory representation H via
supervised signals to support various downstream tasks. In
our task, we set it up for travel mode identification.

3.2 Structural Causal Model
Formally, we build a Structural Causal Model (SCM) to an-
alyze the causality in trajectory modeling (Fig. 2). It com-
prises three variables: trajectory data X , environment E, and
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Figure 2: SCMs of trajectory modeling. The SCM (a) in traditional
perspective; (b) under causal view; (c) after back-door adjustment.

trajectory representation H , with arrows denoting causal re-
lationships. The SCM provides the following elucidation:

• X→H . Trajectories encompass crucial movement charac-
teristics such as speed, acceleration, and direction. Varia-
tions in these fundamental features give rise to discernible
trajectory representations. Intuitively, trajectory data can
be modeled using internal sequential patterns to learn rep-
resentations: H = F (θ;X) ,where F denotes the parame-
terized modeling function with learnable parameters θ.

• E→X and E→H . Trajectory data is profoundly impacted
by environmental factors. An illustrative example of this
influence is the rarity of pedestrian trajectories along high-
ways. Moreover, the dynamic nature of the environment
contributes to alterations in the distribution of latent trajec-
tory representations. Notably, distinctive motion tenden-
cies emerge among individuals and vehicles in response to
environmental cues such as traffic signals. In light of these
environmental factors, the joint modeling of trajectories
and environment can be expressed as H = F(θ; X, E).

However, upon meticulous examination of the SCM, we
identify a backdoor path between X and H , i.e., X←E→H ,
where environmental information acts as a confounding fac-
tor for both trajectory data and trajectory representation. This
introduces a confounding factor set E , signifying a confound-
ing association between environment and trajectory represen-
tation (Fig. 2b), distinct from the causal association from X to
H (Fig. 2a). Consequently, in the practical process of jointly
learning trajectory-environment representations, this strong
correlation comprises a blend of confounding and causal as-
sociations. Therefore, we advocate for employing causal in-
tervention techniques on variable X to mitigate the confound-
ing effects of variable E (Fig. 2c), facilitating the acquisition
of robust representations from biased trajectory data.

3.3 Backdoor Adjustment
Based on the aforementioned causal analysis, our approach to
learning trajectory representations involves eliminating back-
door paths rather than modeling the association P (H|X) in
Fig. 2a. We employ a powerful tool known as backdoor ad-
justment, rooted in causal theory [Pearl, 2009], allowing us to
block the backdoor path by estimating P (H|do(X)), where
do(·) denotes the do-calculus. Specifically, we have

P (H|do(X)) =
∑

e∈E
P (H|do(X), e)P (e|do(X))

=
∑

e∈E
P (H|do(X), e)P (e)

=
∑

e∈E
P (H|X, e)P (e),

(1)

where E represents the set of environment confounding fac-
tors. First, we can redefine P (H|do(X)) via Bayes’ theo-
rem. Then, due to the independence of variables H and X
under intervention, resulting in P (e|do(X)) = P (e). Simul-
taneously, the response of H to E and X is unrelated to the
causal association between H and X , allowing us to equate
the conditional probabilities P (H|do(X), e) = P (H|X, e).

Nonetheless, the latent confounding factors denoted as E
prove elusive and challenging to directly observe [Xia et al.,
2023]. Manipulating extensive trajectory data also poses ad-
ditional complexities, necessitating adjustment at the repre-
sentation level through learned strategies. To this end, we
introduce two new modules in the following section to imple-
ment Eq. 1 for trajectory representation learning.

4 Model Implementation
In this section, we present the details of our TrajCL frame-
work (see Fig. 3). We first provide an overview of the TrajCL
framework, integrating causal techniques into the trajectory
modeling. Then, we delve into the specifics of two crucial
components: environmental alignment module and causal
learning module. These tailored modules are designed to be
compatible with any advanced trajectory model, allowing for
efficient enhancement from a causal perspective.

