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Abstract
The Hilbert-Schmidt Independence Criterion
(HSIC) based on kernel functions is capable of
detecting nonlinear dependencies between vari-
ables, making it a common method for association
relationship mining. However, in situations with
small samples, high dimensions, or noisy data,
it may generate spurious associations, causing
two unrelated variables to have certain scores. To
address this issue, we propose a novel criterion,
named as Pure Hilbert-Schmidt Independence
Criterion (PHSIC). PHSIC is achieved by sub-
tracting the mean HSIC obtained under random
conditions from the original HSIC value. We
demonstrate three significant advantages of PHSIC
through theoretical and simulation experiments:
(1) PHSIC has a baseline of zero, enhancing the
interpretability of HSIC. (2) Compared to HSIC,
PHSIC exhibits lower bias. (3) PHSIC enables
a fairer comparison across different samples and
dimensions. To validate the effectiveness of PH-
SIC, we apply it to multiple causal inference tasks
to measure the independence between cause and
residual. Experimental results demonstrate that
the causal model based on PHSIC performs well
compared to other methods in scenarios involving
small sample sizes and noisy data, both in real and
simulated datasets.

1 Introduction
Association analysis is the basis of data mining and machine
learning, which has been applied in many fields. Exam-
ples include feature selection [Li et al., 2021; Song et al.,
2007b], gene analysis [Yamanishi et al., 2004], causal in-
ference [Hoyer et al., 2008], etc. There are various forms
of correlation measurement, which can be roughly classified
into two categories: the construction method based on the re-
duction error ratio [Puth et al., 2015; Hotelling, 1992] and
the construction method based on the independence test [Ja-
worski et al., 2010; Schweizer and Wolff, 1981]. The typical
representative of the first construction method is the person
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correlation coefficient, but it can only recognize simple lin-
ear relationships. The typical representatives of the second
construction method are mutual information and HSIC. Al-
though both mutual information and HSIC can identify dif-
ferent forms of dependency relationships, the empirical esti-
mation of mutual information is expensive, while the empir-
ical estimate of HSIC is much simpler-just the trace of the
product of gram matrices.

The good nature of HSIC drives the development of many
fields. For example, in terms of neural network optimiza-
tion, since the maximum information of continuous variables
is difficult to calculate, Ma et al. [Ma et al., 2020] used the
Hilbert-Schmidt information bottleneck (HSIC Information
Bottleneck) as the regular term in the neural network opti-
mization objective to improve the adversarial robustness of
the model. In clustering problems, HSIC is introduced many
times to measure the independence of cluster centers [Niu et
al., 2010; Song et al., 2007a]. In the field of feature selec-
tion [Liaghat and Mansoori, 2019; Song et al., 2007b], HSIC
is used to calculate the degree of association between fea-
tures and labels. In the field of causal inference [Hoyer et al.,
2008], HSIC is used to measure the independence between
independent variables and residuals in additive noise models,
so as to judge the causal direction. These are attributed to its
three good characteristics: (1) it has smaller bias than other
indicators; (2) it can capture many complex nonlinear depen-
dencies without explicitly considering random variables ; (3)
its empirical estimate is the trace of the product of gram ma-
trices, which makes the objective function easy to solve.

With sufficient sample size, HSIC undoubtedly shows good
performance. However, in some application scenarios, data
collection is difficult due to some complex factors, so the
collected samples are relatively sparse. At the same time,
this random error will be amplified in high-dimensional and
noisy data. HSIC generates random errors in limited sam-
ples, which causes a series of problems. (1) Firstly, as shown
in Figure 1(a), in an independent situation, there is no 0 base-
line, which lacks interpretability. And we can see that the
smaller the sample, the higher the score of HSIC, and there is
sample bias. (2) Secondly, as shown in Figure 1(b), due to the
bias of limited samples, random consistency can also occur
when comparing different correlations, which can seriously
affect the performance of the application task. (3) Finally, as
shown in Figure 1(c), in independent situations, as the dimen-
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Figure 1: Disadvantages of HSIC. (a) The variation of HSIC values
for variables x and y constructed by the y=x function under different
independent uniform noise and sample sizes. (b) The values of HSIC
for x and y under different proportions of independent uniform noise
using variables constructed by y = x2 and y = 4(x − 5)2. (c) The
values of HSIC in different dimensions when variables x and y are
independent.

sion gets higher, the value of HSIC gets larger, which leads to
the dimension deviation problem.

