
Graph Contrastive Learning with Reinforcement Augmentation

Ziyang Liu , Chaokun Wang , Cheng Wu
School of Software, BNRist, Tsinghua University, Beijing, China

{liu-zy21, wuc22}@mails.tsinghua.edu.cn, chaokun@tsinghua.edu.cn

Abstract
Graph contrastive learning (GCL), designing con-
trastive objectives to learn embeddings from aug-
mented graphs, has become a prevailing method for
extracting embeddings from graphs in an unsuper-
vised manner. As an important procedure in GCL,
graph data augmentation (GDA) directly affects the
model performance on downstream tasks. Currently,
the GCL methods typically treat GDA as indepen-
dent events, neglecting its continuity. In this paper,
we regard the GDA in GCL as a Markov decision
process and propose a novel graph reinforcement
augmentation framework for GCL. Based on this
framework, we design a Graph Advantage Actor-
Critic (GA2C) model. We conduct extensive experi-
ments to evaluate GA2C on unsupervised learning,
transfer learning, and semi-supervised learning. The
experimental results demonstrate the performance
superiority of GA2C over the state-of-the-art GCL
models. Furthermore, we verify that GA2C is more
efficient than the other GCL methods with learn-
able GDA and provide two examples of chemical
molecular graphs from ZINC-2M to demonstrate
that GA2C generates meaningful augmented views,
where the edge weights reflect the importance of
chemical bonds in the molecule.

1 Introduction
Graph representation learning aims to extract low-dimensional
representation vectors from the graph data by supervised or
unsupervised learning [Cui et al., 2019; Yang et al., 2023;
Liu et al., 2022]. These representation vectors encode
the abundant structural and semantic information of the
graph. Graph representation learning has become an ef-
fective technique of graph mining and is applied to mul-
tiple fields including bioinformatics [Ang et al., 2021;
You et al., 2020], social networks [Wang et al., 2018;
Wu et al., 2023], and recommender systems [Yu et al., 2022;
Xu et al., 2023]. Due to the sparsity of labeling informa-
tion in the real world, learning representations from graphs
in a self-supervised manner has become particularly crucial.
Furthermore, as an important member of self-supervised rep-
resentation learning on graphs, graph contrastive learning

(GCL) has achieved superior performance on a series of down-
stream tasks such as graph classification [Suresh et al., 2021;
Yin et al., 2022; Liu et al., 2023].

As a necessary procedure in GCL, graph data augmenta-
tion (GDA) generally defines augmented views based on the
original graph and directly affects the model performance
on downstream tasks. The common GDA strategies include
edge removing, edge perturbation, attribute masking, and so
on. Prior work designs three types of GDA in total: trial-
and-error methods, precomputed methods, and adversarial
methods. In the trial-and-error methods [Zhu et al., 2020;
Thakoor et al., 2021] and precomputed methods [Zhu et al.,
2021], GDA is frozen in the whole training. While in the
adversarial methods [Suresh et al., 2021; You et al., 2022],
GDA is learnable in the training and its parameters are up-
dated by a pre-designed view learner. In addition, some GCL
models leverage augmentation-free methods, such as encoder
perturbation [Xia et al., 2022], to construct self-supervised
signals instead of GDA.

Motivation 1: Evolvability of augmented views. Cur-
rently, GCL with learnable augmentation has unleashed the
potential of contrastive learning and achieved state-of-the-
art performance on downstream tasks [Suresh et al., 2021;
Yin et al., 2022]. Then a new potential question arises: How
does a good augmented view evolve to promote the perfor-
mance of GCL? We argue that a good augmented view should
maintain the characteristics of progressive evolution, akin
to the step-by-step learning progression in human cognition,
where it is easier to comprehend and accept new information
when there is a connection between what is learned on succes-
sive days. It corresponds to a Markov decision process, i.e.,
the augmented view of the current epoch is only affected by
that of the last epoch.

Motivation 2: Preservation of original graph structure in-
formation. In specific graph structures, GDA strategies like
edge removing or node deletion can disrupt the fundamental
structure information of the original graph. For instance, in
molecular property prediction, removing atoms or chemical
bonds destroys the basic structure of the chemical molecule,
or even alters the types of functional groups [Xia et al., 2022;
Wang et al., 2022a]. Some existing GCL models use
augmentation-free methods like encoder perturbation to ad-
dress this issue and have achieved commendable results. Con-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2225

sidering the difficulty in determining the appropriate encoder
perturbation ratio (e.g., inappropriate perturbations can lead to
performance degradation [Xia et al., 2022]), we cannot help
but wonder: Is there a scheme that preserves the fundamental
structure information of the original graph without perturbing
the encoder?

In this study, we propose the reinforced GDA where the
view learner adjusts GDA parameters actively based on the
previous state (Motivation 1). Our view learner in GDA is
regarded as an agent that interacts with the encoder network.
Moreover, the view learner learns the weights of edges in the
graph, without deleting any node, edge, or attribute in the
graph. As a result, the augmented view preserves the original
graph structure information completely (Motivation 2). Ap-
plying reinforcement learning to GDA is non-trivial because
of two primary challenges: Firstly, the existing reinforce-
ment learning methods on graphs are not adequately suited for
GDA [Ju et al., 2023; Munikoti et al., 2023]; secondly, design-
ing an effective reward function for graph-based environments
remains unclear. To solve the two challenges, we propose a
novel graph reinforcement augmentation (GRA) framework
for GCL and design a Graph Advantage Actor-Critic (GA2C)
model based on this framework. In GA2C, the joint use of
the Actor submodel and Critic submodel contributes to the
progressive evolution of the augmented view. Also, the reward
function in GA2C is designed as the negative mutual informa-
tion between two augmented graph embeddings to reduce the
redundant information between two views.

The main contributions of this work are as follows:

• We propose the GRA framework, a novel type of GDA for
GCL, based on reinforcement learning. This framework for-
mulates a Markov decision process for GDA and preserves
the original graph structure information (Section 4.1).

• We design the GA2C model, as an instantiation of the GRA
framework, to achieve continuous and learnable graph data
augmentation (Section 4.2).

• On 13 public datasets, we demonstrate that GA2C out-
performs the state-of-the-art GCL models in unsupervised,
transfer, and semi-supervised learning. (Section 5).

