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Abstract
Due to the complex and dynamic traffic contexts,
the interpretability and uncertainty of traffic fore-
casting have gained increasing attention. Signifi-
cance testing is a powerful tool in statistics used to
determine whether a hypothesis is valid, facilitating
the identification of pivotal features that predomi-
nantly contribute to the true relationship. However,
existing works mainly regard traffic forecasting as
a deterministic problem, making it challenging to
perform effective significance testing. To fill this
gap, we propose to conduct Full Bayesian Signifi-
cance Testing for Neural Networks in Traffic Fore-
casting, namely ST-nFBST. A Bayesian neural net-
work is utilized to capture the complicated traffic
relationships through an optimization function re-
solved in the context of aleatoric uncertainty and
epistemic uncertainty. Thereupon, ST-nFBST can
achieve the significance testing by means of a del-
icate grad-based evidence value, further capturing
the inherent traffic schema for better spatiotempo-
ral modeling. Extensive experiments are conducted
on METR-LA and PEMS-BAY to verify the advan-
tages of our method in terms of uncertainty analysis
and significance testing, helping the interpretability
and promotion of traffic forecasting.

1 Introduction
With substantial amounts of daily traffic data, including flow,
volume, and speed, collected via city sensors, Intelligent
Transportation Systems (ITS) [Mori et al., 2015] have come
to the forefront in meeting the mounting challenges presented
by ever-increasing transportation network demands. Traffic
forecasting, a core constituent of ITS, aims to extrapolate fu-
ture traffic conditions based on historical data and existing
road networks. Its crucial role spans across traffic manage-
ment, planning, and control functionalities.

In traffic forecasting, earlier methods primarily depend on
statistical models [Ahmed and Cook, 1979; Min and Wynter,
2011; Cressie and Wikle, 2015], albeit these are limited in de-
ployment due to stringent data assumptions and constrained
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abilities to capture intricate non-linear correlations. In recent
years, the advances of deep learning have significantly en-
hanced the task completion of current methods. They bene-
fit from the powerful capabilities of Graph Neural Networks
(GNNs) to extract spatial dependencies from graphs [Kipf
and Welling, 2017; Jiang and Luo, 2022; Song et al., 2020;
Xu et al., 2020] and the sequence learning techniques to cap-
ture temporal dependencies [Gehring et al., 2017; Wu et al.,
2019; Bai et al., 2020; Li et al., 2018].

Despite the considerable success achieved by existing
methods in prediction performance, the considerations of in-
terpretability and uncertainty in traffic forecasting have been
consistently disregarded. The bulk of these methods merely
provide deterministic predictions, failing to account for the
essential factor of uncertainty. However, the spatial-temporal
relationships found in traffic data exhibit a high degree of
complexity and diversity. It frequently leads models to in-
corporate unstable correlations and noise information in data,
subsequently resulting in erratic model performance. There-
fore, understanding the inherent evolution schema in traffic
forecasting and identifying the pivotal traffic factors become
imperative. Furthermore, this comprehension forms the foun-
dation for effectively optimizing the modeling of true rela-
tionships in traffic forecasting. Despite the growing concerns
regarding the uncertainty of prediction results [Liu et al.,
2023; Qian et al., 2023; Wu et al., 2021], the interpretabil-
ity of traffic forecasting remains an unresolved challenge.

Significance testing is a powerful tool in statistics to tackle
the problem. It aims to determine whether a proposition about
the population distribution1 is true or false given observa-
tions, which is widely used in many scientific fields. How-
ever, traditional significance testing is restricted by assump-
tions about the true relationship and the derivation of com-
plicated, even intractable, theoretical distributions, thus im-
posing strict limitations on the model. Hence, significance
testing in spatial-temporal forecasting predominantly relies
on shallow models, such as ARIMA. Recently, [Horel and
Giesecke, 2020] and [Liu et al., 2024] have successfully in-
troduced neural networks into significance testing, yielding
impressive results. However, there is a dearth of research on
significance testing for deep learning in traffic forecasting.

