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Abstract
The standardized Geometry-based Point Cloud
Compression (G-PCC) suffers from limited coding
performance and low-quality reconstruction. To
address this, we propose AuxGR, a performance-
complexity tradeoff solution for point cloud geom-
etry restoration: leveraging auxiliary bitstream to
enhance the quality of G-PCC compressed point
cloud geometry. This auxiliary bitstream effi-
ciently encapsulates spatio-temporal information.
For static coding, we perform paired information
embedding (PIE) on the G-PCC decoded frame
by employing target convolutions from its original
counterpart, producing an auxiliary bitstream con-
taining abundant original information. For dynamic
coding, in addition to PIE, we propose temporal in-
formation embedding (TIE) to capture motion in-
formation between the previously restored and the
current G-PCC decoded frames. TIE applies tar-
get kNN attention between them, which ensures the
temporal neighborhood construction for each point
and implicitly represents motions. Due to the simi-
larity across temporal frames, only the residuals be-
tween TIE and PIE outputs are compressed as aux-
iliary bitstream. Experimental results demonstrate
that AuxGR notably outperforms existing methods
in both static and dynamic coding scenarios. More-
over, our framework enables the flexible incorpo-
ration of auxiliary information under computation
constraints, which is attractive to real applications.

1 Introduction
Point clouds have gained increasing attention in immersive
applications as a prevalent format for representing 3D objects
and scenes. Given its gigantic volume, a point cloud frame or
sequence must be compressed for efficient storage and trans-
mission. Over the past decades, numerous explorations have
been devoted to fulfilling this purpose [Cao et al., 2019]. Re-
cently, two different point cloud compression standards were
concluded after years of development led by the ISO/IEC
MPEG (Moving Picture Experts Group) committee, namely
video-based point cloud compression (V-PCC) and geometry-
based point cloud compression (G-PCC). The V-PCC stan-
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Figure 1: AuxGR reveals the optimal performance-complexity trade-
off in both static (left) and dynamic (right) coding modes. x-axis:
runtime (seconds/frame), y-axis: BD-BR reduction against the G-
PCC anchor, averaged on thirteen point clouds in static coding mode
and four dynamic point clouds in dynamic coding mode. We copy
the model size of each learned approach from its paper if applicable.

dard first performs the 3D-to-2D projection to transform the
3D point cloud to 2D image sequences and then reuses exist-
ing video codecs such as H.265/HEVC [Sullivan et al., 2012]
and H.266/VVC [Bross et al., 2021] for compression. On
the other hand, the G-PCC standard applies octree structured
geometry for exploiting correlations directly in 3D space.

Lossy compression inevitably incurs distortion for both V-
PCC and G-PCC solutions, significantly deteriorating the re-
construction quality. In the past, compressed video quality
enhancement/restoration has been extensively studied [Yang
et al., 2021], and these methods can be easily extended to en-
hance V-PCC [Jia et al., 2021]. Thus, this work focuses on
restoring the G-PCC compressed point cloud geometry.

To alleviate G-PCC octree quantization-induced artifacts,
an earlier attempt – DGPP [Fan et al., 2022b] stacked 3D
convolutions to construct a prediction model for restoration.
Later, GRNet [Liu et al., 2023] applied sparse convolutions to
build coordinate expansion and coordinate refinement mod-
ules for a similar purpose. DGPP and GRNet were integrated
at the decoder side as the post-processing modules. In the
meantime, an alternative layered approach was explored, in
which G-PCC was utilized as the base layer to produce a
coarse representation, and then learned models were used at
the enhancement layer to refine the base layer reconstruction
for quality improvement. GRASP-Net [Pang et al., 2022] is a
representative example in this category, which explicitly en-
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codes the residual between the original point cloud geometry
and the base layer G-PCC reconstruction as the auxiliary in-
formation to enhance the quality. However, the random dis-
tribution nature of residuals challenges the neural model in
learning a stable transforming relation.

