
Exploring the Role of Node Diversity in Directed Graph Representation Learning
Jincheng Huang1 , Yujie Mo1 , Ping Hu1 , Xiaoshuang Shi1 , Shangbo Yuan3 , Zeyu

Zhang2∗ , Xiaofeng Zhu1∗

1School of Computer Science and Engineering, University of Electronic Science and Technology of
China

2Huazhong Agricultural University
3School of Engineering and Design, Technical University of Munich

{huangjc0429, moyujie2017, chinahuping, xsshi2013}@gmail.com, ge47deq@mytum.de,
zhangzeyu@mail.hzau.edu.cn, seanzhuxf@gmail.com

Abstract
Many methods of Directed Graph Neural Networks
(DGNNs) are designed to equally treat nodes in
the same neighbor set (i.e., out-neighbor set and
in-neighbor set) for every node, without consider-
ing the node diversity in directed graphs, so they
are often unavailable to adaptively acquire suitable
information from neighbors of different directions.
To alleviate this issue, in this paper, we investigate
a new way to first consider node diversity for rep-
resentation learning on directed graphs, i.e., neigh-
bor diversity and degree diversity, and then propose
a new NDDGNN framework to adaptively assign
weights to both outgoing information and incom-
ing information at the node level. Extensive ex-
periments on seven real-world datasets validate the
superior performance of our method compared to
state-of-the-art methods in terms of both node clas-
sification and link prediction tasks.

1 Introduction
Graph neural networks (GNNs) have achieved great success
by analyzing the undirected graph to extract representation
from the graph data. However, many graphs are directed
where each edge is bidirectional in real applications, such as
traffic networks and web page networks. As a result, many
previous GNNs considering undirected graphs (e.g., [Kipf
and Welling, 2017; Hamilton et al., 2017; Velickovic et al.,
2018; Yang et al., 2023b; Yang et al., 2023a; Bi et al., 2022b;
Mo et al., 2023; Mo et al., 2024; Huang et al., 2023a]) ignore
the directional information, and thus resulting in discarding
valuable information crucial for downstream tasks [Rossi et
al., 2023]. For example, in the web page network, web pages
pointed to more links tend to have more traffic. If the di-
rectional information of the web page network is ignored,
some web pages with few incoming edges and much outgoing
edges will be predicted as high-traffic web pages. Hence, it is
practical to consider the directional information for applying
GNNs in the directed graphs.

∗Corresponding authors: X. Zhu and Z. Zhang

Previous GNN methods for directed graphs primarily fo-
cus on delineating the directional information in the graph,
including spectral DGNN methods [Zhang et al., 2021; Tong
et al., 2020a; Tong et al., 2021] and spatial DGNN meth-
ods [Rossi et al., 2023; Tong et al., 2020b]. The spectral
DGNN methods mainly focus on constructing the Laplacian
matrix with the directional information. For example, DiGCN
[Tong et al., 2020a] employs the transfer probability of per-
sonalized PageRank to approximate the Laplace matrix of
directed graphs for considering the directional information
[Brin, 1998]. MagNet [Zhang et al., 2021] designs the mag-
netic Laplacian matrix to capture directional information by
a phase matrix. However, many directed spectral methods use
the same mapping function to obtain node representation for
the outgoing information and the incoming information, and
thus they may not output discriminative representation by ig-
noring the difference between the incoming information and
the outgoing information [Rossi et al., 2023].

Spatial DGNN methods are designed to first learn differ-
ent mapping functions for incoming and outgoing informa-
tion, and then combine two directional information to up-
date node representation for downstream tasks. For example,
DGCN [Tong et al., 2020b] separately learns mapping func-
tions for directional information based on their second-order
information. Dir-GNN [Rossi et al., 2023] first learns differ-
ent mapping functions based on the first-order information
of nodes, and then manually assigns weights to fuse these
two kinds of node representation obtained from two mapping
functions. To summarize, previous spatial DGNNs methods
consider the difference between two kinds of directional in-
formation by two ways, i.e., different mapping functions and
manually setting different weights on the node representation
learned from different directional information, but they still
have limitations to be addressed.

First, the representation of every node is affected by its
neighbors, which include an in-neighbor set and an out-
neighbor set in the directed graph. The label of every node is
determined by either the in-neighbor set or the out-neighbor
set or even both sets, as shown in Figure 1. Hence, every node
in either in-neighbors or out-neighbors should have differ-
ent weights, neighbor diversity for short. However, previous
spatial DGNNs assign them with the same weight. Second,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2072

0.0 0.2 0.4 0.6 0.8 1.0
In-neigbor Homophily

0.0

0.2

0.4

0.6

0.8

1.0
O

ut
-n

ei
gb

or
 H

om
op

hi
ly

0.0 0.2 0.4 0.6 0.8 1.0
In-neigbor Homophily

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

-n
ei

gb
or

 H
om

op
hi

ly

Figure 1: Visual illustration of neighbor diversity on the datasets
Cora-ML (left) and Chameleon (right), where each scatter represents
one node. The out-neighbor homophily is the proportion of one node
and out-neighbors with the same category. The nodes above the di-
agonal is with high out-neighbor homophily and their labels are de-
termined by its out-neighbor set. The labels of the node nearby are
determined by both its out-neighbor set and in-neighbor set.

degree can reflect the centrality of a node and provide in-
formation about its surrounding structure. Moreover, degree
information is very helpful for distinguishing two different
nodes, especially in directed graphs including in-degree and
out-degree. In particular, every node has different in-degree
and out-degree, i.e., degree diversity. However, previous spa-
tial DGNNs ignore the degree information in directed graphs
to weaken the representation ability of the node. Obviously,
both neighbor diversity and degree diversity show the charac-
teristics of nodes, i.e., node diversity.

