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Abstract
Pre-travel recommendation is developed to provide
a variety of out-of-town Point-of-Interests (POIs)
for users planning to travel away from their home-
towns but have not yet decided on their desti-
nation. Existing out-of-town recommender sys-
tems work on constructing users’ latent prefer-
ences and inferring travel intentions from their
check-in sequences. However, there are still two
challenges that hamper the performance of these
approaches: i) Users’ interactive data (including
hometown and out-of-town check-ins) tend to be
rare, and while candidate POIs that come from dif-
ferent regions contain various semantic informa-
tion; ii) The causes for user check-in include not
only interest but also conformity, which are easily
entangled and overlooked. To fill these gaps, we
propose a Knowledge-Driven Disentangled Causal
metric learning framework (KDDC) that mitigates
interaction data sparsity by enhancing POI seman-
tic representation and considers the distributions
of two causes (i.e., conformity and interest) for
pre-travel recommendation. Specifically, we pre-
train a constructed POI attribute knowledge graph
through a segmented interaction method and POI
semantic information is aggregated via relational
heterogeneity. In addition, we devise a disentan-
gled causal metric learning to model and infer user-
related representations. Extensive experiments on
two real-world nationwide datasets display the con-
sistent superiority of our KDDC over state-of-the-
art baselines.

1 Introduction
With the rapid growth of location-based social networks such
as Foursquare and Yelp, Point-of-Interest (POI) recommen-
dation [Wang et al., 2023a] has become increasingly preva-
lent in our daily lives. Compared to conventional region-
specific POI recommendation, out-of-town POI recommen-
dation serves users who want to travel out of their home-
towns. Most out-of-town POI recommender systems [Wang
∗Corresponding author.
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Figure 1: An illustrative example of a user’s travel intention to dif-
ferent out-of-town POIs. conf and int indicate the conformity and
interest, respectively.

et al., 2017; Ding et al., 2019; Li and Gong, 2020; Sun et al.,
2021; Xin et al., 2021] aim to solve issues such as data spar-
sity and interest drift when users have ascertained the travel
locations. Recently, a new task (i.e. pre-travel out-of-town
recommendation) [Xin et al., 2022] has been proposed for
providing POIs to the users who plan to out-of-town travel yet
have not decided on the destination region. To deal with user
interest drift, the pre-travel recommendation requires model-
ing users’ behavior preferences and inferring their travel in-
tentions to out-of-town POIs spanning diverse regions. How-
ever, existing out-of-town recommendation methods still face
two significant challenges, which may fail to provide satisfy-
ing results for pre-travel recommendation:

i) The sparsity of check-in data and diversity of POIs.
Due to the sparsity of interactive data (whether hometown
check-ins or out-of-town check-ins) and the diversity of can-
didate POIs, relying solely on the sequence of visited POIs
and their spatial relationships for modeling user preference
is insufficient. The semantic information of a POI, such as
its category, type, rating, and other details, similarly plays a
prominent role in shaping user preference [Yang et al., 2022;
Zhang et al., 2023]. For instance, users are likely to consult
the evaluations of a POI before making a visitation decision.
Thus, it is wise to learn semantic knowledge of POIs.

ii) The causes of a check-in are easily bundled together.
In terms of cause, user interest is undoubtedly a significant
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driver for out-of-town checking-in, but users may also visit
popular POIs owing to crowd behavior [Zheng et al., 2021;
Zhao et al., 2023]. As shown in Figure 1, a user residing in
Hangzhou, whose primary interest lies in gourmet food rather
than history, also intends to visit the popular American Mu-
seum of Natural History. Therefore, observed out-of-town
check-ins can be attributed to both interest and conformity.
Despite [Xin et al., 2022] utilizes other travelers’ behavior
memory to take conformity into account, the crowd mem-
ory is generally similar for all users, which does not reflect
conformity’s personalization. Figure 1 also exhibits distinct
conformity and interest distributions in a user’s each travel in-
tention. This demonstrates the necessity of disentangling the
causes (conformity and interest) from diverse POIs for the
effect (hometown and out-of-town check-ins).

