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Abstract
Knowledge Graphs (KGs) are pivotal in various
NLP applications but often grapple with incomplete-
ness, especially due to the long-tail problem where
infrequent, unpopular relationships drastically re-
duce the KG completion performance. In this pa-
per, we focus on Few-shot Knowledge Graph Com-
pletion (FKGC), a task addressing these gaps in
long-tail scenarios. Amidst the rapid evolution of
Large Language Models, we propose a generation-
based FKGC paradigm facilitated by LLM distilla-
tion. Our MuKDC framework employs multi-level
knowledge distillation for few-shot KG completion,
generating supplementary knowledge to mitigate
data scarcity in few-shot environments. MuKDC
comprises two primary components: Multi-level
Knowledge Generation, which enriches the KG at
various levels, and Consistency Assessment, to en-
sure the coherence and reliability of the generated
knowledge. Most notably, our method achieves
SOTA results in both FKGC and multi-modal FKGC
benchmarks, significantly advancing KG comple-
tion and enhancing the understanding and applica-
tion of LLMs in structured knowledge generation
and assessment.

1 Introduction
Knowledge Graphs (KGs) are structured databases represent-
ing information through entities and their interrelations, typi-
cally organized as triples comprising a head entity, a relation,
and a tail entity [Chen et al., 2024]. KGs play a pivotal role in
diverse NLP tasks, including question answering [Chen et al.,
2021b; Chen et al., 2022], entity search [Gerritse et al., 2022],
and recommendation systems [Du et al., 2022]. Despite their
extensive utility, KGs frequently confront the challenge of
incompleteness, manifested in missing or underrepresented
entities and relations. Knowledge Graph Completion (KGC),
synonymous with link prediction in the context of this work,
focuses on identifying and inferring potential missing triples
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Figure 1: We break free from conventional thought patterns and intro-
duce a generation-based FKGC paradigm through LLM distillation.

in KGs to address existing gaps. However, the long-tail prob-
lem, a common issue in real-world KGs, complicates this task.
It arises from the significant variance in the frequency of re-
lationship types and the disparity in the number of neighbors
among different entity types. This results in many relations
being sparsely represented, leading to inadequate training data
for traditional KGC methods. To overcome this, the focus
has shifted towards Few-shot Knowledge Graph Completion
(FKGC).

FKGC is designed to enhance KG completion in scenarios
with limited data availability. It involves predicting missing
entities in triples with rare relations (the query set) using
a minimal number of example triples containing the same
relation (the support set). This approach aligns with few-
shot learning methodologies in KGs, addressing the criti-
cal challenge of data sparsity in KG augmentation. Current
methods mainly focus on model-level enhancements. This
includes strategies such as utilizing paths between entities
to capture complex relations and their interactions, which
leverages the local sub-graph structure for for enriched entity
learning [Xu et al., 2021]. Additionally, employing a model-
agnostic meta-learning framework is also proved to be helpful
in distilling relation-specific information [Chen et al., 2019;
Niu et al., 2021].
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In this paper, amidst the rapid advancement of Large Lan-
guage Models (LLMs), we break free from conventional
thought patterns and introduce a generation-based FKGC
paradigm through LLM distillation (Figure 1), aiming
to revisit and reassess the future development and potential
value of FKGC. Specifically, we propose a LLM-based Multi-
level Knowledge Distillation framework for few-shot KG
Completion, termed as MuKDC1. MuKDC generates addi-
tional knowledge for sparse entities and relations, addressing
the challenges of data scarcity in few-shot multi-modal learn-
ing environments and supporting further FKGC tasks. As a
pioneering study in this domain, we have endeavored to keep
our approach as straightforward and effective as possible.

This framework includes two main components: Multi-
level Knowledge Generation (MKG) and Consistency As-
sessment (CA). (i) MKG is designed to enrich and expand
the KG by generating additional knowledge at multiple levels,
including Triplet Generation (TG), Attribute Generation (AG),
and Decision Path Generation (DPG). These components col-
lectively enhance the KG, offering a more comprehensive
base for few-shot learning applications. TG augments the
relational structure of the KG; AG enriches entities with addi-
tional descriptive attributes; and DPG creates logical pathways
to facilitate inferencing and robust knowledge discovery. (ii)
CA assesses the coherence and reliability of the generated
knowledge, comparing existing data with the new knowledge
to ensure the expanded graph’s integrity and consistency.

Note that the LLM distillation method we propose can natu-
rally serve as a means to complete and construct KGs. This
method can be viewed as a data augmentation strategy for
downstream FKGC, effectively distilling parametric knowl-
edge from LLMs into structured knowledge. This assists
not only in knowledge verification but also in enhancing the
explainability of other downstream tasks. To validate the gen-
erality and robustness of MuKDC, we extend our analysis to
multi-modal FKGC scenarios, demonstrating that our model
achieves SOTA results in both FKGC and multi-modal
FKGC benchmarks.