In this paper, we propose a new spatial DGNN method,
namely Node Diversity Directed Graph Neural Network
(NDDGNN) shown in Figure 3, to model directional infor-
mation for graph representation learning by considering node
diversity. To do this, we follow the directed spatial methods to
construct different mapping functions for the outgoing infor-
mation and the incoming information. During the construc-
tion process, different from these previous spatial DGNNs
assigning the same weight to all nodes in the same neighbor
set (i.e., out-neighbor set and in-neighbor set) for every node,
our method assigns them with different weights by consid-
ering node diversity. Specifically, we consider neighbor di-
versity by defining in-Dirichlet energy and out-Dirichlet en-
ergy to encode the dissimilarity between every node and its
neighbor and consider degree diversity by introducing degree
embedding to encode in-degree information and out-degree
information.

Compared to previous DGNNs, the main contributions of
our method are summarized as follows:

• We first observe node diversity for representation learn-
ing in directed graphs and then propose a new di-
rected GNN method considering node diversity (includ-
ing neighbor diversity and degree diversity) for graph
representation learning. As a result, our method is able
to adaptively learn weights for every node.

• We experimentally verify on real-world datasets the su-
periority of our proposed method, compared to SOTA
methods, in terms of node classification and link predic-
tion.

Figure 2: A case study of node diversity in the dataset Cora-ML,
where different colors (i.e., blue and red) represent different cate-
gories. The case study includes three nodes, i.e., Node # 550 (left),
Node #2162 (middle), and Node # 2714 (right).

2 Methodology
Let G = (V,E,X,Y) be a directed and unweighted graph,
where V = {vi|i = 1, 2, . . . , n}, E = {(vi, vj)|vi, vj ∈ V},
X ∈ Rn×f , and Y ∈ Rn×c, respectively, denote the node
set, the edge set, the node feature matrix and the label ma-
trix, and A ∈ {0, 1}n×n be the adjacency matrix of the
graph G, D =

∑
i Ai,j is the degree matrix, and ∆̃ =

I − D−
1
2AD−

1
2 is the normalize Laplacian matrix. By de-

noting Ni,→ as the out-going neighbor set of the i-th node vi
and D→ =

∑
j(Ai,j) as the out-degree diagonal matrix, we

obtain the symmetric normalize directed out-neighbor matrix
S→ = D

− 1
2→ AD

− 1
2← and row normalize directed out-neighbor

matrix S′→ = D−1→ A. Similarly, we can define Ni,←, D←,
S← = ST

→ and S′← = S′
T
→.

2.1 Motivation
To deal with the directional information in the directed graph,
previous spatial DGNNs first separate the directional infor-
mation into incoming information and outgoing information,
and then learn individual mapping functions for them, i.e., the
outgoing mapping function and the incoming mapping func-
tion. Each function outputs one kind of representation for ev-
ery node. Specifically, following DirGNN [Rossi et al., 2023]
to denote two directional representation as S→H(l)W(l)

→ and
S←H(l)W(l)

→ , where W(l)
→ and W(l)

← , respectively, represent
the learnable weights, we fuse them by manually assigning a
hyper-parameter to update the node representation H(l+1) in
the (l + 1)-th layer by:

H(l+1) = γS→H(l)W(l)
→ + (1− γ)S←H(l)W(l)

← (1)
where γ is the hyper-parameter. Although the weight γ is set
to distinguish two kinds of directional information, it actually
assigns the same weight to every node representation in the
same mapping information. This leaves at least two issues
to be addressed. First, the hyper-parameter γ easily results in
expensive computation cost. Second, all nodes share the same
weight for two kinds of directional information by ignoring
node diversity.

In this paper, we propose a new spatial directed graph
neural network framework shown in Figure 3 to address the
above issues.

2.2 Node Diversity
There are many facts to result in node diversity. For example,
neighbor diversity, degree diversity, structure diversity, e.t.c.
For simplicity, in this paper, we investigate node diversity by
focusing on neighbor diversity and degree diversity.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2073

����������������

Node #3

������������������
d3

����
��������������
+

����
���
���

����	���
�	
�����

���������
	
�����

d2
�������������������

Softmax

+ =1

Lcon

Lcon

����	���
�	
�����

���������
	
�����

�

�

+

����
���
���

+

����������������

����
��������������

Aggregation Node 1

Aggregation Node 2

Aggregation Node 3

Aggregation Node n

...

1

2
3

45
6

7

8

9 10
Aggregation Node 1

Aggregation Node 2

Aggregation Node 3

Aggregation Node n

...

Output..
Hidden
 Layer

.

Conv. Layer 1 Conv. Layer L

Figure 3: The flowchart of the proposed NDDGNN with a layer for node #3 as an example. Specifically, NDDGNN first maps the in-
neighbors and out-neighbors of each node separately and then computes their neighbor diversity and degree diversity, respectively. After that,
NDDGNN employs the combined neighbor diversity and degree diversity to learn the weights of each node as well as normalizes the weights
by Softmax. NDDGNN also investigates the consistency regularization (i.e., Lcon) to ensure the prevention of learned abnormal weights.
Finally, the weights are used to fuse the in-neighbor and out-neighbor representations for updating the representation of node i.

