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Abstract
Many multiplex graph representation learning
(MGRL) methods have been demonstrated to 1)
ignore the globally positive and negative relation-
ships among node features; and 2) usually uti-
lize the node classification task to train both graph
structure learning and representation learning pa-
rameters, and thus resulting in the problem of edge
starvation. To address these issues, in this paper, we
propose a new MGRL method based on the bi-level
optimization. Specifically, in the inner level, we
optimize the self-expression matrix to capture the
globally positive and negative relationships among
nodes, as well as complement them with the local
relationships in graph structures. In the outer level,
we optimize the parameters of the graph convolu-
tional layer to obtain discriminative node represen-
tations. As a result, the graph structure optimiza-
tion does not depend on the node classification task,
which solves the edge starvation problem. Exten-
sive experiments show that our model achieves the
superior performance on node classification tasks
on all datasets.

1 Introduction
Multiplex graph consists of multiple graph structures and
shared node features, and each graph reflects a specific re-
lationship among nodes. Regarding the complex relation-
ships in the multiplex graph, traditional graph representa-
tion learning (GRL) methods generally lack the capability to
process it effectively [Fan et al., 2019; Yang et al., 2023;
Liang et al., 2024]. Therefore, multiplex graph represen-
tation learning (MGRL) methods are proposed to learn the
low-dimensional node representations by mining the hidden
information in the multiplex graph [Yu et al., 2021], and have
been adapted to various real-world applications, e.g., social
media analysis, community anomaly detection, and recom-
mendation systems [Chen et al., 2022; Xie et al., 2022].

Existing MGRL methods can be broadly categorized into
two groups, i.e., node feature-free methods and node feature-
based methods. Specifically, the former generally employ
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the structural information only to obtain node representations.
For example, Metapath2vec [Dong et al., 2017] employs ran-
dom walk to obtain the sequences on metapaths and gen-
erate node representations. MNE [Zhang et al., 2018] uni-
fies structural information among various relationships into a
shared representation space by random walk. However, these
methods ignore the discriminative information in the node
features, degrading node representations. Therefore, recent
works are proposed to consider both node feature informa-
tion and structural information in the multiplex graph. For
example, MGCN [Ghorbani et al., 2019] combines structural
information with node features under the framework of graph
convolutional networks. HAN [Wang et al., 2019] aggregates
node features using node-level attention and semantic-level
attention and MAGNN [Fu et al., 2020] aggregates meta-path
ends and intermediates node features.

Despite effectiveness, most of previous MGRL methods
rely on a basic assumption, i.e., the original graph struc-
ture is reliable. This is generally unrealistic as graph struc-
tures are inevitably noisy or missing [Kang et al., 2019;
Zhang and He, 2023]. To mitigate it, some MGRL works
adopt graph structure learning in traditional GRL methods to
improve the model performance. For example, HGSL [Zhao
et al., 2021] utilizes the feature similarity to obtain the supe-
rior compositional graph structure. However, these methods
still have the following limitations. First, these works opti-
mize the graph structure with the feature similarity to measure
whether nodes belong to the same class or not, so it cannot ef-
fectively capture negative relationships among nodes. More-
over, the feature similarity focuses on single pairs of nodes
and cannot effectively capture the global relationships among
each node and all nodes simultaneously. Second, these works
optimize the parameters of graph structure learning by di-
rectly depending on the classification task. As a result, this
may lead to edge starvation problem, i.e., the representation
of edges is obtained by receiving less help of supervision in-
formation, leading to poor generalization ability [Fatemi et
al., 2021]. Based on the above analysis, capturing globally
positive and negative relationships among nodes, as well as
separately conducting graph structure learning and represen-
tation learning, helps to enhance the MGRL performance.