4.1 Framework Overview
Traditional trajectory learning methods mostly involve con-
volutional layers to extract local features from input X at the
point level. A deep sequential model is subsequently em-
ployed to capture spatio-temporal patterns at the trajectory
level. Notably, the geospatial context E is regarded as auxil-
iary information incorporated into the encoding process. For
clarity, we use the term encoder F to represent the aforemen-
tioned sequential encoding process in this paper.

As analyzed in section 3.2, the simple introduction of envi-
ronmental information leads to confounding factors. There-
fore, we extend the modeling strategy from a causal perspec-
tive. The sequence encoder F is duplicated into two coun-
terparts, namely the causal encoder Fα and the confounding
encoder Fβ , maintaining the identical architecture but with-
out parameter sharing. The formalized process is as follows:

Hα = Fα(θ1; X, E), Hβ = Fβ(θ2; X, E). (2)

Fα and Fβ denotes the encoder, which can be shifted to ad-
vanced trajectory representation models, e.g., GRU. Hα and
Hβ denote the the embedding of original sequence.

Guided by a specially developed environmental alignment
module, the features output by the two encoders are sepa-
rately disentangled. Specifically, Hα and Hβ are fed into
two streams. One stream is dedicated to extracting invariant
representations of the former, termed causal features (repre-
sented by the orange dashed line in Fig. 3). The other stream
aims to extract the confounding effects caused by the environ-
ment, termed confounding features (as indicated by the green
dashed line in Fig. 3). Finally, a carefully designed causal
learning module intervenes at the representation level, jointly
with downstream tasks, to differentiate causal and confound-
ing features and achieve robust representation acquisition.
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Figure 3: The architecture of the proposed TrajCL framework. Env: Environment.

4.2 Environment Alignment Module
The goal of this module is to learn two soft-masks for con-
founding awareness and causal awareness, guiding the two
streams to disentangle causal and confounding features from
the input data. It comprises two sub-modules: a cross atten-
tion component and a disentanglement allocation component.

Cross Attention Component
From an intuitive view, various types of environments inher-
ently function as confounding factors to differing degrees.
Therefore, we first create a learnable environment codebook
C = {c1, c2, ..., ck}, where C ∈ Rk×d represents the proto-
type embedding of urban environments. Subsequently, each
prototype is fed into a linear layer to encode its individual
confounding degree:

V = WvC + bv, (3)

where Wv ∈ Rd×1 and bv are learnable parameters, and V ∈
Rk×1 denotes the confounding degrees corresponding to the
environment codebook, i.e., V = {v1, v2, ..., vk}.

Meanwhile, we project the environment codebook and the
geospatial context E ∈ Rn×m into the same latent space:

Q = WqE + bq, K = WkC + bk, (4)

where Wq ∈ Rm×d and Wk ∈ Rd×d are learnable parame-
ter matrices for geospatial context and the codebook, respec-
tively. bq and bk are bias vectors.

Next, we apply a cross-attention mechanism to assess the
similarity scores among all prototypes in the environment
codebook Q with geospatial context K. Specifically:

Mα = Gumbel-Softmax(Q ·KT/
√
d) · V, (5)

where Mα ∈ Rn×1 is the adjusted confounding intensity,
serving as a confounding soft-mask, and its complement is
the causal soft-mask Mβ = 1 −Mα. Notably, allocating all
prototypes to the environment contradicts our intuition. We
hence employ the Gumbel-Softmax [Jang et al., 2016] to se-
lect the most similar environment, expressed as:

si =
e (log(πi)+Gi)/τ)∑k
j=1 e

(log(πj)+Gj)/τ)
, (6)

where s is the n-dimensional vector, π are class probabilities,
G ∼ Gumbel(0, 1) are i.i.d samples drawn from the Gum-
bel distribution, and τ is the temperature. Due to orthogonal
properties, it enforces discretized similarity learning.