2 Related Work
Graph contrastive learning with frozen GDA parameters.
Traditional GCL models like GraphCL [You et al., 2020] and
InfoGraph [Sun et al., 2020] adopt frozen GDA parameters to
generate augmented views. Generally, these models set GDA
parameters empirically by trial and error. Different from the
trial-and-error methods, GCA [Zhu et al., 2021] adopts pre-
computed methods, i.e., it calculates GDA parameters based
on some indicators of centrality in the graph (e.g., degree cen-
trality) and uses these precomputed parameters to augment
the graph. However, there is a risk in frozen GDA parameters
that the redundant information is captured by the InfoMax
principle [Tschannen et al., 2020]. The redundant information
hinders the optimal performance of GZL on downstream tasks.

Graph contrastive learning with learnable augmentation.
To reduce the negative impact of redundant information, learn-
able augmentation is introduced into GCL, i.e., the parameters

𝐴!"(#)

𝑓𝝓(#)

𝑓𝝓(#)

𝑔𝝋(#)

𝑔𝝋(#)

Contrastive loss
𝒢%

Forward propagation Backward propagation

Frozen module Learnable module

𝒁%

)𝒁%

Figure 1: Framework of GCL with frozen GDA parameters.

of GDA are learned automatically in the training. For example,
AD-GCL [Suresh et al., 2021] adopts adversarial training, i.e.,
the contrastive optimization aims to i) maximize the corre-
spondence between the embeddings of different views when
fixing GDA and updating network encoding; ii) minimize the
correspondence between the embeddings of different views
when fixing network encoding and updating GDA. Also, in-
spired by image manifolds, the study in [You et al., 2022]
extends the frozen GDA parameters to the learnable ones, and
leverages both principles of information minimization and
information bottleneck to regularize the learned GDA parame-
ters. JOAO [You et al., 2021] is an automated augmentation
selection framework for GraphCL that aligns with best prac-
tices. As an enhanced version of JOAO, JOAOv2 [You et
al., 2021] utilizes an augmentation-aware projection head to
counter training distribution distortions caused by aggressive
augmentations. The key difference between the above methods
and ours is that our method captures the evolutionary aspect
of augmented views and preserves the original graph structure
information.

Augmentation-free graph contrastive learning. In the lit-
erature, augmentation-free GCL models learn embeddings
from graphs without using GDA. These models typically
leverage encoder perturbation or embedding perturbation in-
stead of GDA to construct contrast pairs. For example, Sim-
GRACE [Xia et al., 2022] takes the raw graph as the input and
uses the graph neural networks (GNNs) encoder [Yang et al.,
2022; Yang et al., 2023] as well as its perturbed version to gen-
erate two augmented views for contrast. AF-GCL [Wang et
al., 2022a] optimizes high-dimensional embedding distances
using aggregated node features for positive and negative pair
construction. SimGCL [Yu et al., 2022] creates contrastive
views by adding noises to the embeddings obtained by GNNs.
Both the aforementioned methods and our method preserve the
original graph structure information for contrastive training.
The key difference is that our method does not require de-
signing perturbed versions of encoders or embeddings, where
manually tuning the perturbation ratio significantly affects
model performance.

3 Preliminaries
Pre-training using GCL. Conventional GCL models use
predefined GDA with frozen GDA parameters [Thakoor et al.,
2021; Zhu et al., 2021]. As shown in Figure 1, it typically
includes three main procedures: graph data augmentation,
network encoding, and contrastive loss based optimization.
Assume the input graph set D= {Gi|i=1, · · ·, n} where Gi

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2226

Notation Description
Gi The i-th graph in input graph set D.
G̃(t)
i Augmented view of Gi at time t.

θA, θC Parameter sets of Actor and Critic.
Mi∈R+ Number of node attributes in Gi.
Ni∈R+ Number of nodes in Gi.
D∈R+ Hidden size of embeddings.
T∈R+ Duration time of Actor or Critic.

Zi, Z̃
(t)
i ∈RD Graph embeddings of Gi and G̃(t)

i .
[XGi]v∈RMi Attribute vector of node v in Gi.
ω̃

(t)
i ∈RNi×Ni GDA parameter matrix of G̃(t)

i .
Q̃

(t)
i , Ṽ

(t)
i ∈RNi×Ni Q-value matrix and V-value matrix.

Ã
(t)
i ∈RNi×Ni Advantage-value matrix.
fϕ(·), gφ(·) Encoder network, projection network.

Table 1: Frequently used notations.

denotes the i-th graph and n denotes the graph count. The
augmented view G̃i is obtained from Gi by a specific GDA
operation Aω̃ where ω̃ represents the GDA parameter matrix.
For example, Aω̃ can be edge removing with the removing
ratio of 0.2 for each node. Next, Gi, G̃i are passed into en-
coder network fϕ(·) as well as projection network gφ(·) and
then are extracted into two D-dimensional graph embeddings
Zi, Z̃i∈RD. Finally, the parameters ϕ and φ are updated by
optimizing a predefined contrastive loss like InfoNCE [Zhu et
al., 2020; You et al., 2020] between Zi and Z̃i.
Fine-tuning on downstream tasks. GCL is generally fol-
lowed by a certain downstream task such as graph classifica-
tion [Sun et al., 2020; Suresh et al., 2021; Yin et al., 2022].
When the training of GCL is completed, the graph embedding
Zi is generated from graph Gi by the trained encoder network
and projection network. Then Zi serves as the input of the
downstream task’s classifier such as a linear logistic regression
model or an SVM model. For frequently used notations, we
list and describe them in Table 1.