2 Related Work
2.1 Few-Shot Knowledge Graph Completion
Numerous studies [Niu et al., 2021; Liang et al., 2023] in
few-shot relational modeling for KGC have concentrated
on long-tail relations, broadly categorizing into three ap-
proaches: (i) Metric-based Methods: These methods focus
on learning metrics to determine similarity between support
and query triples. Initial models like GMatching [Xiong et
al., 2018] utilize one-hop neighbors to refine entity embed-
dings. Later, FSRL [Zhang et al., 2020] and FAAN [Sheng
et al., 2020] integrate attention mechanisms for handling
relation-specific neighborhoods more effectively. Advance-
ments like REFORM [Wang et al., 2021b] and YANA [Liang
et al., 2022b] employe GNNs for latent relation detection,
while P-INT [Xu et al., 2021] and MetaP [Jiang et al., 2021]
innovate with directed subgraphs and convolutional layers

1The source code is available at https://github.com/
xiaoqian19940510/MuKDC.

to extract relation patterns. (ii) Optimization-based Meth-
ods: These methods [Chen et al., 2019; Niu et al., 2021;
Lv et al., 2019] adapt swiftly to new relations using Model-
Agnostic Meta-Learning (MAML). Meta-KGR further [Lv
et al., 2019] combines MAML with multi-hop path-finding
for enhanced entity selection. (iii) Cognitive Graph-based
Methods: An example is CogKR [Du et al., 2021], which
applies cognitive science principles to construct and update a
cognitive graph, facilitating KGC.

Building on these foundations, our paper, set against the
backdrop of the rapid advancement of LLMs [Zhang et
al., 2023c], introduces a generation-based FKGC paradigm
through LLM distillation, as shown in Figure 1. Our approach
aims to revisit and reassess the future development and poten-
tial value of FKGC, marking a departure from conventional
methodologies.

2.2 Multi-modal Knowledge Graph Completion
Multi-modal Knowledge Graph Completion (MMKGC) mod-
els primarily focus on incorporating visual information to aug-
ment structural-only or text-only KGC tasks [Chen et al., 2024;
Fang et al., 2022]. Recent MMKG-based models [Liang et al.,
2022a; Zhang et al., 2023a] often process visual and structural
data separately [Chen et al., 2023b; Chen et al., 2023c], em-
ploying general KG embedding (KGE) methods like TransE
[Bordes et al., 2013] for unified modeling. Various multi-
modal context embedding fusion methods, such as simple
concatenation [Sergieh et al., 2018], DeViSE [Frome et al.,
2013], and Imagined [Collell et al., 2017], have been explored
to integrate these different modalities.

Moreover, TransAE [Wang et al., 2019] introduces an auto-
encoder mechanism for seamless visual and structural inte-
gration; RSME [Wang et al., 2021a] focuses on evaluating
different image encoders, highlighting the Visual Transformer
[Dosovitskiy et al., 2021] as particularly effective; VBKGC
[Zhang and Zhang, 2022] and MANS [Zhang et al., 2023b]
suggest fine-grained visual negative sampling to better align
visual embeddings with structural embeddings, representing
a novel approach for fine-grained comparison training; Addi-
tionally, MACO [Zhang et al., 2023d] proposes an adversarial
training method to complete missing modal information. The
current trend in MMKGC primarily utilizes image information
as attributes for task design, facilitating the solution of FKGC
and Multi-modal FKGC under a unified framework.

3 Preliminaries
Here we define the FKGC task with potential multi-modal
contexts as follows:

Definition 1. (Multi-modal) Few-shot Knowledge Graph
Completion. Given an incomplete KG G = (E ,R, T ,A,V)
with T = {TA, TR}, where E , R and T , A are the sets of
entities, relations, triples, attributes, and values, respectively.
The FKGC task aims to complete G by identifying a set of
missing triples T ′ = {(h, r, zt)|(h, r, t) /∈ T , h, t ∈ E , r ∈
R}, given only few-shot entity pairs (h, t) and their potential
multi-modal attributes for each relation r. To differentiate
modal characteristics of attributes, we define text attributes as
vl and visual attributes as vv. For instance, in a MMKG, the
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Figure 2: The framework of MuKDC. It includes two main components: Multi-level Knowledge Generation (MKG) and Consistency
Assessment (CA). MKG enriches and expands the KG by generating additional knowledge at multiple levels; and Decision Path Generation
creates logical pathways to facilitate inferencing and robust knowledge discovery. CA assesses the coherence and reliability of the generated
knowledge, ensuring the expanded KG’s integrity and consistency.

attribute triple (e, a, vv) in TA may associate an entity e from
E with a visual value vv under the attribute a, designated as
hasImage.