To fill this gap, we propose to conduct Full Bayesian Sig-

1https://online.stat.psu.edu/stat462/node/249/
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nificance Testing for Neural Networks in Traffic Forecast-
ing, namely ST-nFBST. It is a Bayesian framework incorpo-
rating spatial-temporal modeling, uncertainty quantification,
and significance testing. First, we approach traffic forecasting
through Bayesian modeling and employ a Bayesian neural
network to capture complicated traffic relationships. Then,
the framework is optimized in the context of heteroscedas-
tic aleatoric uncertainty and epistemic uncertainty, decom-
posing the prediction risks derived from the model and data,
respectively. Thereby, a quantitative analysis of both uncer-
tainties can be implemented. Finally, a delicate grad-based
Bayesian evidence is calculated based on the posterior distri-
bution of parameters, and the testing results would contribute
to reconstructing input graph signals. Through the analysis
of experimental results with real data, we have successfully
identified the inherent schema that impacts traffic forecast-
ing on marginal and central nodes from both temporal and
spatial dimensions. Building upon this discovery, we opti-
mize the traffic prediction model, significantly reducing both
model uncertainty and prediction errors.

The main contributions can be summarized as follows:
• To the best of our knowledge, we are the first to cap-

ture the inherent evolution schema in traffic forecasting
through significance testing for neural networks.

• We propose ST-nFBST, a Bayesian framework incorpo-
rating spatial-temporal modeling, uncertainties quantifi-
cation, and significance testing. It effectively improves
predictive performance while reducing uncertainty.

• ST-nFBST can effectively detect changes in traffic con-
ditions through uncertainty analysis, identify the inher-
ent traffic schema and provide guidance for reconstruct-
ing the input graph signals through significance testing.

• Extensive experiments are conducted to verify the ad-
vantages of our approach in terms of traffic forecasting
and significance testing.

2 Preliminaries
In this section, we first introduce basic notations in this paper.
Then, we formalize the problem of traffic forecasting.

2.1 Notations and Definitions
Definition 1 (Sensor Network). We represent the sensor
network as a weighted directed graph G = (V, E ,W ), where
V = {v1, . . . , v|V|} is a set of |V| nodes, each node vi rep-
resenting a sensor, E ⊆ V × V is a set of edges, each
ei,j = (vi, vj) representing the correlation between sensors
vi and vj , and W ∈ R|V|×|V| is a weighted adjacency ma-
trix representing the nodes proximity (e.g., a function of their
road network distance).
Definition 2 (Traffic States). Denote the traffic states ob-
served on G as a graph signal x = (x1, . . . , x|V|) ∈ R|V|,
such as velocity, volume, and flow. Traffic states can be re-
garded as multivariate time series. In this context, x(t) de-
notes the graph signal observed at time t, representing the
values obtained from all sensors in the sensor network at time
t; x(t)

i represents the value obtained from the i-th sensor in
the sensor network at time t.

2.2 Problem Statement
Problem 1 (Traffic Forecasting). The goal of traffic fore-
casting is to predict the future traffic state given previously
observed traffic states from |V| correlated sensors in the sen-
sor network. Let X<t = {x(t−τ1+1), . . . ,x(t)} ∈ Rτ1×|V|

be the corresponding historic input sequence with τ1 steps.
Similarly, X>t = {x(t+1), . . . ,x(t+τ2)} ∈ Rτ2×|V| repre-
sents the prediction sequence, where τ2 denotes the predic-
tion horizon. The traffic forecasting problem aims to learn
a function f(·) that maps τ1 historical graph signals X<t to
future τ2 graph signals X>t, given a graph G:

[x(t−τ1+1), . . . ,x(t)︸ ︷︷ ︸
X<t

;G] f(·)−−→ [x(t+1), . . . ,x(t+τ2)︸ ︷︷ ︸
X>t

]. (1)

For convenience, we will simplify X<t as Xt and X>t as
Y t in the following discussion.

3 Methodology
In this section, we introduce the proposed ST-nFBST frame-
work (Figure 1). We start with the modeling of spatial and
temporal dependencies in a Bayesian perspective. Then, we
introduce the aleatoric uncertainty and epistemic uncertainty
and formulate the optimization problem in the context of both
uncertainties. Finally, we display how to conduct significance
testing through a delicate grad-based evidence value.