All the above solutions focus on static point cloud coding.
As for dynamic coding, temporal correlations can be lever-
aged to reduce data redundancy due to the similarity across
point cloud frames. The key challenge is how to exploit such
temporal correlations. Typical solutions include implicit mo-
tion caption through target convolution [Akhtar et al., 2024]
and explicit motion representation through motion estima-
tion [Fan et al., 2022a; Xia et al., 2023]. However, these
works generally perform inferior in point clouds having large
motions as the limited size of convolution kernels fails to col-
lect sufficient and relevant points for correlation exploration.
On the other hand, these dynamic solutions are all learning-
based, achieving better performance than G-PCC at the ex-
pense of higher computational complexity.

To this end, we propose AuxGR, leveraging auxiliary in-
formation to restore G-PCC compressed geometry. As such,
G-PCC serves as the base coder, and the learned model is
augmented for further quality enhancement. Accordingly, the
auxiliary bitstream is produced by the learned model to ag-
gregate information from the original frame and the prior de-
coded frame for transmission. AuxGR not only achieves im-
pressive performance (shown in Figure 1) but also allows the
encoder to flexibly enable and disable auxiliary information
in real applications with constrained computational resources.

The main contributions of this work include:

• We propose the AuxGR framework using auxiliary in-
formation to restore compressed point cloud geometry.
On top of the G-PCC coder, the learning-based model is
appended to generate the auxiliary bitstream for further
quality improvement.

• The auxiliary bitstream contains spatio-temporal in-
formation by applying spatial information aggregation
within a frame, paired information embedding between
the decoded frame and its original counterpart, and
temporal information embedding between the decoded
frame and its prior frame.

• Extensive experiments demonstrate the superior perfor-
mance of our method: it remarkably outperforms exist-
ing methods, e.g., >50% BD-BR gains over GRASP-
Net [Pang et al., 2022] in static coding and about 13%
gains over Fan’s [Fan et al., 2022a] in dynamic coding.

2 Related Work
2.1 Point Cloud Geometry Compression (PCGC)
Recently, learning-based PCGC approaches have shown su-
perior performance over rules-based methods in both static
and dynamic PCGC tasks, which will be reviewed below.

Learning-based Static PCGC. At early times, learning-
based static PCGC [Yan et al., 2019; Huang and Liu, 2019;
Wen et al., 2020; Gao et al., 2021; Zhang et al., 2022] op-
erates directly on unordered points of a point cloud, relying

on the multilayer perceptron (MLP) to capture spatial corre-
lations across points for compact representation. Such point-
based methods usually can only handle small point clouds
having thousands of points. For large-scale point clouds,
e.g., the object point clouds having millions of points used
in VR/MR, they need to chunk them into blocks for process-
ing, which requires long processing time and intensive com-
putation. To solve this, point clouds are later structured by
octree model [Nguyen et al., 2021a; Nguyen et al., 2021b;
Nguyen and Kaup, 2022; Fu et al., 2022; Que et al., 2021;
Song et al., 2023] or voxelization model [Wang et al., 2021b;
Wang et al., 2021a; Wang et al., 2022; Guarda et al., 2019;
Quach et al., 2019; Nguyen and Kaup, 2023], facilitating
the point correlation exploration through the use of regular
3D convolution or sparse tensor. As such, large-scale point
clouds can be processed efficiently.

Learning-based Dynamic PCGC. On top of the static
PCGC framework, dynamic PCGC methods are developed by
introducing temporal information to remove redundancy. As
point cloud frames are not aligned in temporal space (their
numbers of points even vary), it is challenging to capture ac-
curate motion between two frames. To address this challenge,
a pioneer work [Akhtar et al., 2024] was proposed by lever-
aging target convolutions to convolve the geometry feature
of the reference point cloud frame onto the current frame,
implicitly capturing motions between two frames. Instead,
Fan et al. [Fan et al., 2022a] explicitly extracted the motion
information between two frames through a motion estimation
(ME) network and coded this information as bitstream. Later,
Xia et al. [Xia et al., 2023] improved this ME to a hierarchi-
cal one with k Nearest Neighbour-attention block matching
network for more accurate motion prediction. Overall, these
methods are effective for dynamic point clouds with small
motions. For point clouds having large motions, sufficiently
large kernel size of target convolutions is demanded, resulting
in huge memory cost.