Definition 1 also refers to the K-shot KGC task when K
training examples are provided for each relation. Unlike prior
studies that assume abundant training triples, FKGC addresses
scenarios with limited training data. Specifically, the objective
is to rank the correct tail entity higher than other candidates,
given only K example triples (h′

i, r, t
′
i)

K
i=1 for relation r. The

candidate set is formed based on entity type constraints.
For a given relation r ∈ R, a dataset Dtrain consists of

support (Dsr ) and query (Dqr ) sets: Dr = Dsr , Dqr . Each
of the support set Dsr contains K triples for K-shot tasks.
The query set Dqr = {hi, r, ti, Chi,r} includes query triples
for relation r with ground-truth tail entities ti for each query
(hi, r), and a candidate set Chi,r = {tij} where each tij is an
entity in G. The metric model is then evaluated on this dataset
by ranking the candidate set Chi,r, given the test query (hi, r)
and the support triples in Dsr . The datasets Dval and Dtest

comprise similar structures.
After sufficient training, the model predicts facts for new

relations r′ ∈ R′. The relation label spaces in the datasets are
disjoint, i.e., R ∩ R′ = ∅, to adhere to the K-shot learning
assumption. Otherwise, the model would have access to more
than K-shot labeled data during testing, violating the few-shot
learning premise.

4 Framework
As illustrated in Figure 2, our MuKDC framework comprises
two primary components: Multi-level Knowledge Generation
and Consistency Assessment.

(i) Multi-level Knowledge Generation (MKG) aims to
enrich and expand the KG by generating multi-level knowl-
edge. This includes: Knowledge Generation: Generating
additional triples and attributes to densify the original KG.
This deepens entity characterization by enriching entities with
descriptive attributes and triplets, providing a more comprehen-
sive understanding of each entity; Decision Path Generation:

Constructing logical pathways linking entities and relations.
These paths are pivotal for understanding relationship dynam-
ics, facilitating inference, and enhancing knowledge discovery,
while also providing interpretability for graph completion.

(ii) Consistency Assessment (CA): A crucial part of
MuKDC, it involves comparing the newly generated knowl-
edge against existing data and predictions. This component
uses predicted tail entities and known head entities to ensure
the consistency and coherence of relationships in the expanded
graph.

Overall, MuKDC is designed to overcome the challenges of
sparse data in few-shot multi-modal learning environments. By
generating multi-level knowledge, MuKDC not only enriches
the KG but also ensures its integrity and consistency, providing
a holistic understanding of the graph.

4.1 Multi-level Knowledge Generation
Knowledge Generation
Knowledge Generation in our framework can be likened to a
brainstorming session by the LLM on the training set Dtrain.
This process involves divergent thinking based on the existing
triples and their attributes in the support set, thereby trans-
forming parameter knowledge into structured knowledge to
address sparse data challenges.

Specifically, Triplet Generation (TG) focuses on creating
new relational triples, leveraging known entities and relations
in a sampled one-hop sub-graph. Its goal is to enhance the
KG’s relational structure, thus broadening and deepening the
understanding of entities and their interconnections. Attribute
Generation (AG) engages LLMs to generate attributes for
nodes in both textual and potential visual forms. This enriches
entities with descriptive attributes, leading to a more compre-
hensive characterization of each entity within the graph. Note
that these two processes, TG and AG, operate in parallel and
do not directly influence each other.

Triplet Generation. Let Tg = {TA, TR} represent the set
of existing triplets in Dtrain, with Eg and Rg denoting the
sets of existing entities and relations, respectively. We define
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Ge as a one-hop subgraph centered around entity e, sampled
from T g, where each entity in the sub-KG includes textual
and potential visual attributes. The triplet generation process
can be formulated as TRnew = TG(Ge), where TRnew is the
set of newly generated triplets. The function TG, realized
by the LLM, generates new triplets based on the existing
sub-KG. In practice, this is achieved by defining appropriate
instruction templates for input into the LLM. Specifically, we
have developed an “Instruction Pool”, of which only a select
few examples are presented below:

1. For knowledge graph completion please
generate triplet containing the [ENT]:

2. Please generate appropriate triplet
containing the [REL]:

For each instruction, we replace the placeholders [ENT] and
[REL] with the sets of entities and relations contained in Ge,
respectively, to form an instance Inst. We then serialize Ge

as a collection of triplets (including relational and attribute
triples) to construct the final Template Seq(Ge) || Inst. Here,
“||” denotes the concatenation of the serialized triplet set with
the instantiated instruction.

This process continues for X rounds, where X equals the
number of entities in Eg , effectively iterating through the entire
Dtrain for data augmentation. note that for potential visual
value vv inputs that may occur, a trainable projection is utilized
for transformation.