To address the above challenges, in this paper, we propose
a new MGRL framework, i.e., Multiplex Graph Representa-
tion Learning via Bi-level Optimization (MGBO), as shown
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Figure 1: The flowchart of the proposed MGBO. Specifically, in the inner level (blue part), MGBO first generates a self-expression matrix
C based on node features, and then investigates the graph learning loss LGL to optimize C to capture the globally positive and negative
relationships among nodes. MGBO further aggregates the graph structures and the self-expression matrix to obtain the aggregated graph
S. Finally, in the outer level (green part), S and node features are inputted to the graph convolutional layers to generate the final node
representation H, which is optimized by the cross-entropy loss LCE .

in Figure 1. Specifically, we utilize the self-expression ma-
trix to adaptively capture the globally positive and negative
relationships among nodes and complement them with the
local relationships in graph structures. Moreover, we con-
sider the learning of self-expression matrix and the represen-
tation learning as a bi-level optimization problem. That is, the
inner level optimizes the self-expression matrix by learning
the globally positive and negative relationships among nodes,
while the outer level optimizes the representation learning pa-
rameters by the classification task based on the optimized
graph structure. In addition, the node representations gen-
erated in the outer level is used in the inner level to adap-
tively optimize the self-expression matrix. In this way, graph
structure learning is detached from the directly supervision
of the node classification task, so edge starvation problem
are solved, and the interdependence between graph structure
learning and representation learning is fully utilized.

Compared to previous MGRL methods, the contributions
of the proposed method can be summarized as:

• We utilize the self-expression property to adaptively
capture the globally positive and negative relationships
among nodes, achieving the effectiveness MGRL.

• To the best of our knowledge, we propose the first bi-
level optimization for MGRL, where the self-expression
matrix and the representations learning are optimized in
the inner and outer level of the model, respectively, to
solve the edge starvation problem.

• We investigate a new algorithm for the proposed bi-level
optimization. Comprehensive experimental results on
multiple benchmark datasets demonstrate the effective-
ness of our method on node classification tasks, com-
pared to nine comparison methods.

2 Related Work
2.1 Graph Structure Learning
Graph structure learning aims to optimize the graph struc-
ture for better adaptation to downstream tasks. Early meth-
ods such as LDS [Franceschi et al., 2019] typically mod-
eled each edge using Bernoulli random variables and created
graph structures by sampling from these distributions. How-
ever, these direct parameterizations of the adjacency matrix
are time and space consuming [Zhao et al., 2023]. An alter-
native approach is to provide complementary information to
the graph structure based on node feature similarity. For ex-
ample, IDGL [Chen et al., 2020] iteratively learns metrics to
generate graph structures from node features and GNN em-
beddings. GLCN [Jiang et al., 2019] combines graph learn-
ing and graph convolution to learn graph structure through
the smoothness of node features. ProGNN [Jin et al., 2020]
iteratively reconstructs the clean graph by preserving the low
rank, sparsity, and feature smoothness properties of a graph.
In addition, MV-GCN [Yuan et al., 2021] proposes to im-
prove the performance of the model by using local structure,
global structure, and feature similarity. Recently, HGSL pro-
posed graph structure learning for heterogeneous graphs via
feature similarity graphs, feature propagation graphs and se-
mantic similarity graphs.

2.2 Multiplex Graph Representation Learning
MGRL aims to obtain low-dimensional and discriminative
node representations by mining information from multiplex
graph structures [Mo et al., 2023b]. Depending on whether
or not node features are used when performing graph rep-
resentation learning, previous MGRL works can be catego-
rized into two types, i.e., node feature-free methods and node
feature-based methods.

Early MGRL methods usually fall into the category of node
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feature-free methods. For example, Metapath2vec [Dong et
al., 2017] utilizes metapath-based random wandering with
skip-gram method to obtain node representations.GATNE-T
[Cen et al., 2019]fuses base embeddings and edge embed-
dings to form holistic embeddings and learns them through
the skip-gram method. In addition, MNE [Zhang et al., 2018]
unifies information from various relation types into a shared
representation space by metapath-based random walk. How-
ever, the performance of these MGRL methods is always un-
satisfactory because these methods ignore the discriminative
information contained in the node features.