3.1 Bayesian Spatial-Temporal Modeling
Instead of regarding traffic forecasting as deterministic, we
model it from a Bayesian perspective. Given a dataset of
n samples D = {(X1,Y 1), . . . , (Xn,Y n)}, we use a
Bayesian neural network (BNN) [Denker and LeCun, 1990;
MacKay, 1992; Neal, 1995], whose parameters θ follow a
distribution rather than deterministic values, to represent the
underlying function f0 : Rτ1×|V| → Rτ2×|V|. For a pair of
observations (Xt,Y t) at time point t, the regression process
can be modeled as corrupted with Gaussian random noise:

Y t ∼ N (f0(Xt), σ
2
0(Xt)). (2)

The Gaussian assumption is common and computationally
stable for regression tasks [Lakshminarayanan et al., 2017;
Kendall and Gal, 2017; Gal and Ghahramani, 2016]. We as-
sume the observation noise can vary with inputs Xt at differ-
ent time points, namely heteroscedastic. In traffic forecast-
ing, the traffic state highly depends on complicated contexts,
such as congestion, weather conditions, and unexpected traf-
fic events, resulting in substantial variability. Consequently,
heteroscedastic modeling is more aligned with real scenarios.
Given a new case Xt, the prediction made by the Bayesian
neural network is the weighted average of an ensemble

P (Y t|Xt,D) =

∫
Θ

P (Y t|Xt, θ)P (θ|D)dθ, (3)

where Θ is the whole parameter space.
As shown in Figure 1, the architecture includes an encoder

and two independent decoders, respectively modeling spatial-
temporal dependencies and observation noise. We model the
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Figure 1: The overall framework of ST-nFBST. It includes an encoder and two independent decoders, respectively modeling spatial-temporal
dependencies and heteroscedastic aleatoric uncertainty. The epistemic uncertainty is addressed through variational inference. Subsequently,
the distribution is used for uncertainty analysis and significance testing, further guiding the reconstruction of the input graph signals.

spatial dependency by relating traffic flow to a diffusion pro-
cess, which explicitly captures the stochastic nature of traffic
dynamics. The diffusion convolution operation over a graph
signal x and a filter fθ is defined as [Li et al., 2018]

x ⋆G fθ =
K−1∑
k=0

(
θk,1

(
D−1

O W
)k

+ θk,2

(
D−1

I W⊤
)k

)
x,

(4)
where k is the diffusion step, θ ∈ RK×2 is the parameter for
the filter, and DOW ,D−1

I W⊤ represent the transition ma-
trices of the diffusion process and the reverse one. Then, we
leverage the Diffusion Convolutional Gated Recurrent Unit
(DCGRU) [Li et al., 2018] to model the temporal dependency

h(t) = DCGRU(x(t),h(t−1); ⋆G). (5)

Based on DCGRU and Sequence to Sequence architecture,
we build an encoder and two independent decoders. They all
adhere to BNNs and the random outputs of the model f are

[Ŷ t, σ̂0(Xt)] = f(Xt; θ), (6)

where θ ∼ P (θ|D). Besides, we add a ReLU-like clip layer
after the Sigma-Decoder to ensure that σ̂0(Xt) is always pos-
itive. Specifically, σ̂0(Xt) = max(σ̂0(Xt), τ), where τ is
the threshold to control the precision.

3.2 Optimization with Uncertainties
In Bayesian modeling, there exist two primary categories of
uncertainty, i.e., aleatoric and epistemic. The former repre-
sents data uncertainty, while the latter represents model un-
certainty. Our framework incorporates both uncertainties into
the optimization of traffic forecasting.

Aleatoric Uncertainty. Aleatoric uncertainty is caused by
the intrinsic randomness of data, which cannot be reduced
even if more data were to be collected. For example, it could

be caused by sensor noise inherent in the observations. Under
the assumption of Eq (2), the aleatoric uncertainty is exactly
equal to the variance of the noise

ualeatoric = σ2
0(Xt). (7)

Epistemic Uncertainty. Epistemic uncertainty accounts
for uncertainty in the model parameters, which arises from
that lack of data or model misspecification. Fortunately, this
uncertainty can be explained away given enough data. In traf-
fic forecasting, the epistemic uncertainty can be captured by
the predictive variance:

uepistemic = E(Ŷ t − E(Ŷ t))
2. (8)

Before optimization, a prior distribution is assigned to
model parameters θ as an initial belief π(θ) according to ex-
perience. This belief is gradually adjusted to fit data D by
using the Bayesian rule. The final belief is presented as the
posterior distribution

P (θ|D) =
π(θ)P (D|θ)

P (D)
=

π(θ)
∏n

i=1 P (Y i|Xi, θ)∫
Θ

∏n
i=1 P (Y i|Xi, θ)dθ

. (9)