Attribute Generation. Similar to Triplet Generation, the
function AG, realized by the LLM, generates new attributes
based on the existing sub-KG to generate new attribute set
TAnew. A corresponding “Instruction Pool” has been defined,
with a few selected examples shown below:

1. Please generate the important attributes
for the [ENT]:

2. Generate key attributes for knowledge
graph completion of the [ENT]:

Other settings for AG are consistent with those of TG.

Decision Path Generation
If Knowledge Generation represents brainstorming within a
set framework (creating triples and attributes from existing
sub-KG data), Decision Path Generation (DPG) expands on
this by extrapolating relationships more freely. DPG analyzes
existing relationships and patterns to generate decision paths,
uncovering deeper insights into the KG. For instance, from the
facts “Hangzhou is in Zhejiang” and “Zhejiang is in China”,
it deduces that “Hangzhou is in China”. Similarly, if “Le-
Bron James” and “Anthony Davis” are known to play for the
“Lakers”, DPG infers that they are teammates.

Note that both Knowledge Generation and DPG can involve
and be assisted by images, providing additional information
inputs. This process can be facilitated by multi-modal LLMs
(e.g., LLava [Liu et al., 2023]). Furthermore, the input for
DPG is based on the output of Knowledge Generation com-
bined with the existing Dtrain. We refer to this combined
set as D̂train = TRnew ∪ TAnew ∪ T . The one-hop subgraph
sampled from D̂train is denoted as Ĝe.

The decision path generation process can be formulated as
TRdpg = DPG(Ĝe), where TRdpg is the set of newly generated
decision paths. A corresponding “Instruction Pool” has been
defined, with a few selected examples shown below:

1. Based on sampled rules, please generate
important logical rules for relation
for [ENT]:

2. Please generate the important decision
path for the knowledge graph completion
for [REL]:

Other settings for DPG are consistent with TG and AG.

4.2 Consistency Assessment
MuKDC incorporates a crucial Consistency Assessment (CA)
process to verify the coherence and reliability of the newly
generated knowledge, including triples and attributes. This
process evaluates the compatibility of predicted tail entities
with known head entities against the existing KG data. By
ensuring that these predictions align with established relation-
ships, the integrity and accuracy of the expanded graph are
maintained.

Specifically, we employ a Knowledge Graph Embedding
(KGE) model pre-trained on Tg (using TransE [Bordes et al.,
2013]) as the base scoring model for CA. This model is used to
conduct consistency checks on all triplets in the newly gener-
ated sets TRnew and TAnew. Each triplet is sequentially input
into the CA model, and those scoring below a certain thresh-
old are discarded. Considering the likelihood of encountering
many unseen entities and relations in this process, as high-
lighted in various zero-shot KGC works [Chen et al., 2023a;
Chen et al., 2021a; Geng et al., 2021], we train the KGE
model where all entity and relation representations are derived
from their embeddings obtained via the LLM. This designation
facilitates the inductive aspect of the CA process.

4.3 Loss Function
Given a query relation r and its associated support triples
(h′

i, r, t
′
i)

K
i=1, we adopt negative sampling to construct query

triples. Specifically, we gather a set of valid positive query
triples {(hi, r, t

+
i ) | (hi, r, t

−
i ) /∈ G} and corrupt the tail

entities to construct another group of negative query triples
{(hi, r, t

−
i ) | (hi, r, t

−
i ) /∈ G}. In line with established few-

shot learning paradigms, our model is equipped with a hinge
loss function:

lθ = max(0, γ + score−θ − score+θ ) (1)

where score+θ and score−θ are the scalar values derived from
comparing the query triple (hi, r, t

+
i /t

−
i ) with the support

triples (h′
i, r, t

′
i)

K
i=1 via a metric learning model from [Zhang

et al., 2022], and γ represents a tunable hyperparameter mar-
gin. During each training episode, we commence by sampling
Dr from the designated training set Dtrain. Subsequently, K
triples are selected to act as the support set Dsr , and additional
triples are chosen to formulate the positive query/test set Dqr ,
compiled from the entirety of known triples within Dr.
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Models
NELL Wiki

MRR Hits@10 Hits@5 Hits@1 ∆ Avg (%) MRR Hits@10 Hits@5 Hits@1 ∆ Avg (%)

KGE methods

TransE [Bordes et al., 2013] 17.4% 31.3% 23.1% 10.1% ↓26.6 13.3% 18.7% 15.7% 10.0% ↓32.3
DistMult [Yang et al., 2015] 20.0% 31.1% 25.1% 13.7% ↓24.6 7.1% 15.1% 9.9% 2.4% ↓38.1
ComplEx [Trouillon et al., 2016] 18.4% 29.7% 22.9% 11.8% ↓26.4 8.0% 18.1% 12.2% 3.2% ↓36.3
RotatE [Sun et al., 2019] 17.6% 32.9% 24.7% 10.1% ↓25.8 4.9% 9.0% 6.4% 2.6% ↓41.0