Neighbor Diversity
Previous spatial DGNNs assign the same weight to all nodes
in the same neighbor set, by ignoring neighbor diversity.
Given an example in Figure 2, the label of the centric node
in the left of Figure 2 is benefited from its out-neighbors be-
cause it and its out-neighbor have the same color, while the
label of the centric node in the middle of Figure 2 is bene-
fited from its in-neighbors. In this case, it is obvious that the
different nodes has different weights to either in-neighbor set
and out-neighbor set. However, previous spatial DGNNs as-
sign them with the same weight. In this section, we consider
neighbor diversity to assign them with different weights.

The out-neighbor set of every node is different from the
set of other nodes, while the in-neighbor set of every node is
different from the one of other nodes. Therefore, it is reason-
able to learn different weights for the out-neighbor set and the
in-neighbor set. The category of every node is related to the
majority class in the neighbor set (i.e., either out-neighbor set
or in-neighbor set). Specifically, if the category of every node
is same as the category of the majority class in the neighbor
set, the weight of this neighbor set should be large for achiev-
ing small intra-class difference. Since we have label infor-
mation of a part of nodes, so the feature difference between
every node and its connected nodes can be used to measure
the intra-class difference, and thus determining the weights
of the neighbor-set. Considering Dirichlet energy [Xu et al.,
2023] is one of popular ways to measure the adjacent node
feature difference, in this paper, we employ it to guide to
learn the weights. Specifically, given the node representation

H = [h1,h2, . . . ,hn] ∈ Rn×f , the Dirichlet energy of l
layer E

(
H(l)

)
is defined as follows:

E(H(l)) =

n∑
i

∑
j∈Ni

s′ij

∥∥∥h(l)
i − h

(l)
j

∥∥∥2
2
, (2)

where s′ij denotes weight of edges.
Since different dimensions carry different information, it

is necessary to assign different weights to different dimen-
sions. However, Dirichlet energy assigns the same weight to
all dimensions. In this paper, we introduce learnable param-
eters in Dirichlet energy, enabling the model to assign dis-
tinct weights to different dimensions and can be adaptively
adjusted according to downstream tasks, which can be writ-
ten as:

E(H(l)) =
n∑
i

∑
j∈Ni

s′ij

∥∥∥(h(l)
i − h

(l)
j)⊙w(l)

∥∥∥2
2
, (3)

where w(l) ∈ Rf×1 is a learnable parameter vector and ⊙ is
element-wise product.

Although Dirichlet energy is used to compute the whole
graph, we focus on the difference between every node and
its neighbor sets. To facilitate subsequent calculations and re-
duce complexity, we use row directed normalized adjacency
matrix for s′ij here (i.e., s′ij,← = 1

di,←
, s′ij,→ = 1

di,→
). Thus,

for out-neighbor set of all nodes, the matrix form of out-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2074

A

B

C

����������������

����������������

A

B

C

A

B

C
������
���

���

������
���

���

����
�

������
���

}Fusion A

B

C

���������������������

�������������������������

���������������������

����	������

A

B

C

A

B

C

A

B

C
������
���

���

������
���

���

����
�

������
���

}Fusion A

B

C

�����������������������

�
����������������
��������

�����������������������

����������
�

����������������

����������������

Figure 4: A case to illustrate the difference of weight assignment between previous spatial DGNN (e.g., Dir-GNN [Rossi et al., 2023]) and
our proposed method.

Dirichlet energy e(l)→ in l layer can be defined as follows:

e(l)→ = ((I+ S′→)(H(l) ⊙H(l))

− 2(((I+ S′→)H(l))⊙H(l) −H(l) ⊙H(l)))w(l)
→

(4)

where e(l)→ ∈ Rn×1, which i-th element represents the out-
Dirichlet energy of node i and I is the identity matrix. The
same as in-Dirichlet energy e(l)← for in-neighbor set:

e(l)← = ((I+ S′←)(H(l) ⊙H(l))

− 2(((I+ S′←)H(l))⊙H(l) −H(l) ⊙H(l)))w(l)
←

(5)

On large-scale graphs, to reduce the time complexity, we
rewrite equation (3) as:

E(H(l)) =
n∑
i

∥∥∥∥∥∥(h(l)
i −

∑
j∈Ni

s′ijh
(l)
j)⊙w(l)

∥∥∥∥∥∥
2

2

(6)

This equation calculates the difference between each node
and two neighbors like equation (3) and ignores the vari-
ance within the neighbors, we prove it in Appendix. Thus, the
out-Dirichlet energy in equation (4) can be write as:e(l)→ =
(H − SH)2w(l)

→ , the same as in-Dirichlet energy. Here, we
have extended the Dirichlet energy to adaptively characterize
the differences between each node and its in-neighbors and
out-neighbors in directed graphs. However, there is a problem
in using the corresponding Dirichlet energy as the weights of
two kinds of neighbor sets. In general, the larger the differ-
ence in features between a node and its neighbors, the more
likely they belong to different categories. Therefore, directly
using Dirichlet energy as weights would lead to assigning
larger weights to the neighbor set with more different cate-
gories nodes and smaller weights to the neighbor sets with
more same categories nodes. This is contrary to our motiva-
tion. Therefore, we add the inverse to correct them.{

q(l)
→ = −e(l)→

q(l)
← = −e(l)← ,

(7)

where every element of q(l)
→ ∈ Rn×1 and q(l)

← ∈ Rn×1 are
adaptive weights of the two kinds of neighbor set for every
node, respectively.