2.2 Compressed Geometry Restoration

While these learning-based methods exhibit superior perfor-
mance, they usually require more intensive computational re-
sources than rules-based methods. This motivates researchers
to adopt a hybrid approach, combining the rules-based and
learning-based techniques: utilizing the rules-based method
as the baseline and incorporating an additional learning-based
model to enhance its performance. Such a strategy enables
cost-effective application of the rules-based method, reserv-
ing the incorporation of the learned model for scenarios
where computational resources permit. Typical works in-
clude GRASP-Net [Pang et al., 2022], G-PCC++ [Zhang et
al., 2023], and GRNet [Liu et al., 2023], which employ G-
PCC as the baseline coder and leverage the learning-based
model to compensate for the compression distortion. Specifi-
cally, GRASP-Net compresses the residuals between G-PCC
decoded and original point clouds as auxiliary bitstream; G-
PCC++ and GRNet are more like post-processing methods
for quality restoration of compressed geometry. Up to now,
they can only perform static PCGC.
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Figure 2: Framework of AuxGR. (a) In static coding, information of the original point cloud is embedded into the G-PCC decoded point cloud
through PIE (denoted as Ft), which is combined with SIA at the decoder to predict coordinate occupancy probabilities or coordinate offsets.
(b) In dynamic coding, the temporal information from the prior restored point cloud frame is embedded into the G-PCC decoded one by SIA
and then TIE (denoted as F′t). The residuals between TIE and PIE outputs i.e., Ft and F′t, are transmitted. DDS: dyadic downsampling; PIE:
paired information embedding; TIE: temporal information embedding; SIA: spatial information aggregation; CR: coordinate reconstruction.
A sparse convolution layer is applied to produce latent features F̄t before SIA, which is omitted in the figure for clarity.

2.3 Remarks
As seen, combining rules-based G-PCC and learning-based
models offers a versatile solution to real applications within
constrained computational resources. Therefore, the critical
problem is how to leverage the learned model for G-PCC per-
formance enhancement, especially in dynamic coding scenar-
ios where capturing point cloud motions is challenging.

3 Method
3.1 Framework
Figure 2 sketches the framework of the proposed AuxGR used
to enhance standard-compliant G-PCC. Both static and dy-
namic point cloud compression modes are supported.

Static Coding. Define the original point cloud as time t
as Pt = {Ct

i}Mi=1. The corresponding G-PCC decoded point
cloud is P̂t = {Ĉt

i}Ni=1, with the geometry quantization pa-
rameter Position Quantization Scale set as 1/2r. For the static
mode of AuxGR, as illustrated in Figure 2a, the original point
cloud Pt is also dyadically downscaled (DDS) r times to gen-
erate Ct

g , a thumbnail point cloud mostly retaining the native
information. Then, we apply the paired information aggrega-
tion unit (PIE) for target convolution from Ct

g to Ĉt, embed-
ding features of the original point cloud into the G-PCC de-
coded one. The obtained features, referred to as Ft, are coded
through entropy coding and converted as auxiliary bitstream
to enhance the quality of G-PCC decoded point clouds. Note

that we use two sparse convolution (Sconv) layers and In-
ceptionResNet (Inception Residual Network) [Szegedy et al.,
2016; Wang et al., 2021a] to implement DDS where ReLU
activation is applied after each Sconv layer.

At the decoder, the G-PCC decoded point cloud goes
through a spatial information aggregation (SIA) unit via k
Nearest Neighbors (kNN)-based attention to construct the
neighborhood for each point for spatial correlation explo-
ration. The obtained features F̂t are then fused with the aux-
iliary features Ft from PIE for coordinate reconstruction.