FKGC methods

GMatching [Xiong et al., 2018] 17.6% 29.4% 23.3% 11.0% ↓26.8 26.3% 38.7% 33.7% 19.7% ↓17.1
MetaR [Chen et al., 2019] 20.9% 35.5% 28.0% 14.1% ↓22.5 32.3% 41.8% 38.5% 27.0% ↓11.8
FSRL [Zhang et al., 2020] 15.3% 31.9% 21.2% 7.3% ↓28.2 15.8% 28.7% 20.6% 9.7% ↓28.0
FAAN [Sheng et al., 2020] 27.9% 42.8% 36.4% 20.0% ↓15.3 34.1% 46.3% 39.5% 28.1% ↓9.7
GANA [Niu et al., 2021] 34.4% 51.7% 43.7% 24.6% ↓8.5 35.1% 44.6% 40.7% 29.9% ↓9.1
P-INT [Xu et al., 2021] 40.5% 50.6% 50.3% 31.7% ↓3.8 - - - - -
YANA [Liang et al., 2022b] 29.4% 42.1% 36.4% 23.0% ↓14.4 38.0% 52.3% 44.2% 32.7% ↓4.9

Ours MuKDC 43.4% 59.2% 52.7% 33.1% - 43.8% 54.7% 50.3% 38.0% -

Table 1: Summary of 5-shot entity completion performance on NELL and Wiki datasets. Bold indicates the best results; underlined indicates
the second-best. “∆ Avg” represents the average decrease in the four metrics relative to our model. “↓” denotes a decrease compared to
MuKDC, while “↑” indicates an improvement over the second-best result. A “–” signifies unavailable results. Notably, P-INT results are absent
for the Wiki dataset, as it is not optimized for sparse data conditions.

Models
MM-FB15K MM-DBpedia

MRR Hits@10 Hits@5 Hits@1 ∆ Avg (%) MRR Hits@10 Hits@5 Hits@1 ∆ Avg (%)

KGE methods

TransE [Bordes et al., 2013] 11.6% 16.4% 13.9% 8.9% ↓34.0 10.3% 15.5% 12.0% 7.7% ↓26.2
DistMult [Yang et al., 2015] 8.3% 13.2% 9.5% 3.7% ↓38.0 9.1% 14.1% 11.8% 8.8% ↓26.6
ComplEx [Trouillon et al., 2016] 6.7% 14.7% 8.9% 5.0% ↓37.9 12.1% 17.0% 12.3% 10.9% ↓24.5
RotatE [Sun et al., 2019] 13.1% 18.9% 16.0% 10.1% ↓32.2 15.0% 24.2% 17.9% 12.0% ↓20.3

FKGC methods
GMatching [Xiong et al., 2018] 26.1% 37.7% 34.0% 18.9% ↓17.5 17.6% 29.3% 23.1% 11.6% ↓17.2
FSRL [Zhang et al., 2020] 16.2% 28.9% 19.7% 8.5% ↓28.4 15.8% 30.4% 22.0% 7.1% ↓18.7
FAAN [Sheng et al., 2020] 34.1% 45.8% 38.2% 27.9% ↓10.2 19.5% 31.0% 21.7% 13.6% ↓16.1

MKGC methods
TransAE [Wang et al., 2019] 13.0% 24.3% 15.5% 11.6% ↓30.6 15.6% 23.7% 18.5% 13.1% ↓19.8
RSME [Xu et al., 2021] 18.8% 30.8% 24.9% 15.2% ↓24.3 17.7% 28.0% 21.9% 14.5% ↓17.0
MULTIFORM [Zhang et al., 2022] 43.7% 55.0% 46.1% 30.5% ↓2.9 30.3% 42.5% 33.4% 27.9% ↓4.0

Ours MuKDC 46.3% 58.6% 49.2% 32.7% - 34.2% 46.9% 37.6% 31.5% -

Table 2: Main experiments of 5-shot multi-modal FKGC results.

5 Experiments
5.1 Detailed Setting
Implementation Details Our FKGC is implemented using
PyTorch and trained on a Tesla V100 GPU. In the experiments,
all entity embeddings are represented using the embedding
of the last token from the final layer’s output of the LLava
model [Liu et al., 2023], a common entity encoding approach
in PLMs [Chen et al., 2023d; Geng et al., 2023]. For MMKG-
based FKGC tasks, the standard visual projection head in
LLava is employed, whereas for typical KG tasks, this module
is not utilized. During Knowledge Generation and Decision
Path Generation, all triple sequences are simply concatenated
in the order of h, r, and t, with delimiters used to separate
different triples. The threshold for the TransE [Bordes et
al., 2013] model during the Consistency Assessment process
is set to 1.0. All other experimental settings not mentioned
here, including the training procedures for FKGC, are kept
consistent with those reported in [Zhang et al., 2022].