Not only does HSIC exhibit random consistency, but ran-
dom consistency is a common problem in statistics and ma-
chine learning. In classification tasks, due to the limited num-
ber of samples and the presence of noise, the results gener-
ate random consistency, which makes machine learning algo-
rithms lack generalization ability. In order to alleviate the ran-
dom consistency in classification tasks, Wang et al. [Wang et
al., 2022] proposed a pure consistency index, which verified
the low bias, learning substitutability, and high recognizabil-
ity of pure accuracy frameworks compared to accuracy. And
Romano et al. [Romano et al., 2016] improved the classifi-
cation performance of decision trees by eliminating random
factors in the Gini index. In clustering tasks, the results may
have biases due to factors such as the number of clusters and
sample size. Vinh et al.[Vinh et al., 2009] emphasized the
importance of eliminating mutual information random con-
sistency in clustering communities, especially when the data
size is relatively small relative to the number of clusters.

Based on the above observations, we propose a pure HSIC
framework that can alleviate the drawbacks of HSIC and en-
sure that the original HSIC properties remain unchanged. PH-
SIC is obtained by separating the mean of random parts from
the original HSIC values. To emphasize the advantages of
PHSIC, we have demonstrated theoretically and experimen-
tally that PHSIC has smaller deviations compared to HSIC,
especially in independent cases where PHSIC has an error
order of m−2 and HSIC has an error order of m−1, where m
represents the number of samples. At the same time, it has
also been proven that the random part is the reason for the
deviation of HSIC in dimensions, samples, and noise.

Association is an important issue in causal discovery. Cur-
rent causal inference methods can generally be summarized
as ’association + hypothesis’. For example, in constraint-
based causal inference methods [Spirtes et al., 2000; Ogarrio
et al., 2016], these methods mine the causal relationship be-
tween variables through the conditional independence test un-
der the Markov faithful assumption. In function-based causal
inference methods [Shimizu et al., 2006; Zhang and Hy-

varinen, 2012], under the assumption of independent causal
mechanism, the causal direction is further inferred by mea-
suring the correlation between residuals and causes through
correlation indicators. It can be seen that a robust correlation
indicator is the premise to promote the performance of causal
inference methods. Currently, identifying causal directions is
difficult in small sample and noisy scenarios. Therefore, we
applied PHSIC to the classical causal models to further im-
prove the performance of causal inference model. The main
code and supplementary material have been made available
online1. The contributions of this paper are as follows:
• We analyze the random consistency phenomenon of

HSIC from both theoretical and experimental perspec-
tives.
• We propose a PHSIC framework to eliminate random

consistency, proving theoretically and experimentally
that PHSIC has smaller deviations than HSIC, and dis-
cussing the properties of PHSIC.
• We apply PHSIC to multiple classic causal inference

tasks and experimentally verify the robustness of PHSIC
based causal models to small sample and noisy data.

2 Hilbert-Schmidt Independence Criterion
In this section, we briefly introduce HSIC and demonstrate
the bias of HSICb(Z).

Suppose X and Y are two random variables. Their val-
ues belong to χ and γ respectively. F presents reproducing
Hilbert space for each x ∈ X . We define that φX(x) ∈ F as
an element in a reproducing Hilbert space corresponding to
each point x ∈ χ . Assuming the existence of a continuously
bounded positive definite kernel kX : χ2 → R, where

kX(x, x′) =< φX(x), φX(x′) > . (1)
For example, the Gaussian kernel k(x1, x2) = exp(−||x1 −
x2||2/σ2) is the primary choice in many literature. It is a
continuously bounded kernel function, and we mainly default
it to the selected kernel function in this article. Similarly, for
a random variable Y , let G be a reproducing kernel Hilbert
space with kernel kY : γ2 → R and feature mapping φY :
γ → G.

In order to observe the correlation betweenX and Y , Gret-
ton et al. [Gretton et al., 2005] defined cross covariance op-
erator,

CXY = EXY [(φX − µX)⊗ (φY − µY )], (2)
CXY means a linear operation from G → F . And ⊗ rep-
resents the tensor product, µX = EX(φX), µY = EY (φY )
represents the average value of the corresponding elements of
random variablesX and Y in a reproducing Hilbert space, re-
spectively. This equation cannot quantify correlation, so the
square of Hilbert normal form is used instead of the cross co-
variance operator and it can be expressed in terms of kernels:

HSIC(F ,G, PX,Y ) = ||CXY ||2HS ,

= Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]

− 2Exy[Ex′ [k(x, x′)]Ey′ [l(y, y′)]],
(3)

1https://github.com/lijue688/main.git
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which is a measure of the statistical dependence of X and
Y . When random variables X and Y are independent then
HSIC(F ,G, PX,Y ) = 0. If X and Y are correlated, then
HSIC(F ,G, PX,Y ) > 0. And as the values of X and Y
become more correlated, the value of HSIC becomes larger.