Dynamic Coding. In dynamic coding, the restored prior
point cloud frame can also be utilized. On the one hand, we
generate Ft using the same PIE as the static mode. On the
other hand, we embed features of the prior frame P̂t−1 =

{Ĉt−1
j }N ′

j=1 into the current G-PCC decoded point cloud Ĉt.
Specifically, the current G-PCC decoded point cloud goes
through SIA, producing latent features F̂t; accordingly, the
prior restored point cloud goes through DDS, producing the
same scale latent features F̂t−1. As these exist deep temporal
correlations between F̂t and F̂t−1, we fuse them using the
temporal information embedding (TIE) unit, where the target
kNN attention is utilized for temporal correlation exploration.
As such, motion information from the prior frame is embed-
ded into the G-PCC decoded frame, denoted as F′t.

In this way, we derive Ft using PIE and F′t using TIE.
There is redundancy between these two groups of features
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Figure 3: SIA & TIE. SIA is applied on the current decode point cloud: for each point, it uses k Nearest Neighbors (kNN) to construct its
spatial neighborhood for information aggregation. TIE is applied between two point clouds: for each point in the G-PCC decoded point cloud
Ĉt, its k neighbors in the prior point cloud Ĉt−1 are aggregated for temporal neighborhood construction and feature embedding.

due to the temporal similarity between Pt−1 and Pt. Since
both features are embedded based on the G-PCC decoded
point cloud, we can directly compute their residuals for en-
tropy coding, eventually forming the auxiliary bitstream.

As the prior restored point cloud is also available to the
AuxGR decoder, the decoder can mirror the encoding process
to generate F′t using SIA and TIE, which is then added to the
received residual features to derive Ft. Similarly, Ft and F̂t

are utilized together to enhance the point cloud quality.

3.2 Modular Component
Next, we detail the key modular components in AuxGR.

(b) TKIAFrame 1&2 Montion flow

(a) Target Conv.

Figure 4: TIE vs. Conventional Target Convolution. We merge two
successive frames in the point cloud Dancer to observe the motion
flow. The conventional target convolution may involve no point in
the receptive field due to the large motion, while TIE always ensures
a local neighborhood for each point by searching its k nearest neigh-
bors temporally.

SIA. SIA is applied within the current G-PCC decoded
point cloud. For each point, we first collect the spatially
k nearest neighboring points to construct its neighborhood.

Then, self-attention is applied, as shown in the left of Fig-
ure 3, to adaptively aggregate features close to this point, de-
noted as F̂t.

PIE. PIE is a target convolutional layer used to perceive
spatial variations between the paired decoded and original
point clouds. As there is no motion but only distortion be-
tween them, each point in the G-PCC decoded point cloud
is highly correlated to its neighbors in the original counter-
part. To this end, we directly apply PIE to embed the original
features into the G-PCC decoded point cloud coordinates.

TIE. In addition to the spatial correlation, there exists tem-
poral similarity across point cloud frames. Therefore, we can
use the previously decoded frame to improve the compres-
sion efficiency of the current frame. The remained problem
is how to fully exploit such temporal similarity. Due to the
point cloud’s irregular and disordered nature, there is no ac-
curate point-to-point motion between the two frames. As a
result, directly capturing motion for each point is exhaustive
and inaccurate. To address this issue, this paper proposes TIE
to embed temporal motion and correlation information into
the current G-PCC decoded point cloud frame.