In light of the above limitations and challenges, we propose
a Knowledge-Driven Disentangled Causal metric learning
framework (KDDC) for pre-travel out-of-town recommenda-
tion. Specifically, to learn the semantic features of POIs, we
first construct an attribute knowledge graph encompassing all
POIs and employ a segment-wise pre-training strategy to en-
hance information interaction between knowledge graph em-
bedding. Then, given the relation heterogeneity in knowledge
graph, we introduce a relation-aware knowledge aggregation
mechanism to capture dependent contextual signals from both
entities and relations. In this way, the users’ hometown and
out-of-town POI embeddings can be enhanced. By using
designed disentangled causal metric learning that considers
both interest and conformity, we improve the representation
of users’ behavioral preferences. Meanwhile, we develop a
travel intent inference network (TIIN) to facilitate the infer-
ring of travel intentions from the perspectives of both inter-
est and conformity. Ultimately, we conduct recommendations
within the detailed metric space, partitioned into various sub-
spaces w.r.t. the users’ hometowns using dynamic mapping.

The following are our summarized contributions:

• We propose a knowledge-driven approach, namely
KDDC, to jointly consider the semantic knowledge of
POIs and two different reasons why users check-in (i.e.
conformity and interest) for pre-travel recommendation.

• To alleviate the sparsity in check-in data while exploring
potential similarities among diverse POIs, we develop a
segmented interaction pre-training method for enhanc-
ing knowledge semantic representation and utilize rela-
tion heterogeneity to aggregate knowledge for enrich-
ing POI embedding. Besides, we design a disentangled
causal metric learning to improve users’ behavior pref-
erences modeling and travel intentions inference.

• To demonstrate the effectiveness of KDDC, we conduct
diverse experiments on two real-world datasets showing
that the proposed model consistently outperforms others.

2 Preliminary
Definition 1 (POI Attribute Knowledge Graph). The POI
attribute knowledge graph is defined as Gk = {(v, r, e)},
which organizes external POI attributes with diverse types of
entities and corresponding relationships. Specifically, each

POI-relation-entity triplet (v, r, e) characterizes the seman-
tic relatedness between the POI and entity v and e with the
relation r, such as (The Great Wall, Located in, Beijing).
Definition 2 (User Out-of-town Travel Behavior). Given a
user u, his/her out-of-town travel behavior is denoted by a
five-tuple τ = (u,~ch,~co, ah, ao), indicating that the user u
travels from his/her hometown ah to out-of-town region ao
and leaves check-in records in both regions, which are repre-
sented by ~ch and ~co, respectively.

Formally, given a set of users U = {ui}|U|1 , a set of POIs
V = {vi}|V|1 , a POI attribute knowledge graph Gk, a set of
regions A = {ai}|A|1 , and users’ out-of-town travel behavior
records O = {τi}|O|1 , our studied problem is stated as follow.
Problem Formulation. Given the historical out-of-town
travel behavior records O left by U and the POI attribute
knowledge graph Gk, learn a recommender F . Then, a new
user u∗ /∈ U shows up with his/her hometown check-in ~ch
observed in a∗h, F recommends a list of out-of-town POIs
V∗ ⊂ V which not in ah to u∗.

3 Methodology
We present the overall framework of KDDC in Figure 2. This
framework comprises three main stages: Knowledge Graph
Segmented Pre-Training, POI Semantical Knowledge Aggre-
gation, and Disentangled Causal Metric Learning for Pre-
Travel Recommendation:

1) We perform fine-grained partitioning of multiple em-
beddings in a constructed attribute knowledge graph for pre-
training to achieve sufficient information interaction. 2) To
consolidate semantic knowledge across various relationships,
a relation-aware knowledge aggregation layer is introduced to
update POI embeddings. 3) We utilize a disentangled causal
representation manner to attribute users’ behavioral prefer-
ences to interest and conformity and hence infer the travel
intentions of users by TIIN. Moreover, metric learning is
adopted to assist model training for recommendation. Tech-
nical details are introduced in the following subsections.