4 Methods
4.1 GRA Framework
Reinforcement learning involves no supervisor, and only a
reward signal is used for an agent to determine if it is doing
well or not [Wang et al., 2022b]. From this point, reinforce-
ment learning is suitable for characterizing an evolving view
learner in GDA. We illustrate the proposed GRA framework
in Figure 2. Specifically, there are three key components in
this framework.
(C1) Min-max optimization of contrastive loss and cumula-
tive reward. We design a mechanism of double-layer model
learning: The outer layer is to minimize the InfoNCE loss
LNCE(·) between two views by only updating ϕ and φ; the
inner layer is to maximize the expected cumulative reward
R(·) by only updating ω̃i (i = 1, · · ·, n). The whole min-max
optimization is formalized as follows:

min
ϕ,φ
LNCE(gφ(fϕ(Gi)), gφ(fϕ(Aω̃∗

i
(Gi))))

s.t. ω̃∗
i =argmax

ω̃i

R(ω̃i).
(1)

𝐴!𝝎!
(#)(#)

𝑓𝝓(#)

𝑓𝝓(#)

𝑔𝝋(#)

𝑔𝝋(#)

'𝝎%
(')

𝐴!𝝎!
(%)(#)

𝑓𝝓(#)

𝑓𝝓(#)

𝑔𝝋(#)

𝑔𝝋(#)
+

'𝝎%
())

𝐴!𝝎!
(%)(#)

𝑓𝝓(#)

𝑓𝝓(#)

𝑔𝝋(#)

𝑔𝝋(#)𝒢%
())

…

Time 1 Time T

Learnable module
Frozen module

'𝝎%
())

𝒢%

𝒢%
(')

Cumulative reward based optimization
Contrastive loss based optimization +

Figure 2: Forward propagation process of the GRA framework. For
the backpropagation, it is operated twice in one epoch: One is at the
end of the inner layer optimization and the other is at the end of the
outer layer optimization.

(C2) Markov decision process for GDA. The GDA proce-
dure in the GRA framework is continuous and learnable. The
continuity ensures that the view learner adjusts the current
GDA parameters according to the state at the previous time.
Therefore, it makes the augmented view progressively evolve
to be a learning-friendly view during model training. To be
specific, the determination of GDA parameters is regarded as
a Markov decision process. Given the present augmented view
G̃(t)i at time t (note that one epoch includes T times), the next
augmented view G̃(t+1)

i at time t + 1 is independent of any
past view G̃(t

′)
i where t′<t:

P(G̃(t+1)
i |G̃(t)i) = P(G̃(t+1)

i |G̃(1)i , · · · , G̃(t)i). (2)

Then a Markov decision process for GDA is formulated as
a triplet (Sstate,Saction, R): State set Sstate is the set of all
possible augmented views where each element represents a
certain augmented view; action set Saction is the set of all pos-
sible augmentation operations where each element represents
a certain augmentation operation; reward R is the total reward
of the trajectory measuring the reward value generated by a
series of states. For the state, action, and reward at time t, we
denote them as G̃(t)i , A

ω̃
(t)
i
(·), and R(t), respectively. The aug-

mentation operation A
ω̃

(t)
i
(·) is uniquely determined by ω̃

(t)
i ,

and we elaborate on how to obtain ω̃
(t)
i in Section 4.2. More-

over, to reduce the redundant information between two views
as much as possible in GCL, we design R(t) as the negative
mutual information (it can be calculated using the InfoNCE
loss) between the embeddings Z(t)

i , Z̃
(t)
i ∈RD at time t:

R(t)=− I(Z(t)
i , Z̃

(t)
i),

Z
(t)
i =gφ(fϕ(G(t)i)), Z̃

(t)
i =gφ(fϕ(G̃(t)i)).

(3)

(C3) Preserving graph structure information using edge
reweighting. Most GCL methods employ edge removing
or node deletion to achieve GDA, which disrupts the original
graph structure information [You et al., 2020; You et al., 2022;
Yin et al., 2022; Suresh et al., 2021]. Unlike previous strate-
gies, we design edge reweighting for the GDA in GRA.
Given the original edge weight matrix EGi

∈RNi×Ni , the edge
reweighting strategy AugERW is formalized as follows:

AugERW : EGi
7→ EGi

◦ω̃(t)
i , (4)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2227

Actor
Encoder

Critic
Encoder

Environment
!𝝎!
(#$%) #𝒢!

(#)

%𝑽!
(#$%)

(𝒟, Aug!"#, …)

!𝝎!
(#$%)

#𝒢!
(#)

Figure 3: Illustration of the relationships among Actor, Critic, and
environment. Here the environment includes the input graph set D,
edge reweighting strategy AugERW, etc.

where ω̃
(t)
i ∈RNi×Ni denotes the GDA parameter matrix of

G̃(t)i (the elements in this matrix correspond to edge weights)
and ◦ represents the Hadamard product of two matrices. For
an unweighted graph, EGi is set to the adjacency matrix. Also,
we initialize ω̃

(t)
i as an all-ones matrix JNi

∈RNi×Ni when
t = 0, i.e., ω̃(0)

i = JNi .
For example, given a graph G = {V, E}where node set V =
{v1, v2, v3} and edge set E = {(v1, v2), (v1, v3)}, we define
an edge index dictionary E = {e1:(v1, v2), e2:(v1, v3)}. Then
ω̃

(t)
i can be [[1.0, 0.6, 0.8]T, [0.6, 1.0, 0.0]T, [0.8, 0.0, 1.0]T]

where the numbers 0.6 and 0.8 represent the edge weights
of e1 and e2 at time t, respectively. Edge weights act as coeffi-
cients for the message passing in GNNs, so the message along
e2 is more important than that along e1 at time t.

4.2 GA2C Model
We present the details of GA2C, an instantiation of the GRA
framework, including the model architecture, update of Critic,
and update of Actor.
(I) Model architecture. Although we can design a vanilla
policy gradient method by using the reward defined in Eq. (3)
and a policy function updated by a sampled reward return, the
sampled gradients likely indicate a wrong learning direction
and thus lead to unstable training. To address this issue, we
design the GA2C model containing two submodels of Actor
and Critic. The relationships among the environment, Actor,
and Critic are illustrated in Figure 3. Specifically, the Ac-
tor submodel contains the parameter set θA= {W1, · · ·,WK}
where K denotes the GNN layer count, W1∈RMi×N2

i , and
Wk∈RN2

i ×N2
i (k=2, · · ·,K). Given the node v’s neighbor set

Ni(v) as well as the edge weight [ω̃(t)
i]v,u between nodes v

and u, Actor receives the edge weight information in G̃(t)i , and
estimates ω̃(t+1)

i by K-layer GNNs:

ω̃
(t+1)
i =Sigmoid(Reshape(H

(t)
i)),

H
(t)
i =BN(CC(RD(

{
h
(t)
v,k|v∈G̃

(t)
i

}
)|k=1, · · ·,K)),

h
(t)
v,k=MLPk

θA(
∑

u∈Ni(v)∪{v}

[ω̃
(t)
i]v,u·h(t)

u,k−1

d(v)·d(u)
),

(5)

where Reshape(·) represents a function reshaping a vector
H

(t)
i ∈RN2

i into a matrix ω̃
(t+1)
i ∈RNi×Ni , BN(·) the batch

normalization layer, CC(·) the concatenation layer, RD(·) the

readout layer calculating the temporary variable of graph G̃i,
d(·) the node degree, and h

(0)
v,k=[XGi

]v the attribute vector of

node v. Since the GDA parameter matrix ω̃
(t+1)
i is learned

automatically based on the previous state G̃(t)i , it ensures that
the augmented view evolves progressively in the training.