Gretton et al. [Gretton et al., 2007] define the follow-
ing empirical HSIC estimator for an i.i.d. sample Z =
{(xi, yi)}i=1,...,m:

HSICb(Z) =
1

m2

m∑
i,j

kij lij +
1

m4

m∑
i,j,q,r

kij lqr

− 2
1

m3

m∑
i,j,q

kij liq =
1

m2
trace(KHLH),

(4)

where m is the number of data points, K is the m×m kernel
matrix for X and L is that for Y :

Ki,j = kX(xi, xj), Li,j = lY (y
i, yj), (5)

and H is the m×m matrix defined by:

H := I− 1

m
I · IT , (6)

where I is an identity matrix of m × m and I is a vector of
m× 1.

Gretton et al. show that for m → ∞, HSICb(Z) → 0
if and only if X is independent of Y [Gretton et al., 2007].
Next, we explored the inherent bias of HSICb(Z).
Theorem 1 ( Bias of HSICb(Z)). Let E(Z) denote the ex-
pectation over m independent copies(xi, yi) drawn from Pxy ,
then we have

HSIC(Pxy,F ,G) = EZ [HSICb(Z,F ,G)]−O(m−1).
(7)

We provide the proof of this theorem in the appendix.
It can be observed that although the empirical estimates of
HSIC proposed by Gretton et al. [Gretton et al., 2005;
Gretton et al., 2007] in 2005 and 2007 have different coef-
ficients, one is 1/(m − 1)2 , and the other is 1/(m)2, their
deviation orders are both O(m−1). From its deviation order,
it can be seen that when the sample size is relatively small, it
will have a certain impact on the performance of HSIC.

3 Pure HSIC to Alleviate Random
Consistency

In order to alleviate the random factors generated byHSICb,
we first propose a framework for eliminating random consis-
tency, and then explore the properties of PHSIC.
Definition 1 (Eliminating Random Consistency Frame-
work). Due to the degree of consistency between some ran-
dom variables being caused by their random distribution, we
introduce a framework PCM(Z1, Z2) for eliminating ran-
dom consistency:

PCM(Z1, Z2) = CM(Z1, Z2)−RCM(Z1, Z2), (8)

where Z1, Z2 are random variables. CM(Z1, Z2) represents
the degree of consistency between Z1 and Z2, which usually

represents the degree of correlation or similarity between two
variables. And RCM(Z1, Z2) denotes the degree of random
consistency betweenZ1 and Z2, which causes by factors such
as limited number of samples, high dimensionas, and uniform
noise. Assuming a set Z ′1 is a uniform random variable with
the same value and distribution as Z1, the expected values
of random consistency in random variables Z ′1 and Z2 can
be used to calculate RCM(Z1, Z2). Therefore, PCM will
characterize pure consistency by the difference between the
degree of consistency and the degree of random consistency.
Definition 2 (Empirical PHSIC). With the framework of
equation (8), we define PHSIC:

PHSIC(Z,F ,G)
= HSICb(Z,F ,G)− E(HSIC0(Z,F ,G)),

(9)

where E(HSIC0(Z,F ,G)) represents its expected value un-
der the null distribution. The analysis formula is shown in
equation (10), which can obtain from [Gretton et al., 2007].

E(HSIC0(Z,F ,G)) =
1

m
(1 + ||ux||2||uy||2

− ||ux||2 − ||uy||2).
(10)

Theorem 2 (Bias of PHSIC(Z)). The bias of empirical PH-
SIC(Z) is as follows:

EZ [PHSIC(Z,F ,G)]−HSIC(Pxy,F ,G) =
1

m
(−3Exx′yy′kl + 10Exx′yy”kl − 7Exx′kEyy′ l) +O(m−2).