Therefore, subsequent work attempts to improve model
performance by considering both node features and struc-
tural information. For example, HAN [Wang et al., 2019]
uses the attention mechanism to aggregate node features to
form node-level representations and semantic-level represen-
tations. FAME [Liu et al., 2020] captures meta-paths with
multiple inter-node relationships and higher-order topologies,
and combines node features to learn low-dimensional repre-
sentations of nodes. MAGNN [Fu et al., 2020] proposes to
aggregate node features within and across meta-paths to im-
prove the performance. MHGCN [Yu et al., 2022] uses mul-
tilayer graph convolution modules to automatically capture
short and long metapath interactions across multiple relations
to learn node representation. In addition, BPHGNN [Fu et
al., 2023] captures locally and globally relevant information
about a node from both depth and breadth patterns.

3 Method
Notations. Let G = {G(1),G(2), . . . ,G(R)} = {V, E ,X} to
denote the multiplex graph, where G(r) = {V, E(r),X} is the
r-th graph in the multiplex graph, and R is the number of
graphs, V = {v1, v2, · · · , vN} and E =

⋃
E(r) ⊆ V ×V rep-

resent the nodes set and the edges set of the multiplex graph,
respectively, X = {xi}Ni=1 ∈ RN×F denotes the node fea-
ture matrix, where xi ∈ RF is the feature of the node vi
out of N nodes, and denote the set of structural informa-
tion as A = {A(1), . . . ,A(R)}, where A(r) ∈ {0, 1}N×N

is the adjacency matrix of the network G(r), and a(r)ij = 1 if
(vi, vj) ∈ E(r). The goal of MGRL is to obtain fused discrim-
inative node representations H ∈ RN×d with node features
and multiple graph structures, where d≪ F is the dimension
of the representation space.

3.1 Motivation
Previous MGRL methods usually adopt the graph structure
learning in traditional GRL methods to optimize the graph
structure by directly utilizing similarity between node fea-
tures, thus improving the performance of the model. How-
ever, they usually neglect to capture the globally positive and
negative relationships among nodes, resulting in sub-optimal
model performance. Taking a movie multiplex graph dataset
containing co-director relationship and co-actor relationship
as an example. Different classes of movies can be connected
by common actors and directors, but the edges between dif-
ferent classes of movies are not conducive for representation
learning. However, the method based on the similarity of

node features is only able to find the edges between movies of
the same classes but not able to eliminate the edges between
movies of different classes. As a result, node information
propagation between two nodes from different classes may
reduce node discriminability.

Furthermore, previous work usually uses a node classifica-
tion task to optimize both graph structure learning and repre-
sentation learning parameters, and the update of the graph
structure receives supervision from the node classification
task, resulting in uneven training of the graph structure. Take
a training scenario with a two-layer GCN as an example, node
information can only be propagated for a range of two hops.
If there are no labeled nodes within two hops of an unlabeled
node, the edges around the unlabeled node will lack super-
vision information. As a result, the updated graph structures
are more inclined to fit the training set data, leading to edge
starvation problem.

To address these issues, our proposed MGBO captures
the globally positive and negative relationships among nodes
through a self-expression matrix.

In addition, we use bi-level optimization to solve the edge
starvation problem. We show the framework of the proposed
method in Figure 1 and introduce the details as follows.

3.2 Self-Expression Learning
As mentioned above, previous MGRL works usually cap-
ture the relationships among nodes with the node feature
similarity to mitigate the graph structure reliability assump-
tion, as the correlation information among node features has
been shown to provide complementarity to the graph struc-
ture [Yuan et al., 2021]. However, directly utilizing the sim-
ilarity graph fails to capture negative relationships between
two nodes because the similarity between nodes is always
non-negative. Moreover, the similarity graph is usually de-
rived by calculating the similarity between every node and its
neighbors and cannot capture the global relationships among
nodes. As a result, previous MGRL methods may lose dis-
criminative information that captures the intrinsic structure
of the data [Tenenbaum et al., 2000]. To solve these issues,
in this paper, we utilize the self-expression property among
node features to adaptively capture globally positive and neg-
ative relationships among nodes.