As an evaluator of the actions taken by Actor, the Critic sub-
model contains the parameter set θC= {W ′

1, · · ·,W ′
K} where

W ′
1∈RMi×N2

i , and W ′
k∈RN2

i ×N2
i (k=2, · · ·,K). Critic re-

ceives G̃(t)i and ω̃
(t+1)
i , and then estimates the V-value matrix

Ṽ
(t+1)
i by K-layer GNNs. Specifically, a new view G̃(t+1)

i at
time t+1 is generated by operating edge reweighting on G(t)i :

G̃(t+1)
i = A

ω̃
(t+1)
i

(G(t)i), (6)

where the input graph at the initial time G̃(1)i =Gi. Then the
Critic submodel estimates Ṽ (t+1)

i based on the edge weight
information in G̃(t+1)

i . Without loss of generality, Ṽ (t)
i is

estimated as follows:

Ṽ
(t)
i =Reshape(M

(t)
i),

M
(t)
i =BN(CC(RD(

{
m

(t)
v,k|v∈G̃

(t)
i

}
)|k=1, · · ·,K)),

m
(t)
v,k=MLPk

θC (
∑

u∈Ni(v)∪{v}

[ω̃
(t)
i]v,u·m(t)

u,k−1

d(v)·d(u)
),

(7)

where m(t)
v,k is initialized as the attribute vector of node v, i.e.,

m
(1)
v,k=[XGi

]v. We train Actor and Critic using the gradient
descent algorithm. The following is a detailed description
about the updates of Actor and Critic.

(II) Update of Critic. The optimization objective of Critic
is to maximize JC=

∑T
t=1(Ã

(t)
i)2 and the gradient w.r.t. θC

is computed as follows:

∇θCJC=
d

dθC

T∑
t=1

(Ã
(t)
i)2, (8)

where the advantage-value matrix Ã
(t)
i denotes the difference

between the actual outcome (i.e., Q-value matrix Q̃(t)
i) brought

by the GDA operation A
ω̃

(t)
i
(·) and the expected outcome

(i.e., V-value matrix Ṽ
(t)
i) at the given state G̃(t)i . Because

calculating Q̃
(t)
i requires a new group of GNNs, we estimate

Ã
(t)
i with temporal difference error [Bengio et al., 2020] to

simplify computations:

Ã
(t)
i =Q̃

(t)
i −Ṽ

(t)
i =R(t+1)+γṼ

(t+1)
i −Ṽ (t)

i , (9)

where R(t+1) is defined in Eq. (3).

(III) Update of Actor. The optimization objective of Actor
is to maximize JA=

∑T
t=1 logπi(ω̃

(t+1)
i |G̃(t)i)·Ã(t)

i and the
gradient w.r.t. θA is computed as follows:

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2228

Algorithm 1 Training process of GA2C

Input: Graph set D, epoch count Ne, duration time T , Ac-
tor’s learning rate αA, Critic’s learning rate αC , encoder
network’s learning rate αE , and learnable parameters
ϕ,φ, θA, θC .

Output: Trained encoder network fϕ and projection network
gφ.

1: Initialize ϕ, φ, θA, and θC with the Glorot uniform ini-
tializer;

2: for n ∈ [1, Ne] do
3: for Gi ∈ D do
4: Initialization: G̃(1)i ← Gi, ω̃(0)

i ← JNi ;
5: for t ∈ [1, T] do
6: Calculate ω̃

(t)
i based on Eq. (5) and take action

based on Eq. (6);
7: Calculate Ṽ

(t)
i based on Eq. (7);

8: Calculate Ã
(t)
i based on Eq. (9);

9: end for
10: Update θA: θA←θA−αA∇θAJA based on Eq. (10);
11: Update θC : θC←θC−αC∇θCJC based on Eq. (8);
12: Calculate LNCE in Eq. (1) with ω̃∗

i =ω̃
(T)
i ;

13: Update the parameter ϕ in fϕ: ϕ←ϕ−αE∇ϕLNCE;
14: Update the parameter φ in gφ: φ←φ−αE∇φLNCE;
15: end for
16: end for
17: return fϕ and gφ.

∇θAJA=
T∑

t=1

dlogπi(ω̃
(t+1)
i |G̃(t)i)

dθA
·Ã(t)

i , (10)

where the policy πi(ω̃
(t+1)
i |G̃(t)i) represents the probability

of selecting A
ω̃

(t+1)
i

(·) as the action given the state G̃(t)i . We
adopt a stochastic function to generate all policy values. The
pseudocode for the complete training process of GA2C is
shown in Algorithm 1.

4.3 Time Complexity Analysis
Training. Let L be the layer count in the encoder net-
work, Navg the average node count in each augmented graph,
and Mavg the average attribute count in each augmented
graph. We conduct batch learning where each batch has B
graphs and employ a triggering learning mechanism for GDA,
where GDA parameters are updated once every T epochs.
Therefore, the total time complexity of GA2C training in
each batch per epoch is O(NeB(TK+L)NavgMavgD/T) =
O(NeB(K+L/T)NavgMavgD) where Ne, T , and D denote
the epoch number, duration time, and hidden size, respectively.