Different from current spatial DGNNs manually set the
weight, Eq. (7) automatically learning q(l)

→ and q(l)
← by con-

sidering the difference between every node and its neighbors

by in-Dirichlet energy and out-Dirichlet energy. As a result,
for all nodes, the neighbor sets with smaller feature differ-
ences (i.e., more similar categories), larger weights will be
assigned compared to the other neighbor set. i.e., characteriz-
ing neighbor diversity for every node. However, ever node is
related to its neighbors as well as its degree, which also needs
to be paid attention on node diversity.

Degree Diversity
Previous spatial DGNNs combine the in-neighbors and out-
neighbors without considering the in-degree and out-degree.
However, degree information can improve GNNs’s ability to
distinguish the different nodes, especially in directed graphs
since there are two types of degree. For example, as shown
in Figure 2, for simply analysis, we assume that nodes of the
same category have the same features. The previous spatial
DGNNs utilize the equation 1 to update nodes representa-
tion for nodes in left and right of Figure 2, the two nodes
would obtain the same representations. However these two
nodes are not the same node because their number of neigh-
bors are different (i.e., in-degree and out-degree). Therefore,
without considering degree information will weaken the node
representation ability of DGNNs.

In this paper, to overcome above issue, we propose to learn
degree embedding for integrating degree information with
the process of representation learning. Specifically, denoting
Deg← ∈ Rn×f and Deg→ ∈ Rn×f , as learneable in-degree
embedding and out-degree embedding, respectively, Eq. (7)
becomes: {

q(l)
→ = −e(l)→ +Deg→w(l)

→
q(l)
← = −e(l)← +Deg←w(l)

← ,
(8)

Based on Eq. (8), nodes with the same in-degree have
the same in-degree embedding. Similarly, nodes with the
same out-degree also have the same out-degree embedding.
Hence, when two nodes share same in out-/in-degrees and
out-/in-neighbor differences, their weights during aggrega-
tion will be similar. In contrast, even if two nodes have
very similar features for themselves and their neighbors, as
long as their degree information is different they will not
be mapped to the same point in the feature space (i.e., the
model has the ability to distinguish between the two nodes).
However, previous spatial DGNNs by [Rossi et al., 2023;
Tong et al., 2020a] assign the same weight to both nodes in
all cases.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2075

Overall Architecture
To consider the node diversity in directed graph, we propose
a simple but effective framework called NDDGNN as shown
in Figure 3. Specifically, for a directed graph, we learn the
weights vector (i.e., q(l)

← ,q(l)
→ ∈ Rn×1), where q(l)

i,← and q
(l)
i,→

are in-neighbor and out-neighbor weight of node i in layer l,
respectively. Then through the softmax normalize to ensure
the q(l)

← + q(l)
→ = [1, 1, · · · , 1]T as follow:

diag(Γ(l)
→) =

exp(q(l)
→)

exp(q
(l)
→) + exp(q

(l)
←)

, (9)

where diag(Γ(l)
→) stands for the diagonal value of diagonal

matrix Γ(l)
→ . Moreover, the equation holds, i.e., Γ(l)

← = I −
Γ(l)
→ .
In this paper, we take into account node diversity to over-

come the issues in previous spatial DGNNs by using Eq. (10)
to update node representation H(l+1) in the (l + 1)-th layer.

H(l+1) = Γ(l)
→S→H(l)W(l)

→ + Γ(l)
←S←H(l)W(l)

← , (10)

where Γ(l)
← ∈ Rn×n is the diagonal matrix consisting of

[Γ
(l)
(1,1)←,Γ

(l)
(2,2)←, . . . ,Γ

(l)
(n,n)←] as the diagonal elements in

l layer, including both neighbor diversity and degree diver-
sity, the same as Γ→. With this form, it is possible to achieve
that each node has different weights assigned to outgoing and
incoming neighbors. The difference between previous spatial
DGNNs (e.g., DirGNN) and our proposed method is shown
in Figure 4, where previous spatial DGNNs is a special case
of our proposed method in Eq. (10).

By aggregating the neighbors’ representation and the node
representation in the previous layer, in this paper, node rep-
resentation H(l+1) in the (l + 1)-th layer of our proposed
method is updated by:

H(l+1) = αH(l) + Γ(l)
→S→H(l)W(l)

→ + Γ(l)
←S←H(l)W(l)

← ,
(11)

where α is a hyper-parameter to preserve the information of
the previous layer. We show the model’s real running time in
the Appendix.

2.3 Consistency Regularization.
In our method, we decompose the directional information into
incoming information and outgoing information. We expect
that weights learnt for incoming information follow the same
distribution, while weights learnt from outgoing information
also follow the same distribution. To do this, we propose the
consistency regularization to mitigate and avoid learning the
abnormal weights that deviate from the distribution. Specif-
ically, we first calculate the average of all weights for either
incoming information or outgoing information by:

γ→ =
1

n

n−1∑
i=0

Γ(i,i),→, γ← =
1

n

n−1∑
i=0

Γ(i,i),←. (12)

We then propose to minimize the distance between γ→ and
Γi,→, as well as the distance between γ← and Γi,← by:

Lcon =
1

n

n∑
i=0

∥∥γ→ − Γ(i,i),→
∥∥2
2
+
1

n

n∑
i=0

∥∥γ← − Γ(i,i),←
∥∥2
2
.

(13)

2.4 Objective Function
In each epoch, we employ both the cross entropy loss and
the consistency regularization loss in Eq. (13) to conduct rep-
resentation learning. The final objective function of the pro-
posed method is formulated as:

L = Lsup + λLcon, (14)

where Lsup is the cross entropy loss and λ is a hyper-
parameter to balance two losses.