3.1 Knowledge Graph Segmented Pre-Training
Knowledge graph pre-training aims to enhance models’ un-
derstanding and inference capabilities by improving entity
and relation embeddings. Inspired by [Liu et al., 2022], low-
dimensional embeddings can be partitioned into several seg-
ments and the interactions among these segments foster the
exchange of richer information. Thereby, we first performed
a fine-grained embedding segmentation of POIs, relations and
entities. The number of their segments is equal and the set of
segmented embedding vectors is defined as:

m =
{
m(0),m(1), ...,m(n−1)

}
,m(i) ∈ Rd/n, (1)

where n is the number of segments, m ∈ {v, r, e} represents
POI, relation and entity respectively. Then, in accordance
with [Xu et al., 2020], we introduce a scoring function fS(·)
to implement embedding chiasma interactions among distinct
segments and evaluate the association strength among them:

fS(v, r, e) =
∑

0≤x,y<n

sx,y 〈rx,vy, ezx,y 〉 , (2)
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Figure 2: The framework of the proposed KDDC.

where 〈·〉 means the dot product sum of vector elements.
{x, y, z} represent segmented ordinal numbers and

sx,y =

{
−1, if x+ y ≥ n and x is odd
1, otherwise

(3)

controls its sign to support both symmetric and antisymmet-
ric relations [Xu et al., 2020]. Simultaneously, we employ
another variable zx,y to prevent over-embedding for comput-
ing overhead reduction:

zx,y =

{
y, if x is even
(x+ y)%n, if x is odd

(4)

As a result, the even-numbered segments can capture the
symmetry of the relationship and the odd-numbered seg-
ments capture antisymmetry information. Formally, the
segmentation-based pre-training loss LS is shown below:

LS =
∑

(v,r,e,e′)∈GK

−lnσ(fS(v, r, e′)− fS(v, r, e)), (5)

where e′ is the negative sample generated by randomly re-
placing the entity e for the observed triplets (v, r, e).

3.2 POI Semantical Knowledge Aggregation
The semantics conveyed by different relationships are dis-
tinct. The embeddings of POIs that share similar seman-
tics (e.g., POIs that belong to the same category) should be
in close proximity to each other in the latent space. Given
the success of graph attention mechanisms in [Wang et al.,
2019a; Xia et al., 2021; Yang et al., 2022], we utilize the re-
lation heterogeneity between POI and entities over the knowl-
edge graph to update POI embeddings as illustrated in Figure
2b. In order to avoid the manual design of path generation
on knowledge graphs, entity- and relation-dependent context

is projected into specific representations by parameterized at-
tention matrix. To this end, we construct our relation-aware
message aggregation mechanism between the POI and its
connected entities in GK . This mechanism is used to generate
knowledge-aware POI embeddings, relying on the heteroge-
neous attentive aggregator described as follows:

ṽ = v +
∑
e∈Nv

φ(e, re,v, v)e,

φ(e, re,v, v) =
exp(σ(rTe,vW[e ‖ v]))∑

e∈Nv
exp(σ(rTe,vW[e ‖ v]))

,

(6)

whereNv is the neighboring entities of POI v under different
types of relations re,v in GK , v ∈ Rd and e ∈ Rd repre-
sent the embedding of POI and entity, respectively. The as-
sessed entity- and relation-specific attentive relevance during
the knowledge aggregation process is denoted as φ(e, re,v, v),
which encodes the distinct semantics of relationships between
POI v and entity e. ‖ means the concatenation of two embed-
dings. W ∈ Rd×2d denotes the weight matrix that is tailored
to the input POI and entity representations. σ is the activation
function LeakyReLU for non-linear transformation. Through
the aforementioned mechanism, the underlying distances be-
tween embeddings of diverse POIs infused with similar se-
mantic knowledge will be brought closer together.

3.3 Disentangled Causal Metric Learning for
Pre-Travel Recommendation

User behavior preference modeling. With the aim of
strengthening recommender systems, several causal-related
methods such as inverse propensity scoring (IPS) [Gruson et
al., 2019], counterfactual inference [Wang et al., 2021a] and
causal embedding [Zheng et al., 2021] have been proposed.
In this work, we use causal embedding in the pre-travel rec-
ommendation because of the following advantages: 1) from
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a check-in generation perspective, causal embedding accu-
rately models users’ hometown and out-of-town preferences
for different reasons; 2) causal modeling helps to improve
model generalization capabilities. Following previous works
[Zheng et al., 2021; Zhao et al., 2023], we focus on the two
main causes: interest and conformity to model users’ behav-
ior preferences. One can see the process of disentangling each
cause into causal embedding in Figure 2c. We first partition
the users’ hometown and out-of-town context embeddings ṽh

and ṽo into corresponding interest and conformity embed-
dings with two distinct linear transformations:

ṽh
conf = Wconfṽ

h + bconf, ṽ
h
int = Wintṽ

h + bint,

ṽo
conf = Wconfṽ

o + bconf, ṽ
o
int = Wintṽ

o + bint,
(7)

where W{conf,int} ∈ Rd×d and b{conf,int} ∈ Rd are trainable
parameters. In addition, we partition the embedding space by
users’ hometowns with a dynamic mapping mechanism for
making the following metric more distinguishable [Xin et al.,
2022]. In particular, given a user u, his/her related check-in
embeddings are encoded as

v̄h = v̄h
conf ‖ v̄h

int, v̄
o = v̄o

conf ‖ v̄o
int,

v̄h
conf = Rah(Wdṽ

h
conf + bd)T , v̄h

int = Rah(Wdṽ
h
int + bd)T ,

v̄o
conf = Rah(Wdṽ

o
conf + bd)T , v̄o

int = Rah(Wdṽ
o
int + bd)T ,

(8)

where Wd ∈ Rd×d and bd ∈ Rd are trainable parameters.
R ∈ Rd×|A| is a learnable partition matrix and Rah

represents
the column vector in R w.r.t. region ah. The user ultimate
hometown and out-of-town check-in embeddings v̄h and v̄o,
considering both interest and conformity are separately gen-
erated through the concatenation operation. Since the user’s
hometown behavior is relatively long-term and could reveal
the user’s inherent preference, we model his/her behavior
preference based on his/her hometown check-in embeddings:

uh = AGG([v̄h
i ]
|~ch|
i=1), (9)

where AGG(·) denotes an arbitrary aggregation operation,
such as max pooling, average pooling or attention pooling.
User travel intention inference. As a user’s hometown be-
havior is different from that outside the city, comprehending
travel intention plays a crucial role in out-of-town recommen-
dation. Toward that, we develop a travel intention inference
network (TIIN) to infer users’ intentions from different rea-
sons. In particular, given a user’s mapped check-in embed-
dings in Eq. (8), we first employ the aggregator to summa-
rize his/her hometown and out-of-town preferences under two
causes:

uh
conf = AGG([v̄h

conf,i]
|~ch|
i=1),uh

int = AGG([v̄h
int,i]
|~ch|
i=1),

uo
conf = AGG([v̄o

conf,i]
|~co|
i=1),uo

int = AGG([v̄o
int,i]
|~co|
i=1).

(10)

Then, two nonlinear transformation layers: conformity infer-
ence layer and interest inference layer are adopted to infer
the user’s conformity and interest travel intentions:

Ioconf = σ(WCu
h
conf + bC),Ioint = σ(WIu

h
int + bI),

Io =Ioconf ‖ Ioint,
(11)

where WC ∈ Rd×d, WI ∈ Rd×d, bC ∈ Rd and bI ∈ Rd are
trainable parameters. σ denotes the activation function SiLU.
Metric Learning. Inspired by the great performance of met-
ric learning in recommendation [Hsieh et al., 2017; Zhou
et al., 2019; Xin et al., 2022], we apply it in disentangled
causal intention inference and implement a metric-based out-
of-town recommender. Aiming at the inference task, we first
devise two supervised popularity-based causal metric losses
to bridge the user’s inferred embedding and factual out-of-
town embedding from two causes as follows,

Lconf =
∑
u∈U

exp(−Ppop)
∥∥Ioconf − uo

conf

∥∥2
2
,

Lint =
∑
u∈U

(1− exp(−Ppop)) ‖Ioint − uo
int‖

2
2 ,

LT = Lconf + Lint,

(12)

where Ppop represents the normalized popularity of the inter-
acted POIs, which is defined as the ratio of the number of the
POIs the user interacted with vs. the max POI interacted num-
ber [Zhao et al., 2023]. For the highly popular POIs, the pop-
ularity weight exp (−Ppop) is close to exp (−1) rather than 0,
which allows the task to learn interest preferences to a certain
extent. Oppositely, 1− exp (−Ppop) ensures that interactions
with more popular POIs are more likely to be attributed to
conformity. The total loss of the task is expressed as LT .
Then we integrate the user’s inferred intention Io into his/her
preference and employ the triangle inequality in the embed-
ding space to calculate the distance between such fortified
preference and a POI vi as follows,

d(u, vi) =
∥∥[uh ⊕ Io

]
− v̄i

∥∥2
2
. (13)