FKGC Datasets. We employ two public benchmark datasets
for FKGC: NELL and Wiki [Mitchell et al., 2018; Vrandečić
and Krötzsch, 2014]. NELL is an evolving KG dataset con-
taining a broad spectrum of knowledge, while Wiki is derived
from Wikipedia content. For both, we select relations with

50 to 499 triples as few-shot tasks. NELL includes 67 few-
shot relations, and Wiki comprises 183. We divide NELL
into 51/5/11 and Wiki into 133/16/34 relations for training,
validation, and testing, respectively.

Multi-Modal FKGC Datasets. We employ another two
public benchmark datasets, MM-FB15K and MM-DBpedia,
tailored for few-shot multi-modal KG completion [Zhang et
al., 2022]. These datasets feature entities accompanied by im-
ages and textual descriptions of at least 15 words. For a robust
evaluation, we consider only those relations with 50 to 500
triples as few-shot tasks. MM-FB15K comprises 356 few-shot
relations, and MM-DBpedia includes 69. Relations exceed-
ing 500 triples serve as background information, enhancing
the knowledge topology. The splits for training, validation,
and testing are allocated as 267/18/71 task relations for MM-
FB15K and 51/6/12 for MM-DBpedia, following the 15:1:4
ratio, in line with prior studies [Zhang et al., 2022].

Evaluation Metrics. We assess our model’s performance
using two standard metrics: Hits@N and MRR. Hits@N quan-
tifies the proportion of correct entities ranked within the top N
predictions, for N set to 1, 5, or 10. MRR computes the mean
of the reciprocal ranks assigned to the correct entities across
all test triples.
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Variants
NELL Wiki

MRR (%) Hits@10 (%) Hits@5 (%) Hits@1 (%) ∆ Avg (%) MRR (%) Hits@10 (%) Hits@5 (%) Hits@1 (%) ∆ Avg (%)

MuKDC (Ours) 43.4 ± 0.53 59.2 ± 0.28 52.7 ± 0.74 33.1 ± 0.65 - 43.8 ± 0.39 54.7 ± 0.70 50.3 ± 0.81 38.0 ± 0.42 -

w/o Multi-level Know. Gen. 41.3 ± 0.47 58.4 ± 0.26 50.9 ± 0.85 32.0 ± 0.62 ↓1.5 42.2 ± 0.41 53.6 ± 1.95 48.4 ± 0.82 36.5 ± 1.10 ↓1.5
w/o Triplet Generation 42.8 ± 1.28 58.6 ± 1.43 51.5 ± 1.26 32.2 ± 1.04 ↓0.8 43.0 ± 1.15 53.5 ± 1.26 49.5 ± 0.90 37.3 ± 0.87 ↓0.9
w/o Attribute Generation 42.5 ± 1.32 58.7 ± 0.84 51.6 ± 1.23 32.8 ± 0.85 ↓0.7 43.3 ± 1.37 53.2 ± 0.89 49.6 ± 1.24 37.1 ± 0.85 ↓0.9
w/o Decision Path Generation 43.1 ± 1.35 58.8 ± 1.27 52.3 ± 1.28 32.9 ± 1.71 ↓0.3 43.7 ± 1.10 54.1 ± 1.24 49.3 ± 1.15 37.4 ± 1.34 ↓0.6
w/o Consistency Assessment 41.9 ± 1.21 58.3 ± 1.45 50.8 ± 0.89 32.3 ± 1.36 ↓1.3 42.4 ± 0.72 53.8 ± 0.53 49.1 ± 1.01 36.2 ± 1.38 ↓1.3

Table 3: Variant experiments on NELL and Wiki datasets. “w/o” indicates module removal from our full model. “∆ Avg” shows the average
decrease across four metrics relative to our model. “↓” denotes an average decrease compared to MuKDC.

Variants
MM-FB15K MM-DBpedia

MRR (%) Hits@10 (%) Hits@5 (%) Hits@1 (%) ∆ Avg (%) MRR (%) Hits@10 (%) Hits@5 (%) Hits@1 (%) ∆ Avg (%)

MuKDC (Ours) 46.3 ± 0.37 58.6 ± 0.25 49.2 ± 0.54 32.7 ± 0.82 - 34.2 ± 0.40 46.9 ± 0.55 37.6 ± 0.39 31.5 ± 0.73 -