3 Experiments
3.1 Experimental Setting
Datasets
We evaluate the effectiveness of the proposed method on
2 homophilic datasets and 5 heterophilic datasets. Ho-
mophilic datasets include Cora-ML and Citeseer-Full [Bo-
jchevski and Günnemann, 2018]. Heterophilic datasets in-
clude Chameleon, Squirrel [Pei et al., 2020], Roman-Empire
[Platonov et al., 2023], Arxiv-Year [Leskovec et al., 2005],
and Snap-Patents [Leskovec and Krevl, 2014]. In particular,
Arxiv-Year and Snap-Patents are large-scale datasets. More
details of the used datasets can be found in Appendix.

Comparison Methods
The comparison methods include 3 traditional undirected
graph methods (i.e., GCN [Kipf and Welling, 2017], GAT
[Velickovic et al., 2018], and graphSAGE [Hamilton et
al., 2017]), 6 state-of-the-art undirected graph methods
(i.e., H2GCN [Zhu et al., 2020], GPRGNN [Chien et al.,
2021], LINKX [Lim et al., 2021], FSGNN [Maurya et al.,
2021], ACM-GCN [Luan et al., 2022], DloGNN [Li et al.,
2022], and Gradient Gating [Rusch et al., 2023]), and three
state-of-the-art directed graph methods (i.e., DiGCN [Tong et
al., 2020a], MagNet [Zhang et al., 2021] and Dir-GNN [Rossi
et al., 2023]).

Evaluation Protocol
To evaluate the effectiveness of the proposed method, we
follow the settings in [Rossi et al., 2023] to conduct node
classification tasks and link prediction tasks. Specifically, for
the node classification task, we split all datasets in Dir-GNN
[Rossi et al., 2023] and the detail can be found in the Ap-
pendix. For directed graph link prediction task, we remove
10% of edges for testing, 5% for validation, and use the rest
of the edges for training. We randomly generate 10 splits for
each graph and the graph connectivity is maintained during
the splitting.

Setting-Up
We conduct all experiments on a server with Nvidia RTX
4090 (24GB memory each). We employ early stopping on
the validation accuracy for each experiment. Moreover, we
conduct each experiment on ten random seeds and report the
average results.

In the proposed method, we optimize all parameters by the
Adam optimization [Kingma and Ba, 2015] with the learn-
ing rate in the range of {0.005, 0.01} and set the weight

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2076

Small-scale Datasets Large-scale Datasets
Datasets Cora-ML Citeseer-Full Chameleon Squirrel Roman-Empire Arxiv-Year Snap-Patents

MLP 77.48±1.23 80.01±1.23 46.36±2.57 34.14±1.94 65.76±0.42 36.70±0.15 31.34±0.21

GCN 52.37±1.77 54.65±1.22 64.82±2.24 53.43±2.01 73.69±0.74 46.02±0.26 51.02±0.06

GAT 54.12±1.56 55.15±1.31 45.56±3.16 39.14±2.88 71.16±0.63 45.12±0.28 OOM

H2GCN 62.86±1.45 68.34±1.36 59.39±0.98 37.90±0.02 60.11±0.52 49.09±0.10 OOM
GPRGNN 68.88±1.66 70.12±1.24 62.85±2.90 54.35±0.87 64.85±0.27 45.07±0.21 40.19±0.03

LINKX 72.32±1.41 78.75±1.34 68.42±1.38 61.81±1.80 37.55±0.36 56.00±0.17 61.95±0.12

FSGNN 67.51±1.65 66.35±1.16 78.27±1.28 74.10±1.89 79.92±0.56 50.47±0.21 65.07±0.03

ACM-GCN 69.96±1.53 73.61±1.32 74.76±2.20 67.40±2.21 69.66±0.62 47.37±0.59 55.14±0.16

GloGNN 73.78±1.69 76.13±1.14 57.88±1.76 71.21±1.84 59.63±0.69 54.79±0.25 62.09±0.27

Grand.Gating 76.63±1.63 80.36±1.13 71.40±2.38 64.26±2.38 82.16±0.78 63.30±1.84 69.50±0.39

Di-GCN 87.36±1.06 92.75±0.75 52.24±3.65 37.74±1.54 52.71±0.32 OOM OOM
MagNet 85.26±1.05 93.38±0.89 58.22±2.87 39.01±1.93 88.07±0.27 60.29±0.27 OOM

Dir-GNN 84.45±1.69 92.79±0.59 79.71±1.26 75.31±1.92 91.23±0.32 64.08±0.26 73.92±0.05

NDDGNN 88.14±1.28 94.17±0.58 79.79±1.04 75.38±1.95 91.76±0.27 65.02±0.32 74.15±0.04

Table 1: Node classification accuracy (%) on directed graphs. The best results are in bold. OOM indicates out of memory.

Datasets Cora-ML Citeseer-Full Chameleon Squirrel

GCN 76.24±4.25 71.16±4.41 86.03±1.53 90.64±0.49

GAT 64.58±12.28 67.28±2.90 85.12±1.57 90.37±0.45

MagNet 82.20±3.36 85.89±4.61 86.28±1.23 90.13±0.53

Dir-GNN 82.23±4.01 70.62±6.56 82.76±2.72 89.17±0.52

NDDGNN 83.04±9.56 87.93±3.92 90.30±1.82 92.40±1.01

Table 2: Link prediction accuracy (%) on directed graphs. The best
results are in bold.