Given a positive out-of-town POI vi ∈ ~co visited by u, we
sample a negative POI vj /∈ ~co. From pairwise comparisons,
the main disentangled causal metric loss under the Bayesian
personalized ranking (BPR) criterion for pre-travel out-of-
town recommendation is formally defined as,

LD =
∑
u∈U

∑
i∈~co

∑
j /∈~co

[δ + d(u, vi)− d(u, vj)]+ , (14)

where δ is the margin size and [·, 0]+ = max(·, 0) represents
the standard hinge loss.
Joint Optimization and Recommendation. According to
Eqs. (12) and (14), the integrative optimization loss of our
KDDC is:

L = λ1LD + λ2LT , (15)
where λ1, λ2 are the hyper-parameters to balance the effects
of the two losses in KDDC.

Here, we formally give the process of the pre-travel out-
of-town recommendation. Given a new coming user u∗, we
first gain his/her hometown behavior preference embedding
uh
∗ and inferred travel intention embedding Io∗ through Eqs.

(7), (8), (9) and (11). Then we select top-k out-of-town POIs
whose mapped embeddings v̄o

i are closest to the concatena-
tion of uh

∗ and Io∗ as the recommendation list for u∗, where
we formulate the distance as below:

d(u∗, voi ) =
∥∥[uh

∗ ⊕ Io∗
]
− v̄o

i

∥∥2
2
. (16)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2210



Statistics Dataset
Foursquare Yelp

# Users 3,889 34,222
# Regions 21 469

# POIs 24,389 83,155
# Check-ins 167,580 597,888

# Hometown check-ins 147,357 495,049
# Out-of-town check-ins 20,223 102,839

Knowledge Graph
# Relations 2 8
# Entities 410 137,312
# Triples 48,778 961,295

Table 1: Statistics of two datasets.

4 Experiments
4.1 Experimental Settings
Datasets. We chose two nationwide travel behavior datasets,
Foursquare1 and Yelp2, to evaluate our framework. The sta-
tistical information of our experimented datasets with differ-
ent check-in records and knowledge graph characteristics is
given in Table 1. For check-in records, following [Xin et al.,
2022], we picked out the users who left check-ins in both
hometown and out-of-town regions from these two datasets
and the check-in sequence of each user was reformed as the
homologous out-of-town travel record τ = (u,~ch,~co, ah, ao)
(Definition 2). Besides, for the quality of two datasets, the
POIs visited less than 2 times were filtered out and a user was
dropped if his/her travel behavior τ = (u,~ch,~co, ah, ao) fails
to fulfill the following conditions: 1) ~ch ≥ 4; 2) ~co ≥ 2; 3)
the frequency of (ah, ao) ≥ 10. The two datasets are ran-
domly partitioned based on users into three sets for training,
validation, and testing following the proportions: 80%, 10%
and 10%. To ensure the fairness of the assessments, all of the
users on the two datasets are anonymization. For the knowl-
edge graphs, we generate entity-dependent relations with var-
ious types of entities (e.g., category, star, and location).
Baseline. We compare KDDC with: 1) Three general recom-
mendation methods, BPR [Rendle et al., 2012], TEMN [Zhou
et al., 2019] and STAN [Luo et al., 2021]; 2) A knowledge
graph-enhance method KGCL [Yang et al., 2022]; 3) Two
disentangled recommendation methods, DCCL [Zhao et al.,
2023] and DisenPOI [Qin et al., 2023]; 4) Two out-of-town
recommendation methods, TRAINOR [Xin et al., 2021] and
CAPTOR [Xin et al., 2022]. Note that since there is no ex-
plicit user-item interaction graph in the task of pre-travel rec-
ommendation, for fairness, we model implicit user preference
through the same sequence aggregation operation as Eq. (9)
for some methods like DCCL and KGCL.
Evaluation Metrics. Three widely used metrics for recom-
mendation are adopted to appraise method performances, i.e.,
Hit Rate, Precision, and NDCG at a cutoff k, abbreviated as
HR@K, Pre@K, and NDCG@K respectively. Following
previous works [Xin et al., 2021; Xin et al., 2022], a fixed
number of negative POIs, randomly sampled from the can-
didate set, are taken together with the positive out-of-town