Disentanglement Allocation Component
After completing the cross-attention process, we apply the
two masks Mα and Mβ to the representations from causal
and confounding encoders, allocating weights to each spatio-
temporal point. This process enables the encoders Fα and
Fβ to learn disentangled representations. Moreover, for both
branches, we perform average pooling operations along the
time step dimension:

Zα = Pooler(Hα ⊙Mα), Zβ = Pooler(Hβ ⊙Mβ), (7)

where ⊙ denotes the Hadamard product operation. Zα and
Zβ are trajectory-level causal and confounding features.

4.3 Causal Learning Module
We further implement diverse strategies for parameterizing
backdoor adjustment. This involves a disentangle learn-
ing strategy that combines downstream tasks to distinguish
causality from confounding, an intervention learning strategy
to eliminate confounding, and a final optimization process.
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Disentangle Learning Strategy
Given our objective of travel mode identification, we choose
to employ category classifiers via a multilayer perceptron
(MLP) across two branches. The purpose of causal features is
to estimate invariant characteristics within trajectories, lead-
ing to the causal branch output being classified with actual
travel mode labels. In contrast, confounding features aim
to represent information unrelated to the intrinsic patterns
of trajectories. Consequently, the output from the confound-
ing branch is distanced from travel mode representations, ap-
proaching the average label across all categories. Formally,
we define two classification losses:

Ŷα = MLP(Zα), Ŷβ = MLP(Zβ),

Lcau = H(Yα, Ŷα), Lcon = H(Yβ , Ŷβ),
(8)

where Yα represents the ground-truth travel mode label, Yβ

is assigned using a uniform distribution as the ground-truth
label,H(·, ·) refers to the conventional cross-entropy loss.

Intervention Learning Strategy
To achieve invariant predictions in a dynamic environment,
the elimination of confounding factors emerges as a pivotal
endeavor. To this end, we perform interventions by hierar-
chically manipulating the confounding features and randomly
combining them with causal features to achieve backdoor ad-
justment in Equation 1. Specifically, we merge the causal
features of one input with the confounding features of an-
other randomly chosen input from the same batch as the inter-
vention features. Given the inherent characteristic that con-
founders do not exert influence on the final outcome, the pre-
diction results will align well with the actual travel mode as:

Ŷγ = MLP(Zα + Z
′

β), Lint = H(Yγ , Ŷγ), (9)

where Yγ is also the travel mode ground-truth label.

Optimization
The objective function of TrajCL can be defined as the sum
of the above three losses:

L = λLcau + φLcon + ηLint, (10)

where λ, φ and η are weight hyperparameter. Through back-
propagation optimization, we can force the causal representa-
tion to be invariant and stable, the confounder representation
to be independent, and the intervention representation to be
consistent. Finally, we use the causal representation as a ro-
bust trajectory representation.

5 Experiments
In this section, we evaluate our TrajCL based on an ex-
tensively studied trajectory classification task [Liang et al.,
2022] to answer the following research questions (RQs):
• RQ1: Does TrajCL really help improve travel mode classi-

fication performance, and to what extent?
• RQ2: How robust is TrajCL under varying conditions?
• RQ3: How do the key components and the hyperparame-

ters of TrajCL affect the performance?
• RQ4: Does TrajCL accurately and efficiently yield expla-

nations, and how intuitively understandable is it?

5.1 Experimental Settings
Datasets. We conduct extensive experiments on two real-
world datasets GeoLife [Zheng et al., 2009] and Grab-
Posisi [Huang et al., 2019]: GeoLife consists of human tra-
jectories collected by 182 users in Beijing from April 2007 to
August 2012. Following [Liu et al., 2019], we divide trajec-
tories into segments and classify them into four typical travel
modes: walking, bus, bike, and driving. Grab-Posisi is a
dataset of delivery trajectories collected by Grab, a Southeast
Asian ride-hailing company. We follow [Liang et al., 2021] to
pick data over two weeks in Jakarta, with travel modes includ-
ing car and motorcycle. In addition, we grid the city into cells
of 200 × 200 square meters for each dataset. To capture en-
vironmental factors, we then retrieve 24 fixed geospatial fea-
tures (such as the number of traffic lights, crossings, and resi-
dential areas) for each grid from OpenStreetMap.com. These
environmental variables are then assigned to each GPS point.
After preprocessing, we collect 26,509 trajectories for Geo-
Life and 507,522 for Grab-Posisi. Each trajectory comprises
20 to 50 GPS points. These trajectories are subsequently par-
titioned in an 8:1:1 ratio for training, validation, and test data.