Inference. In model inference, the raw graphs are directly
used as the input data of the encoder and projection networks.
Therefore, the reinforced GDA procedure does not add any ex-
tra complexity to model inference, and the inference complex-
ity of GA2C is identical to the state-of-the-art GCL models
such as AD-GCL [Suresh et al., 2021] and SimGRACE [Xia
et al., 2022]. Then given a test graph whose node count and

Dataset Type #Graph #AN #AE #Class
NCI1 Biochemistry 4,110 29.87 32.30 2

PROTEINS Biochemistry 1,113 39.06 72.82 2
MUTAG Biochemistry 188 17.93 19.79 2

DD Biochemistry 1,178 284.32 715.66 2
REDDIT-B Social graphs 2,000 429.6 497.75 2

REDDIT-M-5K Social graphs 4,999 508.8 594.87 5
IMDB-B Social graphs 1,000 19.8 96.53 2
COLLAB Social graphs 5,000 74.49 2,457.78 3
GITHUB Social graphs 12,725 113.79 234.64 2
Dataset Type #Graph #AN #AE #Task
ToxCast Physiology 8,576 18.8 19.3 617
BBBP Physiology 2,039 24.1 26.0 1
MUV Biophysics 93,087 24.2 26.3 17
BACE Biophysics 1,513 34.1 36.9 1

Table 2: The statistics of the experimental datasets. “#AN” and
“#AE” represent the average node count and average edge count in
each graph, respectively.

attribute count are respectively denoted as Ntest and Mtest, the
time complexity of GA2C inference is O(LNtestMtestD).

5 Experiments
5.1 Configurations
Datasets. The experimental datasets are from TU
datasets [Morris et al., 2020] and Open Graph Benchmark
(OGB) datasets [Hu et al., 2020a]. They cover four types of
graphs including biochemical molecules (NCI1, PROTEINS,
MUTAG, and DD), social graphs (REDDIT-B, REDDIT-M-
5K, IMDB-B, COLLAB, and GITHUB), physiology (ToxCast
and BBBP), and biophysics (MUV and BACE). The statistics
of these datasets are shown in Table 2. As with previous
work, we report the accuracy results on TU datasets and the
ROC-AUC results on OGB datasets. In addition, we use
ZINC-2M [Hu et al., 2020b] as the pre-training dataset in
transfer learning. In ZINC-2M, there are a total of 2 million
unlabeled molecules, with each molecule graph having an
average node count of 26.62 and an average degree of 57.72.
Baselines. We compare GA2C with different types of base-
lines: (i) In unsupervised learning, the baselines include kernel-
based methods such as graphlet kernel (GL) [Shervashidze
et al., 2009], Weisfeiler-Lehman sub-tree kernel (WL) [Sher-
vashidze et al., 2011], and deep graph kernel (DGK) [Yanardag
and Vishwanathan, 2015]. In addition, we compare unsuper-
vised graph representation learning methods, which include
node2vec [Grover and Leskovec, 2016], sub2vec [Adhikari
et al., 2018], and graph2vec [Narayanan et al., 2017]. Fur-
thermore, we compare state-of-the-art GCL methods, namely
InfoGraph [Sun et al., 2020], GraphCL [You et al., 2020],
JOAOv2 [You et al., 2021], AD-GCL [Suresh et al., 2021],
AutoGCL [Yin et al., 2022], and SimiGRACE [Xia et al.,
2022]. SimiGRACE is an augmentation-free method, while
JOAOv2, AD-GCL, and AutoGCL adopt learnable GDA. (ii)
In transfer learning, we also compare Infomax [Velickovic
et al., 2019], EdgePred [Hu et al., 2020b], AttrMasking [Hu
et al., 2020b], and ContextPred [Hu et al., 2020b]. (iii) In
semi-supervised learning, we also compare GCA [Zhu et al.,
2021] that uses precomputed methods for GDA.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2229

Method MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M-5K AR ↓
GL 81.66±2.11 - - - - 65.87±0.98 77.34±0.18 41.01±0.17 10.0
WL 80.72±3.00 72.92±0.56 - 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06±0.21 7.5

DGK 87.44±2.72 73.30±0.82 - 80.31±0.46 - 66.96±0.56 78.04±0.39 41.27±0.18 7.2

node2vec 72.63±10.20 57.49±3.57 - 54.89±1.61 - - - - 11.0
sub2vec 61.05±15.80 53.03±5.55 - 52.84±1.47 - 55.26±1.54 71.48±0.41 36.68±0.42 11.8

graph2vec 83.15±9.25 73.30±2.05 - 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26 8.5

InfoGraph 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03 5.1
GraphCL 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28 4.5
AD-GCL 88.62±1.27 75.04±0.48 75.38±0.41 75.77±0.50 71.95±0.79 71.49±0.98 84.16±1.18 55.47±0.72 5.0
JOAOv2 - 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 45.57±2.86 7.7

AutoGCL 89.28±0.89 75.76±0.38 77.08±0.53 79.79±0.42 71.85±1.02 72.24±0.42 88.46±0.71 55.83±0.53 3.4
SimGRACE 89.01±1.31 75.35±0.09 77.44±1.11 79.12±0.44 71.72±0.82 71.30±0.77 89.51±0.89 55.91±0.34 3.9

GA2C 90.34±0.39 76.03±0.16 78.10±0.69 80.62±0.39 72.13±0.34 73.88±0.39 89.62±0.95 55.93±0.64 1.3

Table 3: Unsupervised learning results (Accuracy, %) on TU datasets. We repeat the experiment of GA2C five times using different random
seeds, and then report the mean as well as standard deviation as final results. The best result is bolded and the runner-up is underlined. AR
denotes average rank and - indicates that results are not available in published papers.

Hyperparameter settings. (i) In unsupervised learning, for
REDDIT-B and REDDIT-M-5K, we use a 5-layer graph iso-
morphism network (GIN) [Xu et al., 2019] with a hidden size
of 128 as our encoder network and a 2-layer MLP with a hid-
den size of 128 as our projection network (training 150 epochs
in total); for the other datasets, we use a 3-layer GIN with a
hidden size of 32 as our encoder network and a 2-layer MLP
with a hidden size of 128 as our projection network (training
60 epochs in total). The submodel of Actor or Critic is im-
plemented as the same network architecture of the encoder
network. The learning rates for the Actor, Critic, and encoder
network are consistently set to 1e-3. For downstream tasks,
we adopt an SVM as the classifier and perform 10-fold cross-
validation on each dataset. For each fold, we allocate 90% of
the total data as the unlabeled data for contrastive pre-training,
and the remaining 10% as the labeled testing data. (ii) In trans-
fer learning, we pre-train GA2C on the ZINC-2M dataset [Hu
et al., 2020b] with 10 epochs and set the hidden sizes of the en-
coder network (3-layer GIN) and projection network (2-layer
MLP) as 300 and 64, respectively. Then we fine-tune GA2C
on a specific OGB dataset with 100 epochs. The split ratio
of the training, validation, and testing sets is 8:1:1. (iii) In
semi-supervised learning, we use a 3-layer GIN with a hidden
size of 128 as the submodel of Actor or Critic and use a 3-layer
ResGCN [Chen et al., 2019] with a hidden size of 128 as the
classifier. We perform 10-fold cross-validation on each dataset.
For each fold, we allocate 80% of the total data as unlabeled
data, 10% as labeled training data, and the remaining 10% as
labeled testing data.