1https://sites.google.com/site/yangdingqi/home/foursquare-
dataset

2https://www.yelp.com.tw/dataset

POIs as final candidates for each user. In the experiments, the
number of negative POIs is set to 100.
Implementation details. The baselines and their parameter
settings were implemented based on the original papers and
official public code. In addition, the parameters of the KDDC
were sampled as follows: the number of dimensions of all la-
tent representations was set to 128. In the Knowledge Graph
Segmented Pre-Training, n was 8 for Foursquare and 4 was
for Yelp. In the optimization stage, λ1 and λ2 were set as
1, the optimizer was chosen as Adam with an initial learning
rate of 0.001 and an L2 regularization with a weight of 10-5.
We implemented our KDDC and experimented with Pytorch.
Note that the evaluation was conducted three times with vary-
ing initial parameters, and the reported results represent the
average. The code for the implementation of KDDC is avail-
able for reproducibility3.

4.2 Performance Comparison
Table 2 summarizes the performance of KDDC and baselines
on the two datasets. We carry out the following observations:
1) Compared with all baselines, KDDC achieves optimal per-
formance in terms of all metrics across two datasets. This
illustrates that our method considering POI semantic knowl-
edge and analyzing two main causes of user interaction is ef-
fective and generalizable for pre-travel recommendation. In
particular, the improvements in contrast to the corresponding
runner-up baselines, 13.53% ∼ 19.11% in HR@K, 11.33%
∼ 16.57% in Pre@K and 15.36% ∼ 16.18% in NDCG@K
on Foursquare, and 5.56% ∼ 12.88% in HR@K, 6.71% ∼
10.41% in Pre@K and 3.91% ∼ 9.18% in NDCG@K on
Yelp for K = 5, 10, and 15; 2) Among these baselines, the
two methods including DCCL and DisenPOI achieve rela-
tively satisfactory results in most cases, which suggests the
dominance of disentangling on recommendation. Meanwhile,
KGCL and CAPTOR also produce sub-optimal performances
in some cases, which proves the necessity of paying attention
to semantic knowledge and spatial correlation. The spatial
correlation will be discussed in Subsection 4.5.

4.3 Ablation Study
To evaluate the effectiveness of each component of KDDC
on two datasets w.r.t all metrics, we compare it with its vari-
ants, including three large modules: 1) -PT: KDDC removes
Knowledge Graph Segmented Pre-Training; 2) -KA: KDDC
without POI Semantical Knowledge Aggregation; 3) -DC:
KDDC discards Disentangled Causal Metric Learning, and
two small modules: 4) -DM: KDDC removes the dynamic
mapping mechanism and performs recommendation in a uni-
versal metric space; 5) -II: KDDC removes the travel inten-
tion inference network (TIIN). The histogram in Figure 3 il-
lustrates the comparative results. Evidently, KDDC demon-
strates superior performance compared to -KA, -DC, and -
DM across all metrics on both datasets, which proves the
critical roles of the aggregation of semantic knowledge and
the application of metric learning within separated mapping
spaces in disentangled causal embedding training. Besides,

3https://github.com/Yinghui-Liu/KDDC
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Dataset Metric BPR TEMN STAN KGCL DCCL DisenPOI TRAINOR CAPTOR KDDC Improv.

Foursquare

HR@5 0.0806 0.1701 0.2830 0.2983 0.3129 0.2971 0.2605 0.2944 0.3727 +19.11%
Pre@5 0.0752 0.1371 0.2418 0.2652 0.2728 0.2566 0.2050 0.2522 0.3180 +16.57%

NDCG@5 0.0733 0.1488 0.2591 0.3100 0.3151 0.2736 0.2264 0.2604 0.3635 +15.36%
HR@10 0.1228 0.2475 0.4134 0.4218 0.4246 0.4338 0.3860 0.4364 0.5118 +17.28%
Pre@10 0.0598 0.1042 0.1853 0.1920 0.1920 0.1959 0.1714 0.1940 0.2261 +15.42%

NDCG@10 0.0665 0.1301 0.2265 0.2433 0.2441 0.2256 0.2003 0.2287 0.2836 +16.18%
HR@15 0.1782 0.3244 0.5067 0.4981 0.5040 0.5255 0.5141 0.5268 0.5981 +13.53%
Pre@15 0.0585 0.0903 0.1530 0.1537 0.1515 0.1606 0.1554 0.1606 0.1788 +11.33%