(11)
Proof. Gretton et al. proposes that the unbiased estimator

of HSIC can be replaced by three u-statistics [Gretton et al.,
2007]:

HSIC(Z) =
1

(m)2

∑
(i,j)∈im2

KijLij

+
1

(m)4

∑
(i,j,q,r)∈im4

KijLqr − 2
1

(m)3

∑
(i,j,q)∈im3

KijLiq,

(12)
set imn indicate that there are no duplicate combinations, the
empirical averages can be used instead of expected values:

EZ [HSIC(Z,F ,G)] = HSIC(Pxy,F ,G), (13)

Same idea as Gretton et al. [Gretton et al., 2007], we can ob-
tain deviation between biased estimation of HSICb(Z) and
unbiased estimation of HSIC(Z) through the three differ-
ence terms, as shown in equation (14), (15), and (16):

1

m2

∑
i,j

kij lij −
1

(m)2

∑
(i,j)∈im2

kij lij

=
1

m2

∑
i

kiilii −
1

m(m)2

∑
i

kij lij ,

(14)
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1

m3

∑
i,j,q

kij liq −
1

(m)3

∑
(i,j,q)∈im3

kij liq

=
1

m3

∑
(i,j)∈im2

(kiilij + kij lii + kij lij)

− 3

m(m)3

∑
(i,j,q)∈im3

kij liq +O(m−2),

(15)

1

m4

∑
i,j,q,r

kij lqr −
1

(m)4

∑
(i,j,q,r)∈im4

kij lqr

=
1

m4

∑
(i,j)∈im3

(kiiljq + 4kij liq + kij lqq)

− 6

m(m)4

∑
(i,j,q,r)∈im4

kij lqr +O(m−2).

(16)

Combining these three items, then seeking expectations on
both sides, the deviation of HSICb(Z) is:

bias(HSICb) = E(HSICb −HSIC) =
1

m
(Exykl

− 2Exyy′kl − 2Exx′ykl + Exy′y”kl + Exx′y”kl

− 3Exx′yy′kl + 10Exx′yy”kl − 6Exx′kEyy′ l) +O(m−2).
(17)

In the independent case,−3Exx′yy′kl + 10Exx′yy”kl −
6Exx′kEyy′ l can be merged into one item. Ignoring the bias
of O(m−2), [Gretton et al., 2007] derived the mean of HSIC
under the null hypothesis, as shown in equation (18):

E(HSICb −HSIC) =
1

m
(Exykl + ||ux||2||uy||2

− Eyl||ux||2 − Exk||uy||2)

=
1

m
TrCxxTrCyy = E(HSIC0).

(18)

Therefore, based on equations(13), (17) and (18), we can
conclude:
EZ [HSICb(Z)]− E(HSIC0(Z))−HSIC(Pxy,F ,G)

= EZ [PHSIC(Z)]−HSIC(Pxy,F ,G) =
1

m
(

− 3Exx′yy′kl + 10Exx′yy”kl − 7Exx′kEyy′ l) +O(m−2).
(19)
�

Corollary 1. The deviation of PHSIC(Z,F ,G) in indepen-
dent cases is O(m−2).

Proof. Theorem 2 has already mentioned that in the in-
dependent case, −3Exx′yy′kl + 10Exx′yy”kl − 6Exx′kEyy′ l
can be merged into one item. Therefore, the bias of HSICb

in Equation (17) can be written as:

bias(HSICb) = E(HSICb −HSIC) =
1

m
(Exykl

− 2Exyy′kl − 2Exx′ykl + Exy′y”kl + Exx′y”kl

+ Exx′kEyy′ l) +O(m−2) = E(HSIC0) +O(m−2).
(20)

Therefore, the deviation of PHSIC (Z) in independent cases
as:

bias(PHSIC(Z)) = E(PHSIC −HSIC) = O(m−2).
(21)
�

Corollary 2. The deviation of PHSIC(Z,F ,G) in depen-
dent cases is O(m−1).

Proof. In dependence cases, the deviation of PHSIC is
shown in equation (19), we can see that

bias(PHSIC(Z)) = E(PHSIC −HSIC) = O(m−1).
(22)
�

3.1 Advantages of PHSIC Compared to HSIC
In this section, we mainly analyze the advantages of PHSIC
compared to HSICb in independent situations.
PHSIC has zero baseline. In the independent case, we can
see that the mean of PHSIC is as follows:

E(PHSIC(Z)) = E((HSICb(Z)− E(HSIC0(Z)) = 0.
(23)