5.2 Results and Analysis
Results of unsupervised learning. We report the perfor-
mance results of GA2C and published results of baselines
on TU datasets in Table 3. We can see that GCL methods
outperform kernel-based methods and unsupervised graph rep-
resentation learning methods. Furthermore, view-learnable
GCL methods like AutoGCL further enhance the performance
of GCL methods, performing the best in all baselines. As an
augmentation-free method, SimGRACE preserves the original
graph structure information and also performs well. Com-

Method BBBP ToxCast MUV BACE AR ↓
No Pre-train 65.8±4.5 63.4±0.6 71.8±2.5 70.1±5.4 9.0

Infomax 68.8±0.8 62.7±0.4 75.3±2.5 75.9±1.6 7.0
EdgePred 67.3±2.4 64.1±0.6 74.1±2.1 79.9±0.9 5.3

AttrMasking 64.3±2.8 64.2±0.5 74.7±1.4 79.3±1.6 5.5
ContextPred 68.0±2.0 63.9±0.6 75.8±1.7 79.6±1.2 4.5

GraphCL 69.6±0.6 62.4±0.5 69.8±2.6 75.3±1.4 9.0
JOAOv2 71.3±0.9 63.1±0.4 73.6±1.0 75.4±1.2 6.5
AD-GCL 70.0±1.0 63.0±0.7 72.3±1.6 78.5±0.8 7.0
AutoGCL 73.3±0.7 63.4±0.3 75.8±1.3 83.2±1.1 2.8

SimGRACE 71.2±0.8 63.3±0.5 69.4±1.2 74.6±0.7 8.0

GA2C 74.0±1.0 64.2±0.2 79.7±0.4 83.9±0.4 1.0

Table 4: Transfer learning results (ROC-AUC, %) on OGB datasets.

pared to these baselines, GA2C performs better, with the best
average ranking of 1.3. GA2C achieves the first place on 6 out
of 8 datasets and the second place on 2 of them. It is mainly
attributed to the design of graph reinforcement augmentation,
which not only preserves the structure information of the orig-
inal graph but also maintains the characteristics of progressive
evolution in augmented views.

Results of transfer learning. We use a method called “No
Pre-train” as a control method, which directly trains on each
dataset without pre-training. Based on the results in Table 4,
we can see that most of the pre-training methods outperform
the ones without pre-training. Among all the baselines, Au-
toGCL demonstrates the best overall performance, indicating
the superiority of learnable graph data augmentation over the
frozen one. In contrast, GA2C performs better than Auto-
GCL and achieves the best performance on all datasets. For
example, GA2C shows a significant improvement in MUV,
with an increase of 3.9%. The comparison in transfer learn-
ing validates the effectiveness of the GRA framework and its
instantiation model GA2C.

Results of semi-supervised learning. We calculate the av-
erage ranking for each method apart from “Full Data” and
report the total results in Table 5. “Full Data” adopts 90%
data for training and 10% for testing; “10% Data” adopts 10%

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2230

Method PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M-5K GITHUB AR ↓
Full Data 78.25±1.61 80.73±3.78 83.65±1.16 83.44±0.77 76.60±4.20 89.95±2.06 55.59±2.24 66.89±1.04 -

10% Data 69.72±6.71 74.36±5.86 75.16±2.07 74.34±2.00 64.80±4.92 76.75±5.60 49.71±3.20 61.05±1.57 6.6
10% GCA 73.85±5.56 76.74±4.09 68.73±2.36 74.32±2.30 73.70±4.88 77.15±6.96 32.95±10.89 59.24±3.21 6.0

10% GraphCL 74.21±4.50 76.65±5.12 73.16±2.90 75.50±2.15 68.10±5.15 78.05±2.65 48.09±1.74 63.51±1.02 5.4
10% JOAOv2 73.31±0.48 75.81±0.73 74.86±0.39 75.53±0.18 68.30±4.08 88.79±0.65 52.71±0.28 66.66±0.60 4.6
10% AD-GCL 73.96±0.47 77.91±0.73 75.18±0.31 75.82±0.26 72.48±1.15 90.10±0.15 53.49±0.28 - 2.7
10% AutoGCL 75.65±2.40 77.50±4.41 73.75±2.25 77.16±1.48 71.90±4.79 79.80±3.47 49.91±2.70 62.46±1.51 3.8

10% SimGRACE 74.03±0.51 76.48±0.52 74.60±0.41 74.74±0.28 71.30±0.77 88.86±0.62 53.97±0.64 - 4.3

10% GA2C 76.10±2.23 79.62±4.65 75.84±1.50 76.16±2.00 73.70±4.27 90.35±2.49 52.39±1.88 68.90±1.62 1.5

Table 5: Semi-supervised learning results on TU datasets. We mark the best result and runner-up, excluding Full Data.

0.305 0.276 0.294

0.588

0.252
0.165

0.231

0

0.2

0.4

0.6

0.8

Info
Gra
ph

Gra
phC
L
AD
-GC
L
JOA

Ov2

Aut
oGC

L

Sim
GR
AC
E

GA
2C

Ti
m

e (
se

co
nd

s)

Method

Figure 4: Comparison of training time per epoch.

data for training and does not include the pre-training step; the
remaining methods adopt 10% data for training and include
the pre-training step. In this comparison, GA2C, AD-GCL,
and AutoGCL achieve the first, second, and third positions,
respectively. The above three methods use learnable GDA,
which verifies its advantage over frozen GDA. AD-GCL per-
forms the best among baselines, with an average ranking of
2.7. It achieves the second position on 5 out of 8 datasets.
Our proposed model GA2C achieves the first position on 6
out of 8 datasets, with an average ranking of 1.5. For exam-
ple, on DD and GITHUB, GA2C outperforms the runner-ups
(AD-GCL and JOAOv2, respectively) by 1.71% and 2.24%,
respectively. The above analysis demonstrates that GA2C sur-
passes state-of-the-art GCL methods in either unsupervised,
transfer, or semi-supervised learning, confirming the effective-
ness of graph reinforcement augmentation.