As illustrated in the right of Figure 3, the prior frame is
downscaled by DDS, outputting F̂t−1 of the same scale as
F̂t. For each point in F̂t, we apply the TIE unit to con-
struct its neighborhood by searching k nearest neighbors in
F̂t−1. Afterward, self-attention is performed in each local
neighborhood to exploit their temporal correlation and repre-
sent their motion implicitly. Notice that we use TIE instead
of conventional target convolution because the object mo-
tion easily leads to a mismatch between frames, especially in
large motion, making the conventional target convolution ex-
tract no features or irrelevant features. For example, Figure 4
shows the motion between two successive frames of Dancer,
in which using target convolutions may involve no points in
the receptive field due to the large motion. By contrast, TIE
can always ensure a local neighborhood for each point, and
most points in this neighborhood are highly correlated.
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Figure 5: Modular components of Coordinate Reconstruction: (a)
Probability Generation and (b) Offset Generation.

Coordinate Reconstruction (CR) provides two options:
Probability Generation for solid point clouds and Offset Gen-
eration for dense and sparse point clouds, shown in Figure 5.
As the encoder can easily determine the point cloud type
through the density information [Alexandre et al., 2022], we
thus only need to signal a 1-bit flag indicating the point cloud
type in the bitstream. Besides, the number of points in the
original point cloud (i.e., M ) is also signaled in the bitstream
to facilitate the CR module in generating the same number of
points as the original point cloud.

It is observed that G-PCC decoded point clouds exhibit two
distinct characteristics [Liu et al., 2023]: the solid point cloud
predominantly experiences the point vanishing issue because
its points are so close to each other that many points (e.g.,
eight points) are merged as one after the octree-based quan-
tization; instead, the dense and sparse point clouds suffer
from both point vanishing and point displacement problems
and more serious in the latter one due to its low point den-
sity. Therefore, to restore the decoded solid point cloud, we
need to generate more points to resist point vanishing. Thus,
we apply the Probability Generation unit to uniformly gener-
ate a set of points around each point and select points hav-
ing the highest probabilities as the restored ones. As de-
picted in Figure 5a, given the decoded point cloud Ĉt hav-
ing N points and features {Ft, F̂t}, the Probability Genera-
tion unit uses a transposed sparse convolution (TSconv) with
kernel size K (K = 9 in this work) for coordinate genera-
tion, followed by an InceptionResNet [Szegedy et al., 2016;
Wang et al., 2021a] layer and a Sconv layer to produce a set
of coordinates associated with their probabilities. Given that
the original point cloud has M points, we select points with
the top M probabilities as the restored point clouds.

For dense and sparse point clouds, most points are retained
but significantly shifted after compression, which inspires us
to rectify these displacements via coordinate offsets. Mean-
while, we also need to retrieve those vanished points. To
achieve this, we devise the Offset Generation unit (see Fig-

ure 5b). To restore the same number of points as the origi-
nal point cloud, we generate W = ⌊M

N ⌋ offsets via stacked
Sconv and InceptionResNet layers for each point in the de-
coded point cloud. As such, we receive W new coordinates
by adding these offsets to the coordinate of this point. Given
N decoded points, we finally obtain ⌊M

N ⌋ ×N new points, a
similar number of points to the original point cloud.

4 Experimental Results and Analysis
4.1 Preparation
We employ GeS-TM v11, a branch split out of the G-PCC
test model with the best practices for static and dynamic solid
point cloud compression, as the baseline coder of AuxGR. For
the static point cloud compression, GeS-TM v1 remains the
same as G-PCC TMC13v232. In the following, we use GeS-
TM (static) and GeS-TM (dynamic) for short.

Training Dataset. For static coding, we built different
training datasets for solid, dense, and sparse point clouds us-
ing the ShapeNet dataset [Chang et al., 2015]. Specifically,
we randomly selected 20,000 3D mesh from ShapeNet and
sampled each model to a maximum of 400,000 8-bit points,
25,000 8-bit points, and 20,000 9-bit points to mimic the char-
acteristics of solid, dense, and sparse point clouds, respec-
tively, forming their corresponding static training datasets.

For dynamic coding, we followed the Common Test Con-
ditions (CTC) [MPEG, 2022] recommended by the interna-
tional standardization committee MPEG AI-PCC group to
create our training dataset. Specifically, the 8i Voxelized
Full Bodies (8iVFB) [d’Eon et al., 2017] dataset with 10-
bit geometry precision is used. This dataset includes four
sequences and each has a total of 300 frames. In the train-
ing, each frame was chunked into small blocks of 100,000 to
200,000 points, finally obtaining 7,432 blocks.