And the average value of HSICb under independent condi-
tions is shown in equation (7), its mean is not 0. Therefore,
PHSIC is more interpretable.
PHSIC is closer to unbiased in sample size. From Theorem
1, we deduce that HSICb has a deviation order of O(m−1)
in the independent case, while PHSIC has a deviation order of
O(m−2) in the independent case (as shown in equation (21)).
Therefore, the latter has a smaller error order than the former
and is closer to unbiased.
PHSIC may closer to unbiased in dimensions. From equa-
tion (21), it can be seen that the deviation term of O(m−1)
in HSICb comes from E(HSIC0). We observe the di-
mensional variation of this term from Monte Carlo perspec-
tive. Assuming that Xm×d, Y m×d is independent and uni-
form multidimensional random variables, d represents di-
mension. X = [x(1), x(2)..., x(d)]. The values of each di-
mension of X are the same, but the positions are different.
Y = X(π), π indicates disrupting the order of column X.
In this way, X and Y can remain independent, and the val-
ues of the number of columns are the same, but the positions
are different. for ||uxd ||2 = (m)−12

∑
(i,j)∈im2

ki,j , when
m is fixed, the individual term kij decreases as the dimen-
sion d increases, since the value of ||uxd ||2 reduce. There-
fore, for E(HSIC0(Zn|X,Y )) = 1

m (1 + ||ux||2||uy||2 −
||ux||2−||uy||2), (m)−12

∑
(i,j)∈im2

ki,j ∈ (0, 1]. We think of
it as a function of ||ux||2 (because the values of ||ux||2 and
||uy||2 are the same). Let ||ux||2 = a, E(HSIC0(Z)) = b
is a function of a, b = 1 + a2 − 2a, derive from it, b′ =
2(a−1), a ∈ (0, 1], b is a monotonically decreasing function,
When a decreases, b is monotonically increasing. Therefore,
the E(HSIC0(Z) is monotonically increasing as the vari-
able dimension increases. PHSIC subtracts E(HSIC0) from
HSICb , making the dimension closer to unbiased.

According to the above analysis, from the perspective of
random consistency, PHSIC has a smaller deviation com-
pared to HSIC and has stronger properties.
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Figure 2: Scores of (a) pHSIC, (b) HSICb, (c) SHSIC, and (d)
PHSIC under different samples and noise conditions. The horizontal
axis: Noise level , and the vertical axis: score.

3.2 Toy Example
We establish toy examples to further understand the advan-
tages of PHSIC. We compare PHSIC with pHSIC (p-value
of HSICb) and a popular depolarization framework SHSIC.
Equation (24) is the calculation formula for SHSIC, a is con-
stant with the value of 0.5.

SHSIC(Z) = HSICb − E(HSIC0)

−
√

1− a
a

V ar(HSIC0).
(24)

Figure 2 shows the scores of pHSIC, HSICb, SHSIC and
PHSIC under different noise levels in the nonlinear function
y = 4(x − 5)2 in the case of binary univariate and random
kernel parameters. It can be found from the four figures that
compared with the other three indicators, PHSIC not only has
zero baseline, but also converges quickly with a small sample.
We find that p-values are only effective under global distri-
bution, and in some smaller samples, p-values will be higher
under correlated conditions, which leads to a type II error and
judges some correlated values as independent. From Figure 3,
we observe the sample selection fairness of PHSIC in a more
intuitive way. We generated 5 groups of samples with differ-
ent quantities to simulate the correlation between variables.
The estimated values of Sn for different samples are calcu-
lated to calculate their selection probabilities. We select sam-
ples according to HSICb, PHSIC and SHSIC, and observe
the fairness of these estimators in selecting samples of differ-
ent quantities. For Figure 3 (a) and (b), we set Sn=[120 140
160 180 200] and simulated the correlations of x and y under
correlated and independent conditions. Observing the selec-
tion probabilities of SHSIC, PHSIC, and HSICb for these
five groups of samples, we can clearly see that PHSIC has
more selection fairness.

In order to verify the unbiased nature of dimensions, we
conduct experiments on independent uniform distribution
simulation data with a sample size of 300 and a value range
of 11-12. We increase the dimensions of x and y from 1 to
5 and compare the scores generated by different dimensions.
From Figure 3 (c), it can be seen that PHSIC is more unbiased
compared toHSICb and SHSIC, and its selection probability
in different dimensions is closer to 0.2, HSICb and SHSIC
tend to be more high-dimensional, which proves that PHSIC
has more fair selectivity in different dimensions.