The main challenge of optimization lies in the difficulty of
solving the integral in Eq (9) in practice. A popular way,
known as Variational Inference (VI), entails approximating
the real but intractable posterior distribution with a tractable
distribution called variational distribution [Blei et al., 2017].
Therefore, Eq (9) could be efficiently approximated. For-
mally, variational family Q = {qϑ : ϑ ∈ Γ} is a predefined
family of tractable distributions on model parameter space Θ,
where ϑ is the parameter of variational distribution and Γ is
the range of ϑ. The optimal variational distribution qϑ∗ is
chosen from Q such that

ϑ∗ = argmin
ϑ∈Γ

KL(qϑ(θ)∥P (θ|D)). (10)
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KL divergence describes the “distance” between two dis-
tributions. We set diagonal Gaussian distributions as the
prior and variational families of parameter θ. This as-
sumption is common in many works [Blundell et al., 2015;
Kendall and Gal, 2017]. Under this assumption, Eq (10) can
be further simplified as (excluding the constant logP (D))

ϑ∗ = argmin
ϑ∈Γ

−E[logP (D|θ)] + KL(qϑ(θ)∥π(θ)). (11)

The first term is related to data, which is equivalent to Mean
Squared Error (MSE) with a scaling factor 1

2σ2
0

under the as-
sumption Eq (2). The second term is only related to parame-
ters ϑ. The detailed derivation is shown in the Appendix.

In the end, we finish approximating the posterior distri-
bution of parameters P (θ|D) with variational distribution
qϑ∗(θ). Using Monte Carlo integration, the aleatoric uncer-
tainty and epistemic uncertainty are approximated as follows:

ucombined ≈ 1

m

m∑
i=1

σ̂2
0(Xt)︸ ︷︷ ︸

ualeatoric

+
1

m

m∑
i=1

(Ŷ t −
1

m

m∑
i=1

(Ŷ t))
2

︸ ︷︷ ︸
uepistemic

,

(12)
where σ̂0(Xt), Ŷ t are the outputs of two decoders obtained
by sampling m times drawn from θ ∼ qϑ∗(θ), respectively.

3.3 Significance Testing
To capture the traffic evolution schema, we propose to con-
duct significance testing in traffic forecasting. However, there
are two main defects in classical significance testing.
• First, the effectiveness of classical significance testing is

based on reasonable assumptions about f0, such as station-
arity and invertibility (ARIMA). However, it is difficult to
find such precise and suitable assumptions when the data
distribution is complicated such as traffic forecasting.

• Second, some models, such as deep learning, excel in ac-
curately fitting complex data distributions. However, the
more complex the assumption of f0, the more computa-
tional derivation of theoretical distribution, which is in-
evitable for classical significance testing.

Fortunately, nFBST replaces complicated theoretical deriva-
tion by fitting distributions in a Bayesian way, and the neural
network serves as a good estimator of f0 without assuming
specific forms [Liu et al., 2024].

In traffic forecasting, to test the significance of input fea-
tures Xt, we first need a reasonable measure as the testing
statistic to represent the true relationship between features
and targets. In this paper, we conduct the Bayesian signifi-
cance testing using Grad-nFBST, which adopts the gradient
as the instance-wise testing statistic

η(Xt) =
∂f0(Xt)

∂Xt
∈ Rτ2×|V|×τ1×|V|, (13)

where η(Xt, i, k1, j, k2) ∈ R represents the testing statistic
for the velocity of the k1-th sensor at future time t + i based
on the velocity of the k2-th sensor at historical time t − j
(abbreviated as η). The testing problem is formulated as:

H0 : η = 0, H1 : η ̸= 0 (14)

We denote the whole space of η as Ψ such that η ∈ Ψ. In
Section 3.2, we have approximated the posterior distribution
of parameters P (θ|D) with variational distribution qϑ∗(θ).
Based on Eq (13), we can obtain the approximated distribu-
tion of the testing statistic η further. We denote p(η|D) as its
probability density and define the region whose probability
greater than p(η = 0|D) according to the following formula:

Ψ0 = {η : p(η|D) > p(η = 0|D)}, (15)

where p(η = 0|D) should be the maximum of the posterior
density under the null hypothesis H0. A valid Bayesian evi-
dence for the null hypothesis H0 can be calculated as follows
[De Bragança Pereira and Stern, 1999; Liu et al., 2024]:

Ev(H0) = 1−
∫
Ψ0

p(η|D)dη = 1−
∫
Ψ

1(η ∈ Ψ0)p(η|D)dη,

(16)
where 1(·) is the indicator function. Using Monte Carlo inte-
gration, the above formula can be further simplified to

Ev(H0) ≈ 1− 1

m

m∑
i=1

1(ηi ∈ Ψ0), (17)

where ηi is obtained by sampling m times based on the pos-
terior probability density p(η|D). The result of Eq (17) is
called Bayesian evidence, whose value is between 0 and 1.
The closer the Bayesian evidence to 1, the more likely to ac-
cept H0. The closer the Bayesian evidence to 0, the more
likely to reject H0.