Testing Dataset. The datasets recommended by
MPEG [Alexandre et al., 2022], including thirteen solid point
clouds, nine dense point clouds, and four sparse point clouds,
are used as our static testing dataset. These point clouds range
from 9 bits to 12 bits.

As for the dynamic coding, the Owlii dataset [Xu et al.,
2017] containing four dynamic point clouds is used for test-
ing. Following the MPEG CTC, we quantized point clouds in
Owlii to 10-bit precision and employed the first 100 frames of
each sequence for testing. Notice that the first frame is pro-
cessed using the static solution, and the following 99 frames
are processed using the dynamic solution.

Settings. Our project is implemented using the PyTorch
and MinkowskiEninge [Choy et al., 2019] on a computer with
an Intel® i7-8700K CPU, 32 GB memory, and NVIDIA RTX
4090. Adam is used for network model optimization and pa-
rameters β1 and β2 are set to 0.9 and 0.999, respectively. The
learning rate decays from 8e-4 to 1e-4 every 4000 steps. Our
static and dynamic models are trained for 64,000 and 24,000
steps, respectively. It takes around 24 hours for each model
to converge on our platform.

1http://mpegx.int-evry.fr/software/MPEG/PCC/TM/
mpeg-pcc-ges-tm

2https://github.com/MPEGGroup/mpeg-pcc-tmc13
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Mode Point Cloud vs. GeS-TM (static) vs. V-PCC vs. DGPP vs. GRASP-Net vs. G-PCC++ vs. GRNet
D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%)

Static
Solid Average -90.76 -83.62 -47.28 -42.59 -30.33 -16.19 -53.35 -58.07 -20.26 -24.62 -7.00 -7.72
Dense Average -84.69 -73.16 - - - - -26.49 -28.15 - - -52.83 -23.41
Sparse Average -35.90 -36.01 - - - - -14.80 -22.37 - - -28.15 -7.53

Mode Point Cloud vs. GeS-TM (dynamic) vs. V-PCC vs. Akhtar’s vs. Fan’s vs. Xia’s vs. Proposed Static
D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%)

Dynamic

Basketball vox10 -92.83 -89.90 -79.59 -67.87 -18.53 - -14.03 -16.13 -6.46 -31.21 -25.31 -27.77
Dancer vox10 -92.04 -88.53 -81.85 -69.35 -26.99 - -14.34 -17.31 -9.90 -33.17 -22.44 -25.53

Exercise vox10 -92.72 -89.86 -81.26 -69.82 -22.19 - -10.30 -11.00 -2.42 -30.00 -29.59 -31.91
Model vox10 -91.50 -86.91 -85.46 -68.73 -28.03 - -13.13 -14.94 -3.35 -26.29 -29.43 -33.51

Average -92.27 -88.80 -82.04 -68.94 -23.94 - -12.95 -14.85 -5.53 -30.17 -26.69 -29.68

Table 1: Average BD-BR gains of the proposed method against existing solutions in static and dynamic point cloud compression

Mode Point Cloud GeS-TM (static) V-PCC DGPP GRASP-Net G-PCC++ GRNet Proposed Static

Static
Solid Average 1.01 61.44 23.11 24.12 1.60 16.18 1.72
Dense Average 4.42 - - 193.48 - 191.62 6.16
Sparse Average 1.22 - - 15.38 - 14.43 3.32

Mode Point Cloud GeS-TM (dynamic) V-PCC Akhtar’s Fan’s Xia’s Proposed Static Proposed Dynamic
Dynamic Owlii Average 0.88 82.26 1.07 2.00 1.74 1.01 1.29