To further verify the fairness of PHSIC, we evaluate it un-
der different samples and functional relationships. As shown
by the red line in Figure 4 (a), we use HSICb to measure the

120 140 160 180 200
0

0.1
0.2

120 140 160 180 200
0

0.1
0.2

120 140 160 180 200
0

0.5
1

(a)

120 140 160 180 200
0

0.2
0.4

120 140 160 180 200
0

0.1
0.2

120 140 160 180 200
0

0.5
1

(b)

1 2 3 4 5
0

0.1
0.2

1 2 3 4 5
0

0.1
0.2

1 2 3 4 5
0

0.5
1

(c)

Figure 3: The selection fairness of SHSIC, PHSIC, and HSICb in
different dimensions and samples.
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Figure 4: Figures (a) and (b) represent the scores of HSICb and
PHSIC under different cost and functional relationships, respec-
tively. Figure (c) shows the probability that the values of PHSIC
and HSICb in independent cases are greater than those in corre-
lated cases under the same sample size.

correlation metric scores of variables x and y simulated by the
function y = x2 under different noise levels for 60 samples.
The green line represents the correlation metric scores of vari-
ables x and y simulated by the function y = 4(x − 5)2 un-
der different noise levels whenHSICb measures 40 samples.
Figure 4 (b) using PHSIC measurement as a control. From
the functional relationship, it can be seen that the scores of
the variables x and y simulated by y = x2 are always higher
than those simulated by y = 4(x − 5)2 in non independent
cases, and the values should be the same in independent cases.
From Figure 4(a), it can be seen that the independent values
of HSICb measures are higher than those in some non in-
dependent cases, leading to false associations. From Figure 4
(b), it can be seen that PHSIC effectively solves this situation.

In the above toy example, we mainly demonstrate the fair-
ness of PHSIC in different and identical associations under
different sample sizes. Next, we further demonstrate its ro-
bustness in the same sample and different association rela-
tionships. We use HSICb and PHSIC to measure the scores
of variables x and y in independent and non independent cases
under the same sample size. We simulate 10000 times and
observe the probability that the scores of two indicators were
higher in independent cases than in non independent cases.
From Figure 4 (c), we can see that HSICb are more prone to
misselection in the case of limited samples, further demon-
strating the good performance of PHSIC.
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DATASET HSICx→y HSICx←y DECISION PHSICx→y PHSICx←y DECISION GROUND TRUTH
1 0.0269 0.0153 x← y 0.0037 0.0104 x→ y x→ y
2 0.0231 0.0195 x← y 0.0006 0.0184 x→ y x→ y
3 0.0225 0.0121 x← y 0.0000 0.0601 x→ y x→ y
4 0.0253 0.0164 x← y 0.0010 0.0064 x→ y x→ y
5 0.0751 0.0703 x← y 0.0278 0.0522 x→ y x→ y
6 0.1660 0.0829 x← y 0.0299 0.0356 x→ y x→ y
7 0.0238 0.0569 x→ y 0.0269 0.0159 x← y x← y
8 0.0229 0.0589 x→ y 0.0291 0.0122 x← y x← y

Table 1: Experimental results on ANM-MM Model.

DATASET HSICx→y HSICx←y DECISION PHSICx→y PHSICx←y DECISION GROUND TRUTH
1 0.0800 0.0788 x← y 0.0100 0.0156 x→ y x→ y
2 0.0691 0.0829 x→ y 0.0348 0.0221 x← y x← y
3 0.1628 0.1029 x← y 0.0409 0.0496 x→ y x→ y
4 0.0697 0.0660 x← y 0.0231 0.0379 x→ y x→ y
5 0.0569 0.0536 x← y 0.0095 0.0384 x→ y x→ y
6 0.0384 0.1106 x→ y 0.0267 0.0129 x← y x← y
7 0.1191 0.0570 x← y 0.0163 0.0067 x← y x← y
8 0.1143 0.1074 x← y 0.0288 0.0341 x→ y x← y

Table 2: Experimental results on KIKO Model.

DATASET HSIC PHSIC DATASET HSIC PHSIC

6 7 8 6 7 8 2 3 2 3

y = ex 43% 82.25% 70.25% 44.5% 83.75% 71.25% ozon 88.5% 74.6% 88.5% 79%
y = x 10.16% 56.28% 45.6% 18.16% 59% 51.6% y = x2 100% 100% 100% 100%

y = sin(x) 100% 100% 100% 100% 100% 100% mpg-acc 81% 64.3% 80% 69.6%
concrete 83% 78% 79% 83% 80.7% 79.5% mpg-mpg 77% 84% 81.5% 86.6%

Table 3: Experimental results on HANM Model.