NDCG@15 0.0635 0.1150 0.1956 0.2061 0.2051 0.1952 0.1829 0.1980 0.2387 +15.82%

Yelp

HR@5 0.0432 0.2100 0.4007 0.4452 0.4056 0.4533 0.3921 0.4552 0.4805 +5.56%
Pre@5 0.0194 0.1233 0.2178 0.2381 0.2198 0.2377 0.2121 0.2390 0.2550 +6.71%

NDCG@5 0.0145 0.1380 0.2455 0.2728 0.2489 0.2636 0.2424 0.2630 0.2835 +3.91%
HR@10 0.1580 0.3046 0.4959 0.5455 0.4937 0.5632 0.4777 0.5704 0.6288 +10.23%
Pre@10 0.0359 0.0902 0.1394 0.1521 0.1393 0.1569 0.1335 0.1591 0.1726 +8.49%

NDCG@10 0.0278 0.1099 0.1811 0.2006 0.1825 0.1990 0.1771 0.1984 0.2161 +7.73%
HR@15 0.2034 0.3599 0.5396 0.5988 0.5370 0.6258 0.5158 0.6154 0.7064 +12.88%
Pre@15 0.0310 0.0712 0.1026 0.1130 0.1026 0.1188 0.0974 0.1170 0.1312 +10.41%

NDCG@15 0.0265 0.0926 0.1470 0.1634 0.1480 0.1629 0.1430 0.1622 0.1784 +9.18%

Table 2: Comparison of methods on Foursquare and Yelp datasets. Bold: Best, underline: Second best.
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Figure 3: Contributions of various components in KDDC.

KDDC consistently outperforms -PT on Yelp but has a mi-
nor decrease on Foursquare w.r.t HR@15 and Pre@15, while
KDDC persistently beats -II on Foursquare and achieves sim-
ilar results on Yelp w.r.t all metrics. This is probably re-
lated to the size of the knowledge graph of the two datasets.
When the scale is relatively small, pre-training has negligi-
ble impact on long sequence recommendation. However, as
the scale increases, modeling users’ out-of-town preferences
can be achieved solely based on the enhanced user hometown
preferences derived from a substantial amount of knowledge.
But still, the segmented pre-training and travel intention in-
ference are beneficial to the recommendation when there is
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Figure 4: Effects of the number of embedding segments.

Dataset Method HR@10 Pre@10 NDCG@10 HR@15 Pre@15 NDCG@15

Foursquare
TransE 0.4955 0.2183 0.2750 0.5931 0.1768 0.2343
TransR 0.4902 0.2163 0.2729 0.5986 0.1774 0.2340
Ours(8) 0.5118 0.2261 0.2836 0.5981 0.1788 0.2387

Yelp
TransE 0.6162 0.1700 0.2142 0.6949 0.1295 0.1770
TransR 0.6246 0.1724 0.2139 0.7062 0.1309 0.1766
Ours(4) 0.6288 0.1726 0.2161 0.7064 0.1312 0.1784

Table 3: Comparison of knowledge graph embedding methods.

no sufficient data.

4.4 Parameter Sensitivity
We examine the sensitivity results across all metrics concern-
ing the number of embedding segments, denoted as n in Eq.
(1). The search for an optimal value is conducted within the
range of {2, 4, 8, 16}. As displayed in Figure 4, the perfor-
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Figure 5: The evaluations of w and w/o SA-CRF on Foursquare.

mance is the best when n equals 8 on Foursquare and when
n is 4 or 8 on Yelp, but the result in the case of n = 16 is
not as good as n = 2. It may be due to the overfitting of the
model with excess interaction information. Besides, to justify
the validity of our embedding method separately, we compare
it with other classical methods including TransE and TransR,
and report the result underK = 10 and 15 in Table 3. One can
see its performance improvement.

4.5 Discussion on Spatial Correlation
In most recent POI recommender systems, the spatial corre-
lation among POIs is undoubtedly a research hotspot. For in-
stance, CAPTOR [Xin et al., 2022] captured the spatial affin-
ity by a structured spatial affined conditional random field
(SA-CRF) and DisenPOI specially designed a geographical
graph to explore spatial dependence. For that purpose, we
also try to consider the spatial correlation of POIs. Specif-
ically, we adopt the SA-CRF same as [Xin et al., 2022] in
our framework, and it is directly inserted after Figure 2b and
before Figure 2c. The comparison with the original frame-
work w.r.t all metrics is reported in Figure 5, which presents a
certain degree of performance degradation. We argue that in-
corporating spatial relation learning directly after knowledge
aggregation will lead to contamination of the learned seman-
tic features. There may be a demand to disentangle the two
types of learning and we will consider this in our future work.