Comparison of training time. Using the same batch size
of 32, we compare the average training time per epoch among
different GCL methods and GA2C. The results are shown in
Figure 4. Overall, in terms of training efficiency, GA2C is in
the same order of magnitude as these methods. The least time-
consuming method is SimGRACE because it uses encoder
perturbation instead of GDA to reduce training time. The
second efficient method is GA2C which adopts a triggering
learning mechanism for GDA. Such a mechanism in GA2C
makes its training efficiency second only to SimGRACE and
more efficient than other GCL methods. We observe that
JOAOv2 has the longest training time per epoch among these
methods, indicating it spends excessive time on data augmen-

0.147

0.307
0.999

0.9990.994

0.996
0.997

0.997

Smiles: Cc1ccc2c(c1)CNC2 Smiles: CCn1ccc2cc[nH]c(=O)c21

0.591 0.656

0.733

0.333 0.133

0.9650.981

0.935

0.988

0.751

0.735
0.595

0.850

0.101
0.357

0.117

Figure 5: Two example molecular graphs in ZINC-2M. The bolded
numbers represent the important chemical bonds learned by GA2C.

tation selection during bi-level optimization.
Case studies. We conduct case studies to qualitatively
demonstrate the effectiveness of the learnable GDA in our pro-
posed framework. In the pre-training of transfer learning, we
select two example chemical molecules from ZINC-2M [Hu
et al., 2020b]. Figure 5 shows the edge weights of chemical
bonds in the augmented views learned by GA2C at the final
training epoch. For the edge weights greater than 0.9, we
highlight them in bold. For the left molecule, we find that
the edge weights of the six carbon-carbon single bonds on
the benzene ring are all relatively high (>0.99). It indicates
that the benzene ring in this molecule significantly influences
its chemical properties. For the right molecule, we observe
that the edge weights of the carbon-oxygen double bond and
certain carbon-nitrogen single bonds are high (>0.93). The
carbon-oxygen double bond is an important chemical bond in
ketones and significantly influences the chemical properties of
the molecule. Furthermore, two carbon-nitrogen single bonds
in this molecule serve to connect the secondary amine group
and ring structure, so they also have high edge weights.

6 Conclusion
In this paper, we propose a novel graph reinforcement augmen-
tation framework, ensuring that the augmented view evolves
progressively and preserves the original graph structure infor-
mation to promote the performance of GCL. Based on this
framework, we design a new GCL model called GA2C to
learn graph embeddings in an unsupervised manner. Through
extensive experiments, we verify that GA2C outperforms the
state-of-the-art GCL models on either unsupervised, semi-
supervised, or transfer learnings. By case studies, we demon-
strate that GA2C generates meaningful augmented views. In
the future, we plan to apply GA2C to heterogeneous graphs.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2231

Acknowledgments
This work is supported in part by the National Natural Science
Foundation of China (No. 62372264). Chaokun Wang is the
corresponding author.

References
[Adhikari et al., 2018] Bijaya Adhikari, Yao Zhang, Naren

Ramakrishnan, and B. Aditya Prakash. Sub2vec: Feature
learning for subgraphs. In Advances in Knowledge Discov-
ery and Data Mining: 22nd Pacific-Asia Conference, pages
170–182, Melbourne, VIC, Australia, June 2018. Springer.

[Ang et al., 2021] Andersen Man Shun Ang, Jianzhu Ma, Ni-
anjun Liu, Kun Huang, and Yijie Wang. Fast projection
onto the capped simplex with applications to sparse regres-
sion in bioinformatics. In Thirty-fifth Annual Conference on
Neural Information Processing Systems, pages 9990–9999,
Virtual Event, December 2021. MIT Press.

[Bengio et al., 2020] Emmanuel Bengio, Joelle Pineau, and
Doina Precup. Interference and generalization in temporal
difference learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, pages 767–777,
Virtual Event, July 2020. PMLR.

[Chen et al., 2019] Ting Chen, Song Bian, and Yizhou Sun.
Are powerful graph neural nets necessary? a dissection on
graph classification. CoRR, abs/1905.04579, 2019.

[Cui et al., 2019] Peng Cui, Xiao Wang, Jian Pei, and Wenwu
Zhu. A survey on network embedding. IEEE Trans. Knowl.
Data Eng., 31(5):833–852, 2019.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 855–864, San Francisco, CA, USA, August
2016. ACM.

[Hu et al., 2020a] Weihua Hu, Matthias Fey, Marinka Zitnik,
Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural informa-
tion processing systems, 33:22118–22133, 2020.

[Hu et al., 2020b] Weihua Hu, Bowen Liu, Joseph Gomes,
Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks.
In 8th International Conference on Learning Representa-
tions, Addis Ababa, Ethiopia, April 2020. OpenReview.net.

[Ju et al., 2023] Mingxuan Ju, Yujie Fan, Chuxu Zhang, and
Yanfang Ye. Let graph be the go board: gradient-free node
injection attack for graph neural networks via reinforcement
learning. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, pages 4383–4390, Washington, DC, USA,
February 2023. AAAI Press.

[Liu et al., 2022] Ziyang Liu, Chaokun Wang, Hao Feng,
Lingfei Wu, and Liqun Yang. Knowledge distillation based
contextual relevance matching for e-commerce product
search. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing - Industry

Track, Abu Dhabi, UAE, December 2022. Association for
Computational Linguistics.

[Liu et al., 2023] Ziyang Liu, Chaokun Wang, Yunkai Lou,
and Hao Feng. Fast unsupervised graph embedding via
graph zoom learning. In 39th IEEE International Confer-
ence on Data Engineering, pages 2551–2564, Anaheim,
CA, USA, April 2023. IEEE.

[Morris et al., 2020] Christopher Morris, Nils M. Kriege,
Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets
for learning with graphs. In ICML Workshop on Graph
Representation Learning and Beyond, 2020.

[Munikoti et al., 2023] Sai Munikoti, Deepesh Agarwal,
Laya Das, Mahantesh Halappanavar, and Balasubramaniam
Natarajan. Challenges and opportunities in deep reinforce-
ment learning with graph neural networks: A comprehen-
sive review of algorithms and applications. IEEE Trans-
actions on Neural Networks and Learning Systems, pages
1–21, 2023.