4 PHSIC-Based Causal Inference Models
In this section, we first introduce several typical causal infer-
ence models, then describe the data and experimental details
we used for evaluation, and finally present the experimental
results.

4.1 Introduce Typical Causal Inference Models
In this paper, we mainly focus on four classic causal infer-
ence models: ANM [Hoyer et al., 2008], ANM-MM[Hu et
al., 2018], KIKO [Assaad et al., 2019], HANM [Zhao et al.,
2023].
• ANM-MM model. The additive noise model is extended

to a mixed model consisting of a finite number of ANMs,
and its causal identifiability conditions are given.
• KIKO model. In the context of ANM model, KIKO

model uses one regression variable instead of two to ac-
celerate causal inference.
• HANM model. Identify many to one causal relation-

ships and use asymmetric forward and backward models
HANM to identify causal direction.
• ANM model. Inferring causal directions through the

asymmetry of forward and backward models using non-
linear functions.

All these models are based on HSIC to measure the indepen-
dence of causes and residuals, which is a key part of these
methods. Therefore, next we will use PHSIC to further im-
prove the performance of these models.

4.2 Experimental Setup
In this section, we introduce the specific experimental details
of the four models in the appeal:

ANM-MM model. we use eight real datasets: (Rings,
Viscera), (mpg, Weight) and (age, weight), etc. In order to
highlight the advantages of our PHSIC, we conducted exper-
iments on 50 samples with the same experimental parameters
as the original ANM-MM.

KIKO model. we use eight real datasets:(Temperature,
Co2 flux),(GNI, life expectancy) and (NEP, PPFDdif), etc.
And we conducted experiments on 30 samples with the same
experimental parameters as the original KIKO model.

HANM model. we use four simulated data and four real
data. For the first four data (y = ex, y = x, y = sin(x),
concrete), we conducted experiments on 6, 7, and 8 causes
respectively, and for the last four data (ozon, y = x2, mpg-
acc, mpg-mpg), we use 2 and 3 causes respectively. Expo-
nential data(y = ex) and concrete data were tested on 50
samples, while others were tested on 30 samples.
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Figure 5: Experimental results on ANM Model.

ANM model. We use one real dataset(CEP) and three
simulated datasets(SIM, SIM-G, SIM-IN). We compare the
methods based on HSIC score (ANM-HSIC), Entropy score
(ANM-Entropy), Gaussian score (ANM-Gauss), and empir-
ical Bayesian score (ANM-FN) with our proposed PHSIC
score (ANM-PHSIC). The introduction of the above compar-
ison methods can be found in [Mooij et al., 2016].

A more detailed introduction to the above dataset and ex-
perimental parameters will be provided in the appendix. For
HANM and ANM models, we use accuracy indicators for
evaluation, and the calculation method is as follows:

accuracy =

∑M
m=1 wmδd̂m,dm∑M

m=1 wm

, (25)

where wm is the weight of each pair of data, because there is
a strong correlation between variables in the real dataset, CEP
dataset decouples each pair of variables by assigning different
weights. All pairs from the same dataset are weighted equally
and sum to 1. dm and d̂m are the real direction and predicted
direction of the mth pair, respectively, if the two directions
are the same, it is recorded as 1, otherwise it is 0.

4.3 Experimental Result
Table 1 shows the experimental results of the HSIC based
ANM-MM model and the PHSIC based ANM-MM on eight
datasets. Compared with GROUND TRUTE, it can be found
that the ANM-MM model based on PHSIC can be correctly
recognized on all eihgt datasets, while the ANM-MM model
based on HSIC cannot be correctly recognized due to its high
bias in small samples. Table 2 shows the experimental results
of the HSIC based KIKO model and the PHSIC based KIKO
model on eight datasets. Compared with GROUND TRUTE,
it can be observed that the KIKO model based on PHSIC can
correctly recognize on most datasets. Table 3 shows the ex-
perimental results of the HSIC based HANM model and the

PHSIC based HANM mode on eight datasets. It can be found
that the HANM model based on PHSIC has significant ad-
vantages in identifying many to one causal relationships on
small samples.