w/o Multi-level Know. Gen. 44.7 ± 1.45 56.9 ± 1.23 47.8 ± 1.03 30.6 ± 1.46 ↓1.7 32.6 ± 0.58 44.7 ± 1.61 35.5 ± 1.27 29.8 ± 1.26 ↓1.9
w/o Triplet Generation 45.6 ± 1.26 57.1 ± 0.73 47.9 ± 1.34 31.4 ± 1.22 ↓1.2 33.9 ± 1.26 45.5 ± 1.23 36.4 ± 1.83 30.1 ± 1.20 ↓1.1
w/o Attribute Generation 45.8 ± 1.27 57.3 ± 1.04 48.4 ± 0.93 31.5 ± 0.60 ↓1.0 33.7 ± 1.25 45.8 ± 0.56 37.0 ± 0.29 30.7 ± 0.71 ↓0.8
w/o Decision Path Generation 46.0 ± 0.34 58.2 ± 0.56 48.6 ± 1.28 32.3 ± 0.83 ↓0.4 33.1 ± 1.10 46.2 ± 0.94 37.1 ± 1.20 31.3 ± 0.54 ↓0.6
w/o Consistency Assessment 45.9 ± 0.47 57.4 ± 1.04 48.3 ± 1.21 33.2 ± 1.08 ↓0.5 33.5 ± 1.21 46.3 ± 1.30 36.3 ± 1.16 30.2 ± 0.93 ↓1.0

Table 4: Variant experiments on multi-modal FKGC.

5.2 Comparison Methods
Knowledge Embedding Models. We benchmarked against
four KGE models: TransE [Bordes et al., 2013], Dist-
Mult [Yang et al., 2015], ComplEx [Trouillon et al., 2016], and
RotatE [Sun et al., 2019]. These models vectorize relations
and entities with constraints reflecting relational structures
in KGs, capturing essential structural features for effective
representation given ample data.
FKGC. Seven FKGC models were evaluated: GMatching
(MaxP) [Xiong et al., 2018], MetaR [Chen et al., 2019],
FSRL [Zhang et al., 2020], FAAN [Sheng et al., 2020],
GANA [Niu et al., 2021], YANA [Liang et al., 2022b], and
P-INT [Xu et al., 2021]. These approaches utilize metric
or optimization-based meta-learning with pre-trained embed-
dings, focusing on local structures and relational semantics for
enhanced relation and entity pair embeddings, demonstrating
strong results on NELL and Wiki datasets.
Multi-modal FKGC. Three baseline methods were con-
sidered: TransAE [Wang et al., 2019], RSME [Wang et al.,
2021a], and MULTIFORM [Zhang et al., 2022]. TransAE
employs an autoencoder for multimodal integration, RSME
assesses different image encoders and endorses ViT for multi-
modal KGC, and MULTIFORM presents a multimodal few-
shot relation learning framework that leverages multimodal
context for entity representation and learns a metric for match-
ing queries to few-shot examples.

5.3 Main Results
We present the overall 5-shot FKGC results in Tables 1 and 2,
with all comparative model results sourced from their respec-
tive original papers:

(i) Our model consistently outperforms baseline models
across all four metrics on the NELL and Wiki datasets, achiev-
ing average improvements of 3.8% and 4.9%, respectively.
Notably, it shows at least a 5.8% increase in MRR on Wiki and
a 7.5% increase in Hits@10 on NELL. These improvements

underscore the model’s robust representation learning from
multi-level information, affirming its capability for few-shot
multi-modal KG completion tasks. (ii) Our model surpasses
KG embedding baselines with substantial gains of 25.9% and
36.9% on average for the NELL and Wiki datasets, respec-
tively. This performance showcases the benefit of generating
multi-level knowledge for entities and relations, particularly
apt for few-shot multi-modal KG completion. (iii) Moreover,
our model outperforms few-shot KG completion baselines
on all metrics, evidencing the efficacy of enriching the KG
by generating additional knowledge and employing consis-
tency assessment loss to minimize performance gaps in gen-
erated knowledge scores. (iv) Against the best-performing
baselines GANA and YANA on NELL and Wiki, our model
shows a minimum average improvement of 8.5% and 4.9%,
respectively. This is attributed to our method’s comprehensive
understanding of the multi-modal KG.

In the realm of multi-modal FKGC, our model maintains
a considerable lead over all baselines. Against the top-
performing baseline MULTIFORM on the MM-FB15K and
MM-DBpedia datasets, it registers a minimum average en-
hancement of 7.4% and 4.1%, respectively. Such results fur-
ther confirm the model’s proficiency in handling multi-modal
FKGC tasks.

5.4 Discussion for Model Variants
To assess the contribution of each module in our model, we
performed variant experiments on the NELL and Wiki datasets,
as shown in Tables 3 and 4. These experiments compare our
complete model against versions with key modules removed.
The observations from these comparisons are as follows:

(i) The Multi-level Knowledge Generation module shows
a notable impact, likely because it enhances the utilization of
limited samples by generating entity and relation representa-
tions. (ii) Components such as Triplet Generation, Attribute
Generation, and Decision Path Generation positively influ-
ence the results. They contribute to identifying valuable entity
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Path 1: Bill Maher -> award -> Primetime Emmy Award for 
Individual Performance -> ceremony -> 60th 

Path 1: Bolton Wanderers F.C. -> player-> Keith Andrews-> 
team -> Wolverhampton Wanderers F.C. 