Baselines & Evaluation Metrics. To validate the effective-
ness and robustness of TrajCL, we implement our frame-
work with five representative models for trajectory model-
ing, including vanilla GRU, BiLSTM [Liu and Lee, 2017],
GRU-D [Che et al., 2018], STGN [Zhao et al., 2020], and
TrajFormer [Liang et al., 2022]. We refine them for op-
timal performance using the parameter settings suggested
in their papers. Then, we follow [Liu and Lee, 2017;
Liang et al., 2022] to employ the classification accuracy
(Acc.) to evaluate model performance. Each model and set-
ting is run on every dataset thrice, and the mean accuracy is
reported. Besides, the symbol ∆ denotes accuracy change.

Implementation Details & Hyperparameters. Our model
uses the Adam optimizer with the initial learning rate set to
0.001, reduced by 0.1 every 30 epochs. To avoid overfitting,
we employ an early stopping with a patience of 20 epochs.
The batch sizes for the GeoLife and Grab-Posisi datasets are
256 and 512. The default embedding dimensions are set to
64. For the predictor, we apply a 2-layer MLP uniformly.
To initially merge local features from inputs, we employ two
3 × 1 convolutional layers. The weight parameters λ, φ, and
η of the loss are 1, 0.5, and 0.5, respectively.

5.2 Overall Performance (RQ1)
Table 1 depicts the overall performance under different model
settings on the two datasets. Specifically, we report the per-
formance of the original baseline (Base), the results with in-
corporating environmental information (+ Env), and applied
with the TrajCL framework (+ TrajCL). The experimental re-
sults demonstrate a clear overall trend: incorporating environ-
mental information significantly enhances the performance,
which underscores the importance of considering environ-
mental influences in trajectory modeling. However, incor-
porating environmental information into trajectory modeling
may simultaneously introduce confounding factors that neg-
atively affect the modeling process. This phenomenon is fur-
ther validated by applying TrajCL framework, where we can
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Model
Dataset GeoLife Grab-Posisi

Base + Env + TrajCL Base + Env + TrajCL

GRU 69.15 75.78 77.74 63.46 78.76 79.47
– +6.63 +8.59 – +15.30 +16.01

BiLSTM 70.20 76.58 78.02 69.07 79.81 80.70
– +6.38 +7.82 – +10.74 +11.63

GRU-D 72.48 77.37 78.62 71.78 79.17 79.69
– +4.89 +6.14 – +7.39 +7.91

STGN 76.75 79.03 80.27 72.94 81.24 82.74
– +2.28 +3.52 – +8.30 +9.80

TrajFormer 78.40 80.05 81.22 76.30 85.34 86.53
– +1.65 +2.82 – +9.04 +10.23

Table 1: Performance comparison with different backbones. Acc.
report percentage (%) with 5 runs average.

observe more improvements after using TrajCL for causal in-
tervention. The above results strongly suggest that there are
indeed confounding effects within environments, and empha-
size the effectiveness and necessity of our proposed TrajCL.

In addition, the environmental factors and the TrajCL
present different influences across the two datasets. In the Ge-
oLife dataset, the overall improvement of incorporating envi-
ronmental factors is less significant compared to the Grab-
Posisi dataset (average +4.37% in Geolife, and +10.15% in
Grab-Posisi). This can be attributed to the high frequency and
diversity of confounders in the Geolife dataset, which par-
tially undermines the contribution of environmental factors.
Comparably, the Grab-Posisi dataset is limited to car and mo-
torcycle travel modes with less surrounding noise. Therefore,
when the TrajCL intervention is applied to mitigate these con-
founding factors, the performance improvement is more sub-
stantial in the GeoLife dataset (average +1.41% in Geolife,
and +0.96% in Grab-Posisi). This difference highlights the
effectiveness of the TrajCL intervention, particularly in sce-
narios with diverse and complex environmental confounders.