To do this, given the node feature matrix X, we initialize
the similarity graph by the K-Nearest Neighbor (KNN) al-
gorithm [Wu et al., 2020]. Specifically, we first obtain the
feature similarity matrix M between each node pair by cal-
culating the distance among all node pairs, i.e.,

Mij =
xi · xj

|xi| |xj |
, (1)

where xi and xj are node features of vi and vi. Then we
select k nodes with the highest similarity to each node as their
neighbors in the distance matrix M, and thus obtaining the
initial feature similarity graph C.

To further capture the negative relationships among nodes
with different labels and the positive relationships among
nodes with the same label, we propose to optimize the sim-
ilarity graph with the self-expression property of node fea-
tures. Specifically, the self-expression property assumes that
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each data point can be linearly reconstructed from a weighted
combination of all data points. More formally, given features
X = {x1, . . . ,xN} of the nodes set V , for any vj ∈ V , there
exists a coefficient cij ∈ R such that:

xj =
∑
i̸=j

xicij , (2)

where cij is the self-expression coefficient corresponding to
vi for reconstructing vj from all other nodes. As a result,
each node can be represented as linear combinations of all
other nodes with positive or negative coefficients.

Therefore, we propose to optimize the similarity graph to
capture globally positive and negative relationships among
nodes with the self-expression property, i.e.,

min
C

∥∥X⊤ −X⊤C
∥∥2
F
, (3)

As a result, Eq. (3) enforces the self-expression matrix to
describe each node by all nodes.

However, the self-expression matrix may easily obtain the
trivial solution, i.e., the identity matrix. Therefore, we fur-
ther consider two regularization terms in the above objective
function to avoid the trivial solution, i.e.,

LGL =
∥∥X⊤ −X⊤C

∥∥2
F
+α∥C∥2F+

R∑
r=1

β(r)
∥∥∥C−A(r)

∥∥∥2
F
,

(4)
where α and β(r) are two non-negative parameter to balance
the second term and the third term. In Eq. (4), the second
term aims to regularize the sparsity of the self-expression ma-
trix, while the third term aims to optimize the self-expression
matrix with the guidance of graph structures to avoid the triv-
ial solution. After that, we let C = (C + C⊤)/2 to ensure
that the learned self-expression matrix is symmetric.

In this way, each element of the self-expression matrix is
not constrained to be non-negative, thus adaptively captur-
ing positive and negative relationships between two nodes.
Moreover, the self-expression matrix indeed relies on all data
points to describe each node, unlike previous MGRL works
that only calculate the similarity between the node and its
nearby nodes. As a result, the self-expression matrix also
captures the global relationships of the nodes.

3.3 Graph Fusion
In the multiplex graph, an edge may connect two nodes from
different classes and two nodes in the same class may not be
connected. To solve these issues, in this section, we propose
to fuse the graph structure with the self-expression matrix in
our method. We expect to use the positive relationship among
two nodes to connect two nodes in the same class and use
the negative relationship among two nodes to disconnect two
nodes from different classes.

To do this, we first fuse all graph structures in the multi-
plex graph. A simple approach would be to use the average
pooling to aggregate information from different graph struc-
tures. However, such an approach is counter-intuitive be-
cause different graph structures represent different relation-
ships among nodes, thus the importance of different graph

structures is different. Therefore, we utilize the attention
mechanism to learn the weights of different graph structures
and perform aggregation.

Specifically, given multiple graph structures A =
{A(1), . . . ,A(R)}, we obtain the fused graph structure
Atopology with the graph-level attention mechanism, i.e.,

Atopology = Ψ1

([
A(1),A(2), . . . ,A(R)

])
, (5)

where
[
A(1),A(2), . . . ,A(R)

]
is the stacking matrix of all

graph structures. Ψ1 denotes a channel attention layer whose
weight matrix WΨ1 ∈ R1×1×R indicates the importance of
different graph structures.

After the attention mechanism, we further employ an at-
tention layer to fuse the graph structure Atopology and the
self-expression matrix C by:

S = Ψ2 ([Atopology,C]) , (6)

where [Atopology,C] is a stacked matrix fused the graph
structure with the self-expression matrix. Ψ2 is the chan-
nel attention layer whose weight matrix WΨ1 ∈ R1×1×2

indicates the importance of fused graph structure and self-
expression matrix. Therefore, we obtain the aggregated graph
S and further let S = (S + S⊤)/2 to ensure that the aggre-
gated graph is symmetric.