(Bill Maher, award_nominee, Bernie Brillstein)

(Bolton Wanderers F.C., league, EFL Championship) 

Path 2: Santa Barbara -> award_nominee -> Sheri Anderson
Path 3: Bill Maher -> award_nominee -> Brad Grey -> film 
-> Charlie and the Chocolate Factory

Path 2: EFL Championship-> team-> Bolton Wanderers 
F.C. -> sport -> association football
Path 3: Leicester City F.C. -> league -> EFL Championship 
-> award_winner-> Reading F.C.

(c) Interpretable path analysis.

Figure 3: Analysis for the few-shot multi-modal knowledge graph completion on the few-shot situations.

features with greater certainty, highlighting the importance
of generating multi-dimensional knowledge at various levels.
(iii) Removing the Consistency Assessment module leads to
a decrease in performance, underscoring its role in evaluat-
ing the consistency and coherence of relationships within the
expanded KG. These findings collectively validate the signifi-
cance of each component in our model’s overall effectiveness.

5.5 Discussions on Knowledge Generation
We conducted experiments to assess the impact of the multi-
level knowledge generation module, focusing on the number
of prompts used, as illustrated in Figure 3 (a).

The findings indicate: (i) Optimal Performance: The model
performs best when using three attribute prompts, four triplet
prompts, and three decision path prompts. This suggests a
balance is necessary to prevent overfitting, which may occur
with an excessive number of prompts. Overfitting leads to
reduced generalizability as the model becomes overly reliant
on specific patterns in the prompts. (ii) Effect of Excessive
Prompts: Increasing the number of prompts beyond this op-
timal range leads to a notable decline in performance. Too
many prompts can introduce confusion and noise, impairing
the model’s effectiveness and decision-making capacity.

These results highlight the importance of a balanced ap-
proach to the number of prompts in the knowledge generation
module for effective model performance.

5.6 Discussion on Consistency Assessment
We evaluated the impact of the consistency assessment across
1-shot, 3-shot, and 5-shot scenarios on the MM-FB15K and
MM-DBpedia datasets, as depicted in Figure 3 (b).

Key findings include: (i) Models lacking the consistency
assessment module (“w/o. Consistency Assessment”) show a
notable decrease across all metrics, highlighting the critical
role of evaluating generated facts in enhancing model perfor-
mance. (ii) Our model demonstrates a greater sensitivity in the
1-shot multi-modal KG completion tasks compared to other
baselines. This sensitivity can be attributed to our model’s
reliance on consistency to refine the generated KG. (iii) In
various few-shot contexts, our model consistently outperforms
others, underscoring its aptitude for the task by rigorously
considering triplet consistency and evaluating the coherence
between original and generated knowledge.

These insights confirm that our model effectively leverages
multi-level prompts, making it particularly adept at consis-
tency assessment in few-shot MMKGC tasks.

5.7 Discussion on Interpretable Path
To underscore the role of decision paths in boosting inter-
pretability and supporting predictions, we analyzed their ap-
plication using the MM-FB15K and MM-DBpedia datasets,
as depicted in Figure 3 (c).

Key observations include: (i) Decision paths effectively
guide predictions. For instance, consider the relation
“award_nominee” between the head entity “Bill Maher” and
the predicted tail entity “Bernie Brillstein”. A possible de-
cision path is: “Bill Maher → award → Primetime Emmy
Award → ceremony → 60th”. This path not only clarifies the
prediction’s rationale but also highlights Bill Maher’s connec-
tion with the Primetime Emmy Award. (ii) Decision paths
reveal the crucial roles of various relations and entities in the
prediction process. Examining the relation “league” between
“Bolton Wanderers F.C.” and the predicted tail entity “EFL
Championship”, a plausible path is: “EFL Championship →
team → Bolton Wanderers F.C. → sport → association foot-
ball”. This demonstrates the model’s reliance on specific
relationships for its predictions.

These insights confirm that decision path generation facil-
itates interpretable paths for KGC, offering a clearer under-
standing of model’s reasoning and enhancing interpretability.

6 Conclusion
In this work, we introduced the MuKDC framework for FKGC,
addressing data scarcity in few-shot scenarios through LLM
distillation. Comprising two integral components, Multi-level
Knowledge Generation and Consistency Assessment, MuKDC
goes beyond merely expanding and deepening KGs; it ensures
their coherence and reliability through rigorous evaluation and
alignment with existing knowledge structures. This framework
has demonstrated SOTA performance in both FKGC and multi-
modal FKGC tasks, highlighting its efficacy in enriching KGs
in long-tail scenarios. The success of MuKDC in advancing
KG completion and its potential in leveraging LLMs for NLP
tasks sets a new benchmark in the field and paves the way for
future research in KG augmentation.
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