+N +Deg +Lcon Cora-ML Citeseer-Full Chameleon Squirrel

- - - 52.37±1.77 54.65±1.22 64.82±2.24 53.43±2.01

✓ - - 81.98±1.19 93.56±0.67 72.87±1.32 60.30±2.27

- ✓ - 86.52±1.35 93.36±0.54 73.44±2.12 61.88±5.62

✓ ✓ - 86.89±1.36 94.11±0.59 76.84±1.60 75.20±2.02

✓ - ✓ 83.14±1.53 94.06±0.68 75.48±1.74 73.73±8.03

- ✓ ✓ 87.58±1.17 93.89±0.61 78.75±1.81 74.59±1.88

✓ ✓ ✓ 88.14±1.28 94.17±0.58 79.79±1.04 75.38±1.95

Table 3: Ablation study. +N denotes neighbor diversity, +Deg de-
notes degree diversity.

decay as 0. Moreover, we set the number of model lay-
ers in the range of {4, 5, 6}, set the dropout in the range
of {0.0, 0.35, 0.5, 0.6}, and set the size of the hidden unit
in the range of {32, 128, 256}. We set α for preserving
the representation of the previous layer in the range of
{0.0, 0.3, 0.5, 0.8, 1.0}, and set λ in our regularization term
in the range of {0.0, 0.1, 0.2, 0.9}. Notably, we employ the
same parameters for both node classification and link predic-
tion tasks. In addition, we set the parameters of all compari-
son methods according to the original literature so that they
output the best performance.

3.2 Results Analysis
Node Classification
We evaluate the effectiveness of our method on the node clas-
sification task and report the classification accuracy of all

methods on all datasets in Table 1. Obviously, the proposed
method achieves the best performance on all datasets.

First, compared with the undirected graph methods
(i.e., GCN, GAT, graph-SAGE, H2GCN, GPRGNN, LINKX,
FSGNN, ACM-GCN, DloGNN, and Grand.Gating), the pro-
posed method consistently obtains substantial improvements.
For example, the proposed method on average improves
by 11.5%, 13.81%, 8.38%, 11.12%, 1.72%, 4.65%, and
9.6%, compared with the best undirected graph method
Grand.Gating on all datasets. This can be attributed to the fact
that these state-of-the-art undirected graph methods are pri-
marily designed to operate on symmetric graphs, thus their ar-
chitectures might not be well-suited to effectively handle the
inherent directional information present in directed graphs.
More seriously, directly applying undirected graph methods
to directed graph datasets can even introduce negative ef-
fects. For example, MLP outperforms many undirected graph
methods (e.g., GCN, GAT, H2GCN, and GPRGNN) on di-
rected datasets (e.g., Cora-ML and Citeseer). This suggests
that these undirected graph methods act as a negative impact
for the utilization of the graph structure.

Second, compared with the directed graph methods, the
proposed method achieves the best performance, followed by
Dir-GNN, MagNet and Di-GCN. For example, the proposed
method on average improves by 0.99%, compared with the
best directed graph method Dir-GNN on all datasets. This
suggests that the proposed framework that it is effective to
take node diversity into account, compared to directed graph
methods.

Link Prediction
We evaluate the effectiveness of the proposed method on the
link prediction tasks by reporting the results (i.e., prediction
accuracy) on four datasets in Table 2. We can observe that
our method consistently achieves the best performance com-
pared to the directed graph methods. For example, the pro-
posed method average improves by 0.84%, 2.04%, 4.02%,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2077

Figure 5: Classification accuracy of the top 5% of nodes with the largest degree differences under all directed graph methods and GCN on
four datasets.

and 2.27%, compared with the best directed graph method
MagNet on all datasets. This indicates that our method can
achieve good performance in structure-dominated tasks.

Effectiveness on Nodes with Complex Structure
We further evaluate the effectiveness of the proposed method
to cope with complex structure (e.g., nodes with extremely
different out-degree and in-degree) in directed graphs. To
do this, we select the top 5% nodes with the largest out-
degree-in-degree differences and visualize the classification
performance on four datasets in Figure 5. First, the undirected
graph method GCN almost loses its representation ability for
complex structural cases in directed graphs, especially in the
Chameleon and Squirrel datasets where the maximum degree
difference is more than a thousand. This is due to the inability
of undirected graph methods to capture such differences. Sec-
ond, the proposed NDDGNN achieves the best performance
on complex nodes compared to other directed graph methods,
which benefits from node diversity.

Ablation Study
The proposed method mainly consists of three compo-
nents, i.e., neighbor diversity (i.e., +N), degree diversity
(i.e., +Deg) and consistency loss (i.e., +Lcon). To verify the
effectiveness of each component in the proposed method, we
investigate the performance of all variants (except Lcon, since
Lcon depends on +N or +Deg) on the node classification
task by reporting the results in Table 3.

First, the variant method that considers both the neighbour
diversity and the degree diversity leads to a large performance
improvement, compared with the variant method considering
only one diversity of them. This suggests that both neigh-
borhood diversity and degree diversity are critical and not
interchangeable. Second, the variant method that considers
the consistency loss averagely improves by 3.45%, compared
with the counterpart variant methods without the consistency
loss. This indicates that the consistency loss avoids learning
the abnormal weights to some extent. Therefore, the effective-
ness of each component of the proposed method is verified.

4 Related Work
We briefly review the study related to this work, i.e., directed
graph mining methods and adaptive node level methods.