3.4 Representation Learning
Given the node feature matrix X and the aggregated graph
S, we employ the graph convolutional layer g : RN×F ×
RN×N → RN×d to obtain node representations H by:

H = σ(ŜXΘ), (7)

where σ is the activation function, and Θ is the weight matrix
of the encoder g. Ŝ = D̂−1/2(S + wIN )D̂−1/2 ∈ RN×N is
the symmetrically normalized graph structure of aggregated
graph, D̂ is the degree matrix of S+wIN , andw is the weight
of identity matrix IN .

In Eq. (7), H aggregates neighbors information from orig-
inal topology and node features space with S. Given the node
representations H, we further train our model by minimiz-
ing the cross-entropy loss between true and predicted labels.
To do this, we employ a fully connected layer to obtain the
predicted class based on the node representation H, i.e.,

Ŷ = softmax(WH), (8)

where W indicates the parameter of the fully connected layer,
and Ŷ is the class of nodes predicted by the classifier. There-
fore, the cross-entropy loss can be formulated as:

LCE = −
∑
l∈YL

Yl · ln(Ŷl), (9)

where YL is the set of node indices with labels, Yl and Ŷl

are the labels and prediction class of labeled nodes. As a
result, the label information is adopted to guide the training
process with the cross-entropy loss so that meaningful node
representations H can be learned.
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Based on the optimized node representations H, we con-
sider replacing the original node features in Eq. (4) with the
learned H. The reason can be attributed as follows. On the
one hand, the noise or redundancy in the original node fea-
tures may make it difficult for the self-expression matrix to
capture the positive and negative relationships among nodes
accurately [Lin et al., 2024]. On the other hand, the original
node features lack sufficient discriminability, which affects
the quality of the self-expression matrix. As a result, with
the optimized node representations H, the self-expression
learning module can be designed in a dynamically optimized
mode, and Eq. (4) can be reformulated as:

LGL =
∥∥H⊤ −H⊤C

∥∥2
F
+α∥C∥2F+

R∑
r=1

β(r)
∥∥∥C−A(r)

∥∥∥2
F
.

(10)
Therefore, the self-expression matrix C can be optimized by
minimizing LGL based on the learned node representation H.

3.5 Bi-level Optimization
With the graph structure learning in Section 3.2 and the rep-
resentation learning in Section 3.4, previous MGRL works
generally optimize the parameters of them jointly. As a re-
sult, these methods may lead to the edge starvation problem,
as the representation learning of edges far from the labeled
nodes cannot be supervised by the node classification task,
while the representation learning of edges close to the labeled
nodes are supervised. The resulting learned graph structure
tends to fit the data of labeled nodes (i.e., the training set),
leading to poor generalization to unlabeled nodes.

To address the above issues, the proposed method consid-
ers optimizing the parameters of graph structure learning and
the parameters of representation learning through a bi-level
manner, which has been widely used in meta-learning and
model selection [Franceschi et al., 2018].

To do this, we formulate the representation learning and
the self-expression learning, respectively, as an outer opti-
mization task and an inner optimization task. Specifically,
denoting the parameters as θgcn and θc, respectively, the outer
optimization and the inner optimization can be optimized by
the following objective functions, i.e.,

Γout(θgcn, θc) = LCE , Γin(θgcn, θc) = LGL, (11)

where Γout aims to optimize parameters of the representation
learning module and Γin aims to optimize the parameters of
the self-expression learning module. Particularly, the above
objective functions can be formulated as the following bi-
level optimization problem, i.e.,

min
θgcn

Γout(θgcn, θc) s.t. θc = argmin
θc

Γin(θgcn, θc). (12)