5.3 Robustness Test (RQ2)
In this section, we analyze the robustness of TrajCL in the
trajectory modeling task with two different scenarios.

Few-shot Learning. For few-shot learning, we divide the
original data set into subsets with ratio [0.1, 0.2, 0.5], and
implement on three state-of-the-art models. The results in
Table 2 show that the smaller the subset, the more signifi-
cant the improvement provided by TrajCL. This trend is ev-
ident across different models and datasets, demonstrating its
high robustness and adaptability to few-shot learning. No-
tably, the better-performing models (e.g., TrajFormer) exhibit
larger TrajCL boosting effects. This suggests that these mod-
els, despite having high baseline performance, also overfit the
geospatial context and introduce more confounding factors
when modeling trajectories. Similarly, the improvement in
the Grab-Posisi dataset is not as significant as in the Geo-
Life dataset. The observation is consistent with our findings
in Section 5.2, reinforcing the conclusion that the TrajCL is
effective in more complex and diverse environments.

Dataset
Model GRU-D STGN TrajFormer

+ Env + TrajCL + Env + TrajCL + Env + TrajCL

GL-0.5 73.97 +0.74 75.80 +0.98 76.33 +2.51
GL-0.2 70.32 +0.94 71.40 +1.44 72.12 +2.33
GL-0.1 65.98 +1.44 68.61 +1.37 69.26 +2.94

GP-0.5 75.82 +0.85 78.70 +0.43 79.97 +1.15
GP-0.2 72.19 +0.93 73.29 +0.58 74.11 +1.08
GP-0.1 69.36 +1.09 70.51 +1.47 71.38 +1.53

Table 2: Performance in the few-shot learning setting. Accuracy is
reported by percentage (%). GL: GeoLife, GP: Grab-Posisi.

Imbalanced Sample Learning. The results of imbalanced
sample scenarios are summarized in Figure 4, where the X-
axis represents the class imbalance ratio in the training set,
and the two Y-axes indicate the accuracy and performance
improvement, respectively. To focus on examining TrajCL
in imbalanced data while mitigating the effects of complex
model designs, we choose a relatively straightforward GRU
encoder and the Grab-Posisi dataset consisting of two classes.
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Figure 4: Exploration of imbalanced sample learning scenarios.

As depicted in Figure 4, GRU+TrajCL is consistently
higher than the baseline, showing the effectiveness of our
framework across all settings of imbalance. As imbalances
increase (from the middle to both sides), the red line in the
figure illustrates more significant TrajCL enhancements. This
result further validates the robustness of TrajCL, especially
as it effectively addresses the challenges under severe imbal-
ance conditions. Interestingly, the performance gains are typ-
ically greater when Motorcycle mode is more prevalent (left)
than Car mode (right). This can be intuitively attributed to
the richer environmental conditions that motorcycles can en-
counter. This complexity introduces a higher confounding
effect, which in turn is elegantly addressed by our TrajCL.

5.4 Ablation Study (RQ3)
Effects of Core Components. In the ablation study, we
quantified the contribution of each component by removing
them individually. Across both datasets, the results in Table 3
demonstrate performance degradation, confirming the neces-
sity of each component in the TrajCL. Replacing the envi-
ronment codebook with a random matrix (w/o EC) slightly
impacts performance, highlighting the learned prototypes for
specific cities can aid in better alignment. Maintaining a fixed
confounding degree of 0.5 for uniform disentanglement (w/o
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Variant
Dataset GeoLife Grab-Posisi

Acc. ∆ Acc. ∆

TrajCL 77.74 – 79.47 –
TrajCL w/o EC 76.25 -1.49 76.99 -2.48
TrajCL w/o CI 75.69 -2.05 76.39 -3.08
TrajCL w/o Dise 75.55 -2.19 76.23 -3.24
TrajCL w/o Env 70.16 -7.58 65.38 -14.09

Table 3: Component ablation results. We use GRU as backbone.