Significance testing helps explore knowledge hidden be-
hind the underlying relationships between features and targets
in a rigorous manner. When integrated with uncertainty anal-
ysis, it facilitates a more precise identification of the pivotal
factors influencing heightened or diminished predictive un-
certainty. This, in turn, facilitates a systematic refinement of
our models through a reconstructed input graph signals X ′

t.

4 Experiments
In this section, we perform extensive experiments on two real-
world large-scale datasets. We provide detailed analysis in
terms of traffic forecasting and significance testing.

4.1 Datasets
METR-LA and PEMS-BAY are two standard benchmark
datasets. In both datasets, the traffic speed data are aggre-
gated into 5-minute intervals, and both the historical input
window and the prediction window are set to 1 hour. The
datasets are split into three parts, with a ratio of 7:2:1 for
training, validation, and testing, respectively. We use METR-
LA as the default dataset in some analyses, and the results in
PEMS-BAY are provided in the Appendix.

Based on the distance between sensors and the quantity of
neighboring sensors, we categorize sensors into two types.
The first type is referred to as “marginal sensors”, positioned
at the periphery of the sensor network or in the middle of
a spacious road. The second type is “central sensors”, sur-
rounded by numerous neighboring sensors. In our experi-
ment, the division hinges on whether the number of sensors
within 4,000 miles exceeds 4, as depicted in the Appendix.
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Horizon Metric HA ARIMA VAR SVR LSTM DCRNN STGCN STTN AGCRN CCRNN DeepSTUQ ST-nFBST
M

E
T

R
-L

A

15min
MAE 4.16 3.99 4.42 3.99 3.44 2.77 2.88 2.79 2.86 2.85 2.75 2.71

RMSE 7.80 8.21 7.89 8.45 6.30 5.38 5.74 5.48 5.55 5.54 5.37 5.27
MAPE 13.0% 9.6% 10.2% 9.3% 9.6% 7.3% 7.6% 7.2% 7.6% 7.5% 7.2% 7.0%

30min
MAE 4.16 5.15 5.41 5.05 3.77 3.15 3.47 3.16 3.25 3.24 3.14 3.09

RMSE 7.80 10.45 9.13 10.87 7.23 6.45 7.24 6.50 6.57 6.54 6.38 6.32
MAPE 13.0% 12.7% 12.7% 12.1% 10.9% 8.8% 9.6% 8.5% 9.0% 8.9% 8.7% 8.5%

1hour
MAE 4.16 6.90 6.52 6.72 4.37 3.60 4.59 3.60 3.68 3.73 3.56 3.52

RMSE 7.80 13.23 10.11 13.76 8.69 7.59 9.40 7.60 7.56 7.65 9.40 7.47
MAPE 13.0% 17.4% 15.8% 16.7% 13.2% 10.5% 12.7% 10.2% 10.5% 10.6% 10.6% 10.2%

PS
M

S-
B

A
Y 15min

MAE 2.88 1.62 1.74 1.85 2.05 1.38 1.36 1.36 1.36 1.38 1.34 1.31
RMSE 5.59 3.30 3.16 3.59 4.19 2.95 2.96 2.87 2.88 2.90 2.85 2.77
MAPE 6.8% 3.5% 3.6% 3.8% 4.8% 2.9% 2.9% 2.9% 2.9% 3.9% 2.9% 2.7%

30min
MAE 2.88 2.33 2.32 2.48 2.20 1.74 1.81 1.67 1.69 1.74 1.66 1.64

RMSE 5.59 4.76 4.25 5.18 4.55 3.97 4.27 3.79 3.87 3.87 3.78 3.75
MAPE 6.8% 5.4% 5.0% 5.5% 5.2% 3.9% 4.2% 3.8% 3.9% 3.9% 3.8% 3.7%

1hour
MAE 2.88 3.38 2.93 3.28 2.37 2.07 2.49 1.95 1.98 2.07 1.96 1.95

RMSE 5.59 6.50 5.44 7.08 4.96 4.74 5.69 4.50 4.59 4.65 4.56 4.54
MAPE 6.8% 8.3% 6.5% 8.0% 5.7% 4.9% 5.8% 4.6% 4.6% 4.9% 4.6% 4.6%

Table 1: Performance comparison of different approaches for traffic speed forecasting. ST-nFBST achieves the best performance with almost
all three metrics for all forecasting horizons, and the advantage becomes more evident with the increase of the forecasting horizon.