For the above bi-level optimization, existing literature [Liu
et al., 2021] usually first unrolls the inner optimization dy-
namics T steps, and then compute the hypergradient (outer
gradient) from the unrolled dynamics. In this paper, we con-
duct the inner optimization process by the stochastic gradient

descent method [Amari, 1993], i.e.,
θtc = ψt

(
θt−1
c ; θgcn

)
, t = 1, · · · , T,

where (13)

ψt

(
θt−1
c ; θgcn

)
= θt−1

c − ηt∇θcΓin(θgcn, θ
t−1
c ),

where ψt denotes the update scheme at the t-th step of the
inner optimization process, T denotes the total number of it-
erations of the inner optimization, and ηt is the learning rate
for the inner optimization. After T steps, we can formulate
the inner parameters as:

θTc = ψT ◦ · · · ◦ ψ2 ◦ ψ1(θgcn). (14)
where ◦ denotes the composite dynamics operation for the
entire iteration. Therefore, the outer optimization is:

min
θgcn

Γout(θgcn, θ
T
c ). (15)

Based on Eq. (15), to update the outer parameters (i.e., θgcn),
we need to compute the hypergradient ∇θgcnΓout(θgcn, θ

T
c ).

Recalling that θtc = ψt

(
θt−1
c ; θgcn

)
, the operation ψt is ob-

viously dependent on θgcn directly. Moreover, the operation
ψt is dependent on θgcn indirectly through θt−1

c , which is up-
dated based on θgcn. Thus, the hypergradient of Eq. (15) can
be computed by the chain rule, i.e.,

∇θgcnΓout(θgcn, θ
T
c ) =

∂Γout(θgcn, θ
T
c )

∂θgcn
+ (16)

∂Γout(θgcn, θ
T
c )

∂θTc
∗ ∂θTc
∂θgcn

∣∣∣∣
(θgcn,θT

c )

.

In Eq. (16), the first term indicates the direct gradient, which
can be obtained directly. The second term indicates the indi-
rect gradient, which is difficult to obtain by direct computa-
tion, especially the parameter Jacobian ∂θT

c

∂θgcn
. To address this

issue, we further expand it as:

∂θTc
∂θgcn

=
∂ψT (θ

T−1
c ; θgcn)

∂θT−1
c

∂θT−1
c

∂θgcn
+
∂ψT (θ

T−1
c ; θgcn)

∂θgcn
. (17)

Obviously, Eq. (17) can be solved by the superposition of the
gradients of T rounds.

By optimizing Eq. (13) and Eq. (15), the bi-level opti-
mization considers the graph structure learning and the repre-
sentation learning, respectively, as the inner optimization and
the outer optimization. Moreover, the graph structure learn-
ing module is only optimized by the self-expression property
at the inner optimization instead of the node classification
task at the outer optimization. As a result, the graph struc-
ture module avoids the overfitting issue for labelled nodes
and the underfitting issue for unlabeled nodes. Therefore, the
proposed method avoids the generation of starved edges to
effectively solve the edge starvation problem. This improves
the generalization of the model over unlabeled nodes.

4 Experiments
In this section, we conduct extensive experiments on 4 pub-
lic benchmark datasets to evaluate effectiveness of the pro-
posed method, compared to 9 comparison methods, on the
node classification task.
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Method ACM DBLP IMDB Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GCN 89.9 ± 0.3 89.7 ± 0.2 89.0 ± 0.2 89.7 ± 0.1 49.2 ± 0.3 49.3 ± 0.4 49.5 ± 0.2 50.3 ± 0.4
GAT 90.1 ± 0.2 90.4 ± 0.3 89.7 ± 0.3 90.5 ± 0.3 49.7 ± 0.3 55.7 ± 0.3 53.4 ± 0.1 57.9 ± 0.5