[Narayanan et al., 2017] Annamalai Narayanan, Mahinthan
Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed
representations of graphs. In Proceedings of the 13th Inter-
national Workshop on Mining and Learning with Graphs
(MLG), 2017.

[Shervashidze et al., 2009] Nino Shervashidze, S. V. N. Vish-
wanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph
comparison. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, pages
488–495, Clearwater Beach, Florida, USA, April 2009.
JMLR.org.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12:2539–2561,
2011.

[Sun et al., 2020] Fan-Yun Sun, Jordan Hoffmann, Vikas
Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual
information maximization. In 8th International Conference
on Learning Representations, Addis Ababa, Ethiopia, April
2020. OpenReview.net.

[Suresh et al., 2021] Susheel Suresh, Pan Li, Cong Hao, and
Jennifer Neville. Adversarial graph augmentation to im-
prove graph contrastive learning. In Thirty-seventh Annual
Conference on Neural Information Processing Systems, Vir-
tual Event, December 2021. MIT Press.

[Thakoor et al., 2021] Shantanu Thakoor, Corentin Tallec,
Mohammad Gheshlaghi Azar, Rémi Munos, Petar Velick-
ovic, and Michal Valko. Bootstrapped representation learn-
ing on graphs. ICLR Workshop on Geometrical and Topo-
logical Representation Learning, 2021.

[Tschannen et al., 2020] Michael Tschannen, Josip Djolonga,
Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2232

mutual information maximization for representation learn-
ing. In 8th International Conference on Learning Repre-
sentations, Addis Ababa, Ethiopia, April 2020. OpenRe-
view.net.

[Velickovic et al., 2019] Petar Velickovic, William Fedus,
William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. De-
von Hjelm. Deep graph infomax. In 7th International Con-
ference on Learning Representations, New Orleans, LA,
USA, May 2019. OpenReview.net.

[Wang et al., 2018] Zhen Wang, Marko Jusup, Lei Shi, Joung-
Hun Lee, Yoh Iwasa, and Stefano Boccaletti. Exploiting
a cognitive bias promotes cooperation in social dilemma
experiments. Nature communications, 9(1):2954, 2018.

[Wang et al., 2022a] Haonan Wang, Jieyu Zhang, Qi Zhu,
and Wei Huang. Augmentation-free graph contrastive learn-
ing. arXiv preprint arXiv:2204.04874, 2022.

[Wang et al., 2022b] Zhen Wang, Chunjiang Mu, Shuyue Hu,
Chen Chu, and Xuelong Li. Modelling the dynamics of
regret minimization in large agent populations: a master
equation approach. In Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence, pages
534–540, Vienna, Austria, July 2022. Morgan Kaufmann.

[Wu et al., 2023] Cheng Wu, Chaokun Wang, Jingcao Xu,
Ziyang Liu, Kai Zheng, Xiaowei Wang, Yang Song, and
Kun Gai. Graph contrastive learning with generative adver-
sarial network. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pages 2721–2730, Long Beach, CA, USA, August 2023.
ACM.

[Xia et al., 2022] Jun Xia, Lirong Wu, Jintao Chen, Bozhen
Hu, and Stan Z. Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In
Proceedings of the Web Conference 2022, pages 1070–1079,
Lyon, France, April 2022. ACM.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural networks?
In 7th International Conference on Learning Representa-
tions, New Orleans, LA, USA, May 2019. OpenReview.net.

[Xu et al., 2023] Jingcao Xu, Chaokun Wang, Cheng Wu,
Yang Song, Kai Zheng, Xiaowei Wang, Changping Wang,
Guorui Zhou, and Kun Gai. Multi-behavior self-supervised
learning for recommendation. In Proceedings of the 46th
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 496–505, Taipei,
Taiwan, July 2023. ACM.

[Yanardag and Vishwanathan, 2015] Pinar Yanardag and
S. V. N. Vishwanathan. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1365–1374,
Sydney, NSW, Australia, August 2015. Springer.

[Yang et al., 2022] Liang Yang, Wenmiao Zhou, Weihang
Peng, Bingxin Niu, Junhua Gu, Chuan Wang, Xiaochun
Cao, and Dongxiao He. Graph neural networks beyond
compromise between attribute and topology. In Proceed-
ings of the Web Conference 2022, pages 1127–1135, Lyon,
France, April 2022. ACM.

[Yang et al., 2023] Liang Yang, Qiuliang Zhang, Runjie Shi,
Wenmiao Zhou, Bingxin Niu, Chuan Wang, Xiaochun Cao,
Dongxiao He, Zhen Wang, and Yuanfang Guo. Graph
neural networks without propagation. In Proceedings of the
Web Conference 2023, pages 469–477, Austin, TX, USA,
April 2023. ACM.

[Yin et al., 2022] Yihang Yin, Qingzhong Wang, Siyu Huang,
Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators.
In Thirty-Sixth AAAI Conference on Artificial Intelligence,
pages 8892–8900, Virtual Event, February 2022. AAAI
Press.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. In Thirty-sixth Annual
Conference on Neural Information Processing Systems, Vir-
tual Event, December 2020. MIT Press.

[You et al., 2021] Yuning You, Tianlong Chen, Yang Shen,
and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning,
pages 12121–12132, Virtual Event, July 2021. PMLR.

[You et al., 2022] Yuning You, Tianlong Chen, Zhangyang
Wang, and Yang Shen. Bringing your own view: Graph
contrastive learning without prefabricated data augmenta-
tions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 1300–
1309, Tempe, AZ, USA, February 2022. ACM.

[Yu et al., 2022] Junliang Yu, Hongzhi Yin, Xin Xia, Tong
Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are
graph augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1294–1303,
Madrid, Spain, July 2022. ACM.

[Zhu et al., 2020] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. In ICML Workshop on Graph Rep-
resentation Learning and Beyond, 2020.

[Zhu et al., 2021] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web
Conference 2021, pages 2069–2080, Ljubljana, Slovenia,
April 2021. ACM.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2233

	Introduction
	Related Work
	Preliminaries
	Methods
	GRA Framework
	GA2C Model
	Time Complexity Analysis

	Experiments
	Configurations
	Results and Analysis

	Conclusion