4.2 Baselines for Comparison
To compare the performance of ST-nFBST, we adopt the fol-
lowing widely used time series models as the baselines:

• Non-deep learning methods: Historical Average (HA),
Auto-Regressive Integrated Moving Average model with
Kalman filter (ARIMA), Vector Auto-Regression (VAR),
and Linear Support Vector Regression (SVR).

• LSTM [Sutskever et al., 2014]: The encoder-decoder
framework incorporating LSTM and FC layers.

• DCRNN [Li et al., 2018]: Diffusion Convolutional Re-
current Neural Network captures temporal dependen-
cies through graph convolutions formalized by the diffu-
sion process and captures spatial dependencies using an
encoder-decoder framework.

• STGCN [Yu et al., 2018]: Spatial-Temporal Graph Convo-
lutional Network integrates gated temporal and graph con-
volution to capture spatial-temporal correlations.

• STTN [Xu et al., 2020]: Spatial-Temporal Transformer
Network employs a Transformer structure for temporal and
spatial modeling in traffic prediction.

• AGCRN [Bai et al., 2020]: Adaptive Graph Convolutional
Recurrent Network adaptively learns node-specific param-
eters for graph convolution.

• CCRNN [Ye et al., 2021]: Coupled Layer-wise Convolu-
tional Recurrent Neural Network captures multi-scale spa-
tial and temporal dependencies.

• DeepSTUQ [Qian et al., 2023]: Deep Spatio-Temporal
Uncertainty Quantification unifies uncertainty quantifica-
tion and traffic prediction using Monte Carlo Dropout [Gal
and Ghahramani, 2016].

4.3 Traffic Forecasting Results
We first provide a performance comparison of ST-nFBST
with baselines on two datasets, METR-LA and PEMS-BAY.
Subsequently, we conduct a more detailed analysis of the pre-
diction results using uncertainty analysis.

Performance Comparison. We evaluate models by pre-
dicting traffic speeds ahead on multi-steps, at intervals of 15
minutes, 30 minutes, and 1 hour. The performance is evalu-
ated by three commonly used metrics: Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Squared Error (RMSE). Missing values are excluded
in calculating these metrics. Table 1 shows the comparison
results with different baselines on two datasets. We have the
following observations:

• Deep learning methods outperform non-deep learning
methods due to the powerful representing capability of
neural networks. The poor performance of LSTM com-
pared with other deep learning models indicates the limita-
tion of employing temporal correlations only.

• ST-nFBST nearly outperforms all other methods across all
metrics and all forecasting horizons on both datasets, vali-
dating its effectiveness.

• As the prediction horizon expands, the improvement of ST-
nFBST compared to methods that do not model uncertainty
(excluding DeepSTUQ) becomes more apparent, validat-
ing the effectiveness of modeling uncertainty. For exam-
ple, compared to CCRNN, the improvement of MAE at 15
minutes, 30 minutes, and 1 hour is 0.14, 0.15, and 0.21
respectively on the METR-LA dataset.

Uncertainty Analysis. In traffic forecasting, most existing
methods only provide deterministic traffic predictions with-
out uncertainty. Through the quantitative and visual analysis
of uncertainty derived from ST-nFBST, we have uncovered
more insights. Figure 2 illustrates the trends of MAE and
uncertainties under different prediction horizons. Sensors 0
and 26 represent central and marginal types, respectively. We
have the following observations:

• The fluctuation of MAE closely aligns with the variations
in uncertainty across diverse forecasting horizons. This
implies that our method accurately captures uncertainties.
Considering that we thoroughly leverage both uncertain-
ties in the optimization process by incorporating them into
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(a) Predict 15min after for sensor 0 (b) Predict 30min after for sensor 0 (c) Predict 60min after for sensor 0

(d) Predict 15min after for sensor 26 (e) Predict 30min after for sensor 26 (f) Predict 60min after for sensor 26

Figure 2: Comparison between uncertainties and |error| for different forecasting horizons on the METR-LA dataset.

the loss function, this further explains why our approach
outperforms other state-of-the-art models.