HAN 91.0 ± 0.1 90.9 ± 0.2 92.8 ± 0.4 93.4 ± 0.2 58.6 ± 0.3 58.5 ± 0.4 54.3 ± 0.5 56.3 ± 0.6
GTN 91.3 ± 0.2 91.2 ± 0.2 93.5 ± 0.4 94.1 ± 0.3 57.9 ± 0.2 57.8 ± 0.2 52.6 ± 0.2 55.7 ± 0.2
MAGNN 91.4 ± 0.1 91.1 ± 0.3 93.3 ± 0.2 93.8 ± 0.1 59.3 ± 0.2 59.7 ± 0.3 57.6 ± 0.4 59.0 ± 0.3
MAGNN-AC 92.3 ± 0.3 92.2 ± 0.2 93.6 ± 0.2 94.1 ± 0.4 59.7 ± 0.2 60.0 ± 0.2 59.8 ± 0.2 62.3 ± 0.2
HGSL 92.6 ± 0.2 92.5 ± 0.2 93.7 ± 0.3 94.2 ± 0.2 58.8 ± 0.2 58.5 ± 0.2 61.4 ± 0.6 65.7 ± 0.5
MGDCR 92.4 ± 0.3 92.2 ± 0.4 93.9 ± 0.2 94.3 ± 0.3 59.6 ± 0.1 60.2 ± 0.2 61.8 ± 0.7 67.3 ± 0.4
MHGCN 92.7 ± 0.2 92.4 ± 0.1 94.2 ± 0.1 94.5 ± 0.4 60.3 ± 0.3 60.5 ± 0.4 62.5 ± 0.6 67.1 ± 0.5
MGBO 93.3 ± 0.3 93.2 ± 0.4 95.2 ± 0.3 95.6 ± 0.3 60.7 ± 0.3 61.4 ± 0.2 61.5 ± 0.7 67.5 ± 0.8

Table 1: Classification performance (i.e., Macro-F1 and Micro-F1) of all methods on all datasets.

4.1 Experimental Setup
Datasets
The used datasets include 2 citation multiplex graph datasets,
i.e., ACM [Jin et al., 2021] and DBLP [Jin et al., 2021], and
two movie multiplex graph datasets, i.e., IMDB [Jin et al.,
2021] and Freebase [Mo et al., 2023a].

Comparison Methods
The comparison methods include 2 single-view graph meth-
ods and 7 multiplex graph methods. Single-view graph meth-
ods include 2 baseline methods, i.e., GCN [Kipf and Welling,
2017] and GAT [Velickovic et al., 2018]. Multiplex graph
methods include HAN [Wang et al., 2019], GTN [Yun et al.,
2019], MAGNN [Fu et al., 2020], MAGNN-AC [Jin et al.,
2021], HGSL [Zhao et al., 2021], MGDCR[Mo et al., 2023a],
and MHGCN [Yu et al., 2022]). For single-view graph meth-
ods, we follow previous works [Wang et al., 2019] to sepa-
rately learn the representations for every graph and report the
best performance.

4.2 Effectiveness Analysis
We evaluate the effectiveness of the proposed method on the
node classification task by reporting the results (i.e., Macro-
F1, and Micro-F1) of all methods on four datasets in Table 1.
Obviously, our method achieves the best effectiveness on the
node classification task.

First, our method performs substantially better than the
single-view graph methods (i.e., GCN and GAT). For ex-
ample, our MGBO outperforms the best single-view graph
method (i.e., GAT) by an average of 6.2%, in terms of Macro-
F1 and Micro-F1, on all datasets. This validates the superior-
ity of multiplex graph methods as they can efficiently capture
the complex relationships among multiple graphs.

Second, the proposed method achieves the best perfor-
mance among all MGRL methods, followed by MHGCN,
MGDCR, HGSL, MAGNN-AC, MAGNN, GTN, and HAN.
For example, the proposed method achieves 0.5% average im-
provement, compared to the best performing semi-supervised
method (i.e., MHGCN), in terms of Macro-F1 and Micro-F1,
on all datasets. This suggests that the correlations learned
from node features by the proposed method can provide com-
plementary information to graph structures and help to learn
distinguishable node representations.

Third, the proposed method outperforms previous MGRL
method that utilizes the graph structure learning (i.e., HGSL)
by an average of 1.3%, in terms of Macro-F1 and Micro-F1,
on all datasets. The reason can be attributed to the fact that
the proposed method effectively captures the globally posi-
tive and negative relationships among nodes through the self-
expression matrix as well as solves the edge starvation prob-
lem with bi-level optimization.