5 Related Work
Out-of-Town Recommendation. Out-of-town recommen-
dation attempts to provide a list of new POIs for out-of-town
users to visit. It is more intractable than the general POI
recommendation due to problems like cold start and inter-
est drift. [Ference et al., 2013] was the first work to solve
the problem with social influence. Next, some works based
on Latent Dirichlet Allocation (LDA) [Wang et al., 2017;
Yin et al., 2016] have been proposed to model the interest
drift by user preferences, spatiotemporal effects and POI con-
tents. In addition, there have been deep-learning methods for
addressing this problem. [Li and Gong, 2020] learned the
user preference from both hometown and out-of-town cities
with transfer learning. [Xin et al., 2021] used the neural
topic model to analyze the user’s out-of-town travel inten-
tions. [Xin et al., 2022] settled the more intractable pre-travel
recommendation by capturing the crowd behavior memory.
However, the above methods still face the challenge of data
scarcity, especially in the pre-travel recommendation scenar-
ios. In this paper, we are committed to alleviating this prob-
lem through the proposed knowledge-driven method.

Knowledge Graph-enhanced Recommendation. Existing
Knowledge Graph (KG)-enhanced methods in the general
recommendation task can be broadly grouped into three cate-
gories: embedding-based, path-based and graph neural net-
work (GNN)-based. Embedding-based methods [Zhang et
al., 2016; Wang et al., 2018] adopted the transition-based
entity embedding schemes (e.g., TransE, TransR) to gener-
ate prior item embeddings. Path-based methods [Wang et al.,
2019b; Xia et al., 2021] aim to build the user-item meta path
to improve capturing high-order KG connectivity but they
highly depend on the design of meta-paths needing domain
knowledge and human efforts. Recent research directions
have focused on the usage of GNNs to recursively perform
information propagation between multi-hop nodes and incor-
porate long-range relational structures, such as KGIN [Wang
et al., 2021b] and KHGT [Xia et al., 2021]. KGCL [Yang et
al., 2022] employed a joint self-supervised learning paradigm
to alleviate the data noise issue but will cause extra time con-
sumption. Accordingly, we combine a devised knowledge
graph embedding segmented pre-training with a lightweight
knowledge graph relational aggregation mechanism for pre-
travel recommendation.
Disentangled Representation Learning for Recommenda-
tion. Disentangled representation learning aims to learn inde-
pendent explanatory representations from disparate underly-
ing factors behind data. For the temporal correlation, CLSR
[Zheng et al., 2022] tried to differentiate users’ long-term and
short-term interests from their clicking sequences. There also
have been some GNN-based models to learn disentangled
representation from various graph structures, including IDCL
[Wang et al., 2023b] (user-item graph), DisenHAN [Wang et
al., 2020] (heterogeneous graph) and DisenPOI [Zhao et al.,
2023] (multitype graph). Furthermore, for causality, DICE
[Zheng et al., 2021] and DCCL [Zhao et al., 2023] disen-
tangled conformity and interest influences by learning causal
embedding. Analogously, we focus on such two causes to
construct users’ behavior preferences and infer their travel in-
tentions with metric learning for pre-travel recommendation.

6 Conclusion
In this paper, our proposed KDDC framework performs pre-
travel out-of-town recommendation by taking into account
the semantic information of POI and the two causes of user
interactions: conformity and interest. Three phases includ-
ing Knowledge Graph Segmented Pre-Training, POI Seman-
tical Knowledge Aggregation, and Disentangled Causal Met-
ric Learning for Pre-Travel Recommendation make up our
framework. The first phase uses a segmented pre-training
strategy to improve the representations of knowledge graph
elements. Then, the second phase aggregates semantics from
different relationships to further ameliorate POI representa-
tion. After that, the third phase applies metric learning in dis-
entangled causal representations for the more accurate con-
struction of a user’s preference and intention. Extensive ex-
periments on two real-world datasets have demonstrated the
superiority of KDDC over state-of-the-art methods for pre-
travel recommendation.
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