Dise) significantly affects performance, showing that soft-
masks are crucial in separating confounders. Similarly, ex-
cluding random combination from the causal learning process
(w/o CI) leads to a similar decrease in performance, high-
lighting its importance in enhancing representation. The most
significant decrease occurs when geospatial features are ex-
cluded and only the raw trajectory is used to extract the con-
founding degree (TrajCL w/o Env). This highlights the crit-
ical role of auxiliary environmental information in providing
context for disentangling. These results demonstrate that pro-
posed components collectively contribute to the effectiveness
of TrajCL. At the same time, geospatial features provide es-
sential information for disentanglement, particularly evident
in complex urban environments like the GeoLife dataset.
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Figure 5: Effects of environment codebook size k and hidden size d.

Effects of Environment Codebook. As discussed in Sec-
tion 4.2, the environment codebook uses a learnable matrix to
profile environmental prototypes. Therefore, we explore the
effect of the codebook parameters, analyzing the interaction
between the richness of the environment (denoted by k) and
the hidden dimension of each prototype (denoted by d). As
shown in Figure 5, varying values of k and d lead to over-
all performance differences. Each dataset has an optimal k
(k = 25 in GeoLife and k = 50 in Grab-Posisi). In addition,
the largest hidden dimension (d = 128) does not necessar-
ily yield the highest accuracy. The reason is that a too large
d causes redundancy, while a small d is insufficient to learn
environmental features adequately. We also find that the Geo-
life dataset is more sensitive to the codebook setting, which is
also caused by more complex environments in this city. This
suggests that we need to balance k and d based on the specific
urban forms and diversity.

5.5 Interpretation Analysis (RQ4)
To further explore what the codebook has learned, we plot
trajectory points and their associated environmental proto-

𝒄𝟏: Airport𝒄𝟐𝟒: Park

𝒄𝟏𝟔: Interchange 𝒄𝟏𝟔: Interchange

Figure 6: Visualization of environment codebook alignment on Ge-
oLife dataset (k=25). The color represents different ci.

Interchange:
Higher confounding degree

Crossing:
Higher confounding degree

Figure 7: Visualization of the confounding soft-masks applied to
two trajectories. Larger points indicate a higher confounding degree.

types to maps, analyzing the interpretability through geo-
visualization. As shown in Figure 6, we can clearly observe
that the environment codebook can perceive different geospa-
tial contexts. For example, the high concentration of brown
(corresponding to prototype c24 in the codebook) portrays a
typical park area. The blue (corresponding to prototype c1)
identifies a real-world airport. Meanwhile, the codebook as-
signs the identical environmental prototype (green area) to
those with the same geospatial contexts, demonstrating its
strong ability to describe and categorize various environmen-
tal features. In conclusion, the codebook can provide expla-
nations, and also help us delve into the environmental percep-
tion of the model and its corresponding impact.

Furthermore, we visualize the confounding soft-mask ob-
tained through the environment alignment module for trajec-
tory instances. This illustrates the confounding degree as-
signed to each trajectory point. As shown in Figure 7, in-
terchanges and crossings usually have higher degrees. This
aligns with our intuition to focus the confounders more on
environmentally complex regions for effective decoupling.

6 Conclusion and Future Work
In this paper, we propose a novel causal trajectory modeling
framework (TrajCL) to facilitate the learning of robust and
high-quality trajectory representations in travel mode identi-
fication task. TrajCL reexamines existing trajectory model-
ing processes from a causal perspective, introducing an en-
vironment alignment module and a causal learning module
for invariant trajectory representation learning. Experimental
results on two real-world trajectory datasets show significant
advantages in performance, robustness, and interpretability.
In the future, we are committed to expanding the applicabil-
ity of the TrajCL to cover more diverse environments, thus
enhancing its applicability to more realistic trajectory-based
tasks such as travel time estimation.
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