Figure 5 shows the experimental results on the ANM
model. Figures 5 (a), (b), (c), and (d) show the experimen-
tal results of different methods on different sample sizes on
the datasets CEP, SIM, SIM-G and SIM-ln, respectively. The
accuracy of ANM-PHSIC in small samples is mostly higher
than other indicators. As the number of samples increases,
the accuracy of ANM-HSIC is consistent with that of ANM-
PHSIC. To verify the robustness of ANM-PHSIC under dif-
ferent noises, we add 10% gaussian noise and independent
uniform noise to CEP and SIM data respectively. As shown in
Figure 5 (e), (f), (g), (h), ANM-PHSIC also has strong robust-
ness compared to other methods in most cases. In summary,
ANM-PHSIC is more robust than other methods in cases of
sparse samples and noise data.

5 Conclusion
This paper proposes a pure HSIC metric (PHSIC) to against
random consistency, proving that PHSIC has tighter bounds
than HSIC, and verifying its fairness and stability through
theoretical analysis and simulation experiments. In addition,
we apply PHSIC to multiple causal inference tasks, improv-
ing the robustness of these models in small sample and noisy
scenarios. Furthermore, PHSIC can be applied to machine
learning, deep learning and other fields. This is also the di-
rection we will further apply in the future.

In conclude, it also gave us an inspiration. Unlike the tra-
ditional definition of independence when the sample tends to
infinity, independence should be data-driven. From the per-
spective of random consistency, we can redefine the indepen-
dence between random variables to construct robust and fair
correlation indicators.
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and Graeme D Ruxton. Effective use of spearman’s and
kendall’s correlation coefficients for association between
two measured traits. Animal Behaviour, 102:77–84, 2015.

[Romano et al., 2016] Simone Romano, Nguyen Xuan Vinh,
James Bailey, and Karin Verspoor. A framework to adjust
dependency measure estimates for chance. In Proceedings
of the 2016 SIAM international conference on data mining,
pages 423–431. SIAM, 2016.

[Schweizer and Wolff, 1981] Berthold Schweizer and Ed-
ward F Wolff. On nonparametric measures of dependence
for random variables. The annals of statistics, 9(4):879–
885, 1981.

[Shimizu et al., 2006] Shohei Shimizu, Patrik O Hoyer,
Aapo Hyvärinen, Antti Kerminen, and Michael Jordan.
A linear non-gaussian acyclic model for causal discovery.
Journal of Machine Learning Research, 7(10), 2006.

[Song et al., 2007a] Le Song, Alex Smola, Arthur Gretton,
and Karsten M Borgwardt. A dependence maximization
view of clustering. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 815–822,
2007.

[Song et al., 2007b] Le Song, Alex Smola, Arthur Gretton,
Karsten M Borgwardt, and Justin Bedo. Supervised fea-
ture selection via dependence estimation. In Proceedings
of the 24th international conference on Machine learning,
pages 823–830, 2007.

[Spirtes et al., 2000] Peter Spirtes, Clark N Glymour, and
Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

[Vinh et al., 2009] Nguyen Xuan Vinh, Julien Epps, and
James Bailey. Information theoretic measures for cluster-
ings comparison: is a correction for chance necessary? In
Proceedings of the 26th annual international conference
on machine learning, pages 1073–1080, 2009.

[Wang et al., 2022] Jieting Wang, Yuhua Qian, Feijiang Li,
Jiye Liang, and Qingfu Zhang. Generalization perfor-
mance of pure accuracy and its application in selective en-
semble learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2):1798–1816, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2115



[Yamanishi et al., 2004] Yoshihiro Yamanishi, Jean-Philippe
Vert, and Minoru Kanehisa. Heterogeneous data compar-
ison and gene selection with kernel canonical correlation
analysis. Kernel methods in computational biology, pages
209–229, 2004.

[Zhang and Hyvarinen, 2012] Kun Zhang and Aapo Hyvari-
nen. On the identifiability of the post-nonlinear causal
model. arXiv preprint arXiv:1205.2599, 2012.

[Zhao et al., 2023] Boxiang Zhao, Shuliang Wang, Lianhua
Chi, Chuanfeng Zhao, Hanning Yuan, Qi Li, Xiaojia Liu,
Jing Geng, and Ye Yuan. Hanm: Hierarchical additive
noise model for many-to-one causality discovery. IEEE
Transactions on Knowledge and Data Engineering, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2116


	Introduction
	Hilbert-Schmidt Independence Criterion
	Pure HSIC to Alleviate Random Consistency
	Advantages of PHSIC Compared to HSIC
	Toy Example

	PHSIC-Based Causal Inference Models 
	Introduce Typical Causal Inference Models
	Experimental Setup
	Experimental Result

	Conclusion