Table 2: Average runtime (seconds/frame) of compared methods

w/o PIE w/o SIA
D1 D2 D1 D2

Average -9.29% -8.91% -17.54% -12.91%

Table 3: Ablation of each modular component in AuxGR

In our experiments, quantization parameters Position
Quantization Scale and λ are used to control the GeS-TM
bitrate and the auxiliary bitrate, respectively. They can be
arbitrarily combined to achieve different quality levels and
bitrates. In experiments, we try our best to apply the same
settings of compared methods. Specifically,

• For static coding, in addition to rules-based GeS-TM
(static) and V-PCC, we compare with state-of-the-art
point cloud geometry restoration methods DGPP [Fan
et al., 2022b]3, GRASP-Net [Pang et al., 2022]4, G-
PCC++ [Zhang et al., 2023], and GRNet [Liu et al.,
2023]. Among all, GRASP-Net uses G-PCC as the ba-
sic coder and the auxiliary bitstream for residual coding.
Thus, we follow the G-PCC settings of GRASP-Net and
tune λ in our learned model to produce similar bitrate
points to GRASP-Net in testing (see Figure 6c). For fair
comparisons, we replace the G-PCC coder with GeS-
TM v1 in GRASP-Net for evaluation.

• For dynamic coding, we compare with GeS-TM (dy-
namic) and V-PCC, as well as learning-based point cloud
compression solutions [Akhtar et al., 2024], [Fan et al.,
2022a], and [Xia et al., 2023]. Since these learning-
based works all follow the MPEG CTC for training in
their MPEG proposals or papers, we thus directly use
corresponding results for comparison. As Akhtar’s work
uses lossless G-PCC to compress downscaled geome-
try, we replace their G-PCC with GeS-TM v1 for fair
comparisons. Fan’s and Xia’s methods downscale the
point cloud two times and use a high-efficiency learned

3https://github.com/fxqzb/Deep-Geometry-Post-Processing
4https://github.com/InterDigitalInc/GRASP-Net

model for lossless compression. As their corresponding
lossless bitrate is around 0.05 bpp, this work sets Posi-
tion Quantization Scale of GeS-TM as 0.25 to produce a
comparable bitrate (see Figure 6c).

Evaluation metrics include bitrate bpp (bit per point), D1
(point-to-point) PSNR, D2 (point-to-plane) PSNR, and BD-
BR (Bjøntegaard Delta bitrate) [Bjøntegaard, 2001] recom-
mended by MPEG for compression performance evaluation.

4.2 Static Coding Performance
We use the pre-trained models of GRASP-Net and DGPP for
testing. For G-PCC++ and GRNet, we reproduce them us-
ing the same training dataset as ours for fair comparisons.
Notice that GRASP-Net [Pang et al., 2022] uses ModelNet,
which contains similar 3D models to ShapeNet, as its training
dataset. Thus, there is almost no difference between the cod-
ing performance of ShapeNet and ModelNet-trained GRASP-
Net models. Concerning DGPP [Fan et al., 2022b], it ran-
domly selects 60 frames from both Longdress and Loot se-
quences in 8iVFB for training. It is worth noting that this
may lead to the overfitting of DGPP models on specific se-
quences. Nevertheless, we choose to utilize its pre-trained
models to preserve its peak performance.

Table 1 presents the coding performance comparison of
various methods under the same testing conditions. For
the solid point clouds, our method largely outperforms all
other methods, e.g., it rivals GRASP-Net which also em-
ploys G-PCC as the base coder by 53.35% (58.07%) BD-BR
gains in D1 (D2) measurement. In comparison to G-PCC++,
a learning-based geometry restoration method for G-PCC,
AuxGR obtains 20.26% (24.62%) BD-BR reduction.