• In most cases, the aleatoric uncertainty is much larger than
the epistemic uncertainty, accounting for the majority of
uncertainty. This implies that the traffic uncertainty is
mainly data-related. Thanks to the powerful representation
capability of neural networks, we can train models effec-
tively to reduce epistemic uncertainty.

• There are some cases where error and uncertainties man-
ifest inconsistently, specifically, with low error but high
uncertainties. Moreover, epistemic uncertainty is high in
such cases. This occurs when changes in road conditions
at intersections, such as traffic congestion or unexpected
accidents, result in a sharp decrease in the speed of other
sensors. This implies that uncertainty, compared to error,
is more effective in monitoring changes in road conditions.
A more detailed case study is presented in the Appendix.

• As the forecasting horizon expands, both error and uncer-
tainties of central sensors increase correspondingly, while
those of marginal sensors remain relatively stable. How-
ever, the predictions of marginal sensors fluctuate signifi-
cantly at different times. This aligns with the definition of
two types of sensors. The marginal sensors exhibit fewer
impacts from other sensors while utilizing less information
from other sensors. However, the central sensors are more
susceptible to the influence exerted by other sensors, ren-
dering predictions more intricate.

4.4 Significance Testing Results
In order to capture the traffic evolution schema, we conduct
significance testing from two dimensions: Temporal and Spa-
tial. From Section 2.2, we know that the model’s input con-

sists of two parts: a sensor network and a historical sequence
composed of observations. Since the sensor network is es-
tablished once the task is determined (the computation of the
weighted adjacency matrix W is calculated before training),
our focus is primarily on the testing of Xt.

Testing in the Temporal Dimension. In this experiment,
we aim to identify the impact of observations at different
times ahead in the input sequence on the prediction. By con-
ducting significance testing on the historical moments of a
sensor, we observe that recent historical data (within 30min)
generally exhibits significance, yet this may not hold for data
over a longer time. Then, we remove different sizes of the his-
torical inputs to reconstruct the input graph signals and retrain
using the same network structure. The results are illustrated
in Table 2. We have the following observations:
• For short-term forecasting, the historical observations of

the past 15 minutes are crucial. The removal of these ob-
servations significantly degrades performance and uncer-
tainty, with a worsening effect as the removal window in-
creases. This indicates that short-term forecasting highly
depends on historical data of its own.

• For middle-term forecasting, the performance of marginal
sensors decreases, while the performance of central sen-
sors remains unchanged or decreases within an acceptable
range. This indicates that middle-term forecasting inte-
grates information from both its own and surrounding sen-
sors. When excluding its own historical data, the central
sensor can utilize more information from other sensors.

• For long-term forecasting, removing a sensor’s historical
data demonstrates negligible alterations in performance,
even a slight improvement. This indicates that long-term
forecasting does not focus on the historical data of itself
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Sensor
Forecasting

Metric
Initial Reconstruct Reconstruct Reconstruct Reconstruct

Horizon (-0min) (-15min) (-30min) (-1hour) (Spatial)

0
(central)

short-term
(15min)

MAE 1.97 2.18 2.22 3.30 1.91
RMSE 4.52 5.04 5.22 5.42 4.22
MAPE 5.0% 5.3% 5.7% 5.8% 4.8%

Uncertainty 2.20 2.48 2.42 2.43 2.05

middle-term
(30min)

MAE 2.46 2.42 2.52 2.47 2.17
RMSE 6.11 5.83 6.28 6.00 5.24
MAPE 6.7% 6.3% 6.6% 6.4% 5.7%

Uncertainty 2.81 3.00 2.98 3.28 2.35

long-term
(1hour)

MAE 2.97 2.87 2.86 2.94 2.47
RMSE 7.51 7.02 7.17 7.39 6.13
MAPE 8.8% 8.1% 8.2% 7.6% 6.9%

Uncertainty 3.67 4.55 4.39 4.11 2.88

181
(marginal)

short-term
(15min)

MAE 2.68 3.32 3.55 3.63 1.70
RMSE 5.57 7.02 7.49 7.46 2.60
MAPE 6.1% 8.4% 9.0% 9.3% 2.9%

Uncertainty 3.00 3.52 3.81 3.58 1.68

middle-term
(30min)