4.1 Directed Graph Mining Methods
[Ma et al., 2019] constructs a directed Laplacian matrix based
on identities that involve the random walk matrix and its sta-
tionary distribution.

DGCN [Tong et al., 2020b] leverages both the first-order
and second-order proximity information to collectively de-
scribe and distinguish the neighborhood of each vertex from
those vertices. MotifNet [Monti et al., 2018] is capable of
dealing with directed graphs by exploiting local graph motifs.
MagNet [Zhang et al., 2021] utilizes the magnetic Laplacian
matrix to encode undirected geometric structures in the mag-
nitudes and directional information in the phases. DiGCN
[Tong et al., 2020a] defines the Laplacian matrix of the di-
rected graph based on PageRank. [Tong et al., 2021] extends
DiGCN to obtain different Laplacian matrices under differ-
ent hyper-parameters. Recently, Dir-GNN [Rossi et al., 2023]
proposes first aggregating outgoing and incoming informa-
tion separately, and then simply fusing the information of out-
going and incoming information with a fixed hyper-parameter
weight for all nodes.

4.2 Graph Neural Networks With Adaptive Node
Level Methods

GNN [Kipf and Welling, 2017; Yang et al., 2023b; Yang et
al., 2023a; Bi et al., 2022a] have shown excellent perfor-
mance on graph representation learning. Some methods uti-
lize the adaptive weight assignment technique to let nodes
learn the appropriate representation. Such as GAT [Velick-
ovic et al., 2018] adaptively assigns weights to the neighbors
of each node using attention mechanisms, SA-GNN [Huang
et al., 2023b] adopts different aggregation methods for ho-
mophilic and heterophilic neighbors for each node by classi-
fying neighbor labels. Similarly, GBK-GNN [Du et al., 2022]
uses the bi-kernel to go through the homophily information
of the modeled neighbors for each node. MM-GNN [Bi et al.,
2023] models the multi-order moments’ information for ev-
ery node. However, the previous methods did not consider the
complex situation of having two kinds of neighbors and two
degrees in a directed graph.

5 Conclusion
In this paper, we proposed a new directed GNN method
to deal with the directional information by considering the
node diversity. For specificity, the node diversity is only com-
posed of neighbor diversity and degree diversity. Moreover,
our method investigates two kinds of node diversity to guide
the assignments of node-level weights. Experimental results
demonstrated the effectiveness of our proposed method, com-
pared to SOTA methods in terms of node classification and
link prediction tasks.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2078

Acknowledgments
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2022YFA1004100.

References
[Bi et al., 2022a] Wendong Bi, Lun Du, Qiang Fu, Yanlin

Wang, Shi Han, and Dongmei Zhang. Make heterophily
graphs better fit gnn: A graph rewiring approach. arXiv
preprint arXiv:2209.08264, 2022.

[Bi et al., 2022b] Wendong Bi, Bingbing Xu, Xiaoqian Sun,
Zidong Wang, Huawei Shen, and Xueqi Cheng. Company-
as-tribe: Company financial risk assessment on tribe-style
graph with hierarchical graph neural networks. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 2712–2720, 2022.

[Bi et al., 2023] Wendong Bi, Lun Du, Qiang Fu, Yanlin
Wang, Shi Han, and Dongmei Zhang. Mm-gnn: Mix-
moment graph neural network towards modeling neigh-
borhood feature distribution. In ACM International Con-
ference on Web Search and Data Mining(WSDM), pages
132–140, 2023.

[Bojchevski and Günnemann, 2018] Aleksandar Bojchevski
and Stephan Günnemann. Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking. In
International Conference on Learning Representations,
(ICLR). OpenReview.net, 2018.

[Brin, 1998] Sergey Brin. The pagerank citation ranking:
bringing order to the web. volume 98, pages 161–172,
1998.

[Chien et al., 2021] Eli Chien, Jianhao Peng, Pan Li, and Ol-
gica Milenkovic. Adaptive universal generalized pager-
ank graph neural network. In International Conference
on Learning Representations, (ICLR). OpenReview.net,
2021.

[Du et al., 2022] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun
Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling
both homophily and heterophily. In ACM Web Conference,
pages 1550–1558, 2022.

[Hamilton et al., 2017] William L Hamilton, Rex Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing sys-
tems(Neurips), pages 1025–1035, 2017.

[Huang et al., 2023a] Jincheng Huang, Lun Du, Xu Chen,
Qiang Fu, Shi Han, and Dongmei Zhang. Robust mid-
pass filtering graph convolutional networks. In ACM Web
Conference(WWW), pages 328–338, 2023.

[Huang et al., 2023b] Jincheng Huang, Ping Li, Rui Huang,
Na Chen, and Acong Zhang. Revisiting the role of het-
erophily in graph representation learning: An edge clas-
sification perspective. ACM Transactions on Knowledge
Discovery from Data, 2023.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, International Confer-
ence on Learning Representations(ICLR), 2015.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Rep-
resentations, (ICLR), 2017.

[Leskovec and Krevl, 2014] Jure Leskovec and Andrej
Krevl. Snap datasets: Stanford large network dataset
collection, 2014.

[Leskovec et al., 2005] Jure Leskovec, Jon Kleinberg, and
Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In ACM
International conference on Knowledge discovery in data
mining(SIGKDD), pages 177–187, 2005.

[Li et al., 2022] Xiang Li, Renyu Zhu, Yao Cheng, Caihua
Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when
meeting heterophily. In International Conference on
Machine Learning(ICML), pages 13242–13256. PMLR,
2022.