4.3 Ablation Study
The proposed method utilizes cross-entropy loss (i.e., LCE)
and graph structure loss (i.e., LGL) to optimize the node rep-
resentation and self-expression matrix. Moreover, MGBO
further addresses edge starvation problem through bi-level
optimization. To demonstrate the effectiveness of different
parts of the proposed framework, we investigate the classifi-
cation performance of different combinations of these com-
ponents in the model on all datasets and report the results in
Table 2 . In addition, we also investigate if the self-expression
matrix captures the globally positive and negative relation-
ships in Figure 2 and if the bi-level optimization explores the
edge starvation problem in Figure 3.

Effectiveness of Self-Expression Matrix
To verify the effectiveness of the self-expression matrix,
we investigate the performance of the variant method
with/without the graph structure loss (i.e., LGL) on all
datasets and report the results in Table 2. Obviously, the vari-
ant method with the LGL achieves superior performance and
obtains an average improvement of 2.1%, compared to the
method without LGL. This indicates that the globally posi-
tive and negative relationships of nodes learned from the self-
expression matrix can indeed provide complementary infor-
mation about the graph structure and contribute to the learn-
ing of discriminative node representations.

Effectiveness for Self-Expression Matrix To Capture the
Globally Positive and Negative Relationships
Intuitively, in the self-expression matrix, the edges with pos-
itive values indicate that the connected nodes may be from
same class, while the edges with negative values indicate that
the connected nodes may be from different classes. To verify
that the self-expression matrix indeed captures the globally
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LCE LGL
ACM DBLP IMDB Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
√

− 90.5 ± 0.2 90.6 ± 0.2 92.9 ± 0.3 93.4 ± 0.2 58.3 ± 0.2 59.0 ± 0.2 56.8 ± 0.7 59.9 ± 0.8√ √
92.0 ± 0.4 91.9 ± 0.3 94.7 ± 0.4 95.0 ± 0.3 59.3 ± 0.4 59.8 ± 0.5 60.1 ± 0.8 65.4 ± 0.6

Table 2: Classification performance (i.e., Macro-F1 and Micro-F1) of variants with/without graph structure loss on all datasets.
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Figure 2: Ratios of node pairs connected by edges with positive/negative values in the self-expression matrix belonging to same/different
classes on all datasets, denoted as red and blue lines, respectively.
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Figure 3: Classification performance (i.e., Micro-F1) of variants
with/without bi-level optimization on nodes with starved edges.

positive and negative relationships among nodes, we calculate
the ratio of node pairs belonging to the same/different classes
in edges with positive/negative values in the self-expression
matrix and reported results on all datasets in Figure 2. Obvi-
ously, the globally positive and negative relationships among
nodes can be captured using the self-expression matrix, and
the ratios can continue to increase as the bi-level optimiza-
tion proceeds. This verifies the effectiveness of the self-
expression matrix as well as the bi-level optimization.

Effectiveness of the Bi-Level Optimization To Solve the
Edge Starvation Problems
To verify that the bi-level optimization indeed solves the edge
starvation problems, we first filter out nodes that were not
connected to any labeled nodes, and the edges around these
nodes were starved edges that lacked supervision informa-
tion. We then test the performance of the variant methods
with/without bi-level optimization (i.e., MGBO and MGBO-

N) on these nodes on all datasets and report the results in
figure 3. As a result, the method with bi-level optimization
is significantly better than the method without it, achieving
an average improvement of 2.5%. This indicates that the bi-
level optimization is effective in mitigating the edge starva-
tion problems, thus improving the model’s performance.

5 Conclusion
In this paper, we proposed a multiplex graph representation
learning framework based on bi-level optimization. Specif-
ically, we proposed to capture the globally positive and
negative relationships among nodes by learning the self-
expression matrix based on node features. In addition, we
updated the parameters of the self-expression learning and the
parameters of the representation learning separately through
bi-level optimization, which effectively solves the edge star-
vation problem. Extensive experimental results show that the
method consistently achieves state-of-the-art performance on
the node classification task.
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