MAE 3.30 3.56 3.71 3.66 1.71
RMSE 6.85 7.59 8.08 7.50 2.84
MAPE 7.7% 9.1% 9.7% 9.2% 3.0%

Uncertainty 3.70 3.92 4.51 4.17 1.69

long-term
(1hour)

MAE 3.77 3.76 3.78 3.77 1.71
RMSE 7.92 8.03 8.26 7.74 2.85
MAPE 9.0% 9.7% 9.9% 9.0% 3.1%

Uncertainty 4.88 4.52 5.11 4.29 1.71

Table 2: Comparison of performance and uncertainty before and after reconstructing input graph signals temporally or spatially.

but instead utilizes information about the surroundings.
Testing in the Spatial Dimension. In this experiment, we

aim to identify the impact of sensors at different locations
on the prediction. The testing results indicate that short-term
traffic forecasting is more concerned with the road conditions
where their sensors are located, but do not pay attention to
the situation at intersections. However, the changes at inter-
sections take time to propagate to other road segments and,
hence may have a significant impact on long-term forecast-
ing. A more detailed analysis is shown in the Appendix.

Based on the above conclusion, we selectively remove the
insignificant sensors to reconstruct the input graph signals
and retrain using the same network structure. As illustrated in
Table 2, the model’s predictive performance and uncertainty
significantly improve after retraining on the reconstructed
graph signals. Furthermore, due to the rigorous modeling of
true relationships and the exclusion of noise that may inter-
fere with the modeling process, the performance is more sta-
ble. This validates the efficacy of using significance testing
to guide a more deliberate refinement of traffic forecasting.

5 Related Work
Traffic forecasting has always been a challenging task due to
its complex spatial and temporal dependencies [Wang et al.,
2018; Wang et al., 2019b; Ji et al., 2020; Wang et al., 2021;
Wang et al., 2023a; Wang et al., 2023b]. Early models in traf-
fic forecasting primarily rely on statistical models [Cressie
and Wikle, 2015], such as ARIMA [Ahmed and Cook, 1979;
Min and Wynter, 2011] and Bayesian models [Wang et al.,
2014]. Recent years have witnessed the emergence of deep
learning models to model spatial and temporal dependencies.
To extract spatial dependency, some works attempt to use
CNN by converting road networks to regular grids [Zhang
et al., 2017; Zhang et al., 2019; Ma et al., 2017], while oth-
ers use GNN and its variants (such as GCN and GAT) by

representing road networks as graphs [Jiang and Luo, 2022;
Atwood and Towsley, 2016; Kipf and Welling, 2017; Song et
al., 2020; Bai et al., 2020; Li et al., 2018; Yu et al., 2018;
Li and Zhu, 2021; Wu et al., 2020b; Jiang et al., 2023c;
Jiang et al., 2023b; Wu et al., 2020a; Ji et al., 2023]. To
extract temporal dependency, some works use RNN and
its variants (such as LSTM and GRU) [Ma et al., 2015],
while others integrate with convolutional sequence learning
or Transformer [Jiang et al., 2023a; Gehring et al., 2017;
Ye et al., 2021; Wu et al., 2019; Xu et al., 2020].

In recent years, there has been an increasing focus on
exploring the uncertainty in traffic forecasting [Qian et al.,
2023; Zhou et al., 2021; Wang et al., 2019a; Liu et al., 2023;
Wu et al., 2021]. There are also numerous researches
on significance testing for neural networks from parametric
[White, 1989b; White, 1989a; Olden and Jackson, 2002] or
non-parametric [Lavergne and Vuong, 1996; Lavergne and
Vuong, 2000; Fan and Li, 1996; Racine, 1997]. However,
testing is limited by the non-identifiability of neural net-
works or certain assumptions. [Horel and Giesecke, 2020;
Liu et al., 2024] have yielded impressive results from Fre-
quentist and Bayesian perspectives respectively. Neverthe-
less, a notable gap persists in the realm of traffic forecasting.

6 Conclusion
In this paper, we propose to conduct the Full Bayesian Sig-
nificance Testing for neural networks in Traffic Forecast-
ing, called ST-nFBST. It is a Bayesian framework incorpo-
rating spatial-temporal modeling, uncertainty quantification,
and significance testing. To the best of our knowledge, we
are the first to capture the inherent evolution schema in traffic
forecasting through significance testing for neural networks.
Moreover, it can effectively detect changes in traffic condi-
tions, identify the inherent traffic schema, and provide guid-
ance for reconstructing the input graph signals.
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