[Lim et al., 2021] Derek Lim, Felix Hohne, Xiuyu Li, Si-
jia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous
graphs: New benchmarks and strong simple methods. vol-
ume 34, pages 20887–20902, 2021.

[Luan et al., 2022] Sitao Luan, Chenqing Hua, Qincheng
Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for
graph neural networks. Advances in neural information
processing systems(Neurips), 35:1362–1375, 2022.

[Ma et al., 2019] Yi Ma, Jianye Hao, Yaodong Yang, Han Li,
Junqi Jin, and Guangyong Chen. Spectral-based graph
convolutional network for directed graphs. arXiv preprint
arXiv:1907.08990, 2019.

[Maurya et al., 2021] Sunil Kumar Maurya, Xin Liu, and
Tsuyoshi Murata. Improving graph neural networks
with simple architecture design. arXiv preprint
arXiv:2105.07634, 2021.

[Mo et al., 2023] Yujie Mo, Yajie Lei, Jialie Shen, Xi-
aoshuang Shi, Heng Tao Shen, and Xiaofeng Zhu. Disen-
tangled multiplex graph representation learning. In ICML,
volume 202, pages 24983–25005, 2023.

[Mo et al., 2024] Yujie Mo, Feiping Nie, Ping Hu, Heng Tao
Shen, Zheng Zhang, Xinchao Wang, and Xiaofeng Zhu.
Self-supervised heterogeneous graph learning: a ho-
mophily and heterogeneity view. In ICLR, 2024.

[Monti et al., 2018] Federico Monti, Karl Otness, and
Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE
Data Science Workshop(DSW), pages 225–228, 2018.

[Pei et al., 2020] Hongbin Pei, Bingzhe Wei, Kevin Chen-
Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Ge-
ometric graph convolutional networks. In International

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2079

Conference on Learning Representations, (ICLR). Open-
Review.net, 2020.

[Platonov et al., 2023] Oleg Platonov, Denis Kuznedelev,
Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of
gnns under heterophily: are we really making progress?
arXiv preprint arXiv:2302.11640, 2023.

[Rossi et al., 2023] Emanuele Rossi, Bertrand Charpen-
tier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M. Bronstein. Edge directional-
ity improves learning on heterophilic graphs. In The Sec-
ond Learning on Graphs Conference(LOG), 2023.

[Rusch et al., 2023] T. Konstantin Rusch, Benjamin Paul
Chamberlain, Michael W. Mahoney, Michael M. Bron-
stein, and Siddhartha Mishra. Gradient gating for deep
multi-rate learning on graphs. In International Conference
on Learning Representations, (ICLR). OpenReview.net,
2023.

[Tong et al., 2020a] Zekun Tong, Yuxuan Liang, Chang-
sheng Sun, Xinke Li, David Rosenblum, and Andrew
Lim. Digraph inception convolutional networks. Ad-
vances in neural information processing systems(Neurips),
33:17907–17918, 2020.

[Tong et al., 2020b] Zekun Tong, Yuxuan Liang, Chang-
sheng Sun, David S Rosenblum, and Andrew Lim. Di-
rected graph convolutional network. arXiv preprint
arXiv:2004.13970, 2020.

[Tong et al., 2021] Zekun Tong, Yuxuan Liang, Henghui
Ding, Yongxing Dai, Xinke Li, and Changhu Wang. Di-
rected graph contrastive learning. Advances in neural in-
formation processing systems(Neurips), 34:19580–19593,
2021.

[Velickovic et al., 2018] Petar Velickovic, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In Interna-
tional Conference on Learning Representations, (ICLR).
OpenReview.net, 2018.

[Xu et al., 2023] Lei Xu, Lei Chen, Rong Wang, Feiping
Nie, and Xuelong Li. Joint feature and differentiable k-
nn graph learning using dirichlet energy. arXiv preprint
arXiv:2305.12396, 2023.

[Yang et al., 2023a] Xihong Yang, Yue Liu, Sihang Zhou, Si-
wei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Lim-
ing Fang, and En Zhu. Cluster-guided contrastive graph
clustering network. In Proceedings of the AAAI confer-
ence on artificial intelligence (AAAI), volume 37, pages
10834–10842, 2023.

[Yang et al., 2023b] Xihong Yang, Cheng Tan, Yue Liu,
Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z Li,
Xinwang Liu, and En Zhu. Convert: Contrastive graph
clustering with reliable augmentation. In Proceedings of
the 31st ACM International Conference on Multimedia
(MM), pages 319–327, 2023.

[Zhang et al., 2021] Xitong Zhang, Yixuan He, Nathan
Brugnone, Michael Perlmutter, and Matthew Hirn. Mag-

net: A neural network for directed graphs. Ad-
vances in neural information processing systems(Neurips),
34:27003–27015, 2021.

[Zhu et al., 2020] Jiong Zhu, Yujun Yan, Lingxiao Zhao,
Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limita-
tions and effective designs. In Advances in neural infor-
mation processing systems(Neurips), 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2080

	Introduction
	Methodology
	Motivation
	Node Diversity
	Neighbor Diversity
	Degree Diversity
	Overall Architecture

	Consistency Regularization.
	Objective Function

	Experiments
	Experimental Setting
	Datasets
	Comparison Methods
	Evaluation Protocol
	Setting-Up

	Results Analysis
	Node Classification
	Link Prediction
	Effectiveness on Nodes with Complex Structure
	Ablation Study

	Related Work
	Directed Graph Mining Methods
	Graph Neural Networks With Adaptive Node Level Methods

	Conclusion