For dense and sparse point clouds, we only compare
AuxGR with GeS-TM (static), GRASP-Net, and GRNet, as
other methods lack support for compressing these types of
point clouds. Taking the dense point clouds for example,
compared with GeS-TM (static), our method attains as high
as 84.69% (73.16%) BD-BR reduction in terms of D1 (D2);
compared with GRASP-Net, AuxGR also gains significantly,
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Figure 6: R-D curves of (a) static and (b) dynamic point cloud compression. As GeS-TM (dynamic) is much lower than others, we omit it
here for clarity. (c) The bitrate distribution of GeS-TM and our AuxGR in static and dynamic coding.

26.49% (28.15%) D1 (D2) BD-BR on average. Similarly,
AuxGR performs remarkably better than other methods in
sparse point clouds. R-D curves in Figure 6a consistently
present the superior performance of AuxGR. We also show
the bitrate of our auxiliary information in Figure 6c.

4.3 Dynamic Coding Performance
As presented in Table 1 and Figure 6b, compared with
GeS-TM (dynamic) and V-PCC, AuxGR achieves 92.83%
(89.90%) and 79.59% (67.87%) BD-BR reduction in D1 (D2)
measurement. In comparison to Akhtar’s and Fan’s works,
AuxGR gains 18.53% (-) and 14.03% (16.13%), respectively.
To demonstrate the effectiveness of our dynamic solution, we
compare it with our static version, showing 25.31% (27.77%)
BD-BR gains. In comparison to Xia’s work, our gain is also
significant, especially in D2 measurement. The detailed bi-
trates of GeS-TM and our AuxGR are presented in Figure 6c.

Overall, AuxGR performs the best, particularly in point
clouds with large motions. For example, the point cloud se-
quence Dancer has large motions while Exercise remains al-
most unchanged. Accordingly, Fan’s and Xia’s methods be-
have worse in Dancer because they mostly rely on convolu-
tions to capture motions, limiting the receptive field and fail-
ing to aggregate enough information in large-motion scenar-
ios. By contrast, our AuxGR performs much better in Dancer,
due to the use of TIE for implicit motion perception and ef-
fective temporal information embedding.

4.4 Space and Runtime Complexity
We collect the model parameters of compared methods in
Figure 1. For static compression, our model uses slightly
more parameters than GRASP-Net (0.63M vs. 0.48M) and
fewer parameters than others. For dynamic compression, our
model parameter is increased to 1.24M, which is still much
smaller than others, e.g., 44% of Fan’s and 61% of Akhtar’s.

Table 2 further presents the runtime of different meth-
ods. Notice that GeS-TM and V-PCC run on the CPU while
learning-based methods run on the GPU and CPU. As ob-
served, the runtime of AuxGR is in the same order of mag-
nitude as that of GeS-TM in both static and dynamic coding,
much faster than most other methods, e.g., 65% of Fan’s and
74% of Xia’s.

4.5 Ablation Study
Ablation studies are conducted to evaluate the contribution
of SIA, PIE, and TIE. We first disable the PIE unit in static
compression, i.e., no auxiliary bitstream will be generated.
In this way, the static compression becomes geometry post-
processing on the decoder side, resulting in 9.29% (8.91%)
D1 (D2) BD-BR loss against the full AuxGR. Additionally,
we replace the SIA unit on the decoder using two convolution
layers for ablation. It is observed that without efficient neigh-
borhood construction, 17.54% (12.91%) BD-BR loss is intro-
duced. At last, disabling TIE simplifies our dynamic coding
to static coding, leading to about 27% BD-BR loss.

5 Conclusion
This paper proposes AuxGR, leveraging auxiliary bitstream to
restore G-PCC compressed point cloud geometry. The aux-
iliary bitstream is generated by a learning-based model us-
ing SIA to exploit point correlation within the current G-PCC
decoded frame, PIE to embed the original point cloud infor-
mation into the G-PCC decoded frame, and TIE to embed
the temporal information of the prior restored frame into the
G-PCC decoded frame. By configuring SIA, PIE, and TIE,
AuxGR can support static and dynamic coding modes. Ex-
perimental results confirm that AuxGR remarkably surpasses
state-of-the-art solutions under the same testing conditions in
both static and dynamic coding scenarios.
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