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Abstract
The Variable Subset Forecasting (VSF) problem,
where the majority of variables are unavailable in
the inference stage of multivariate forecasting, has
been an important but under-explored task with
broad impacts in many real-world applications.
Missing values, absent inter-correlation, and the
impracticality of retraining largely hinder the abil-
ity of multivariate forecasting models to capture
inherent relationships among variables, impacting
their performance However, existing approaches
towards these issues either heavily rely on local
temporal correlation or face limitations in fully re-
covering missing information from the unavailable
subset, accompanied by notable computational ex-
penses. To address these problems, we propose a
novel density estimation solution to recover the in-
formation of missing variables via flows-based gen-
erative framework. In particular, a novel genera-
tive network for time series, namely Time-series
Reconstruction Flows (TRF), is proposed to es-
timate and reconstruct the missing variable sub-
set. In addition, a novel meta-training framework,
Variable-Agnostic Meta Learning, has been devel-
oped to enhance the generalization ability of TRF,
enabling it to adapt to diverse missing variables sit-
uations. Finally, extensive experiments are con-
ducted to demonstrate the superiority of our pro-
posed method compared with baseline methods.

1 Introduction
Multivariate time series forecasting is critical in many real
world applications, such as traffic prediction [Bai et al.,
2020], tourism demand analysis [Du Preez and Witt, 2003]
and air quality estimation [Du et al., 2019]. However, real
world multivariate time series data are usually imperfect and
incomplete. For instance, in wind speed forecasting, when
there are malfuncitoning sensors, long term data unavailabil-
ity arises; when there are dynamic fluctuations in resource
availability, resource domain shifts arise [Chauhan et al.,
* Corresponding authors
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Figure 1: Setting of Variable Subset Time-series Forecast: During
training, Variables V1 through V5 are given whereas during the in-
ference phase, only V1, V2, V4 are accessible.

2022]. This can be generalized as the task of Variable Sub-
set time-series Forecast (VSF). Figure 1 shows the VSF task
has two steps: 1) in the training step, a multivariate time se-
ries forecasting model can access to all variables for training;
2) in the inference step, only a subset of variables are avail-
able and the other variables are missing. The objective is to
forecast the future values of the available variable subset.

The VSF task introduce two unique issues for existing
multivariate time series forecasting literature: 1) Issue 1:

incomplete inter-variable correlation awareness: Due to
the unavailability of variables, existing multivariate time se-
ries forecasting models is incapable of modeling the inter-
dependency between missing variables and available vari-
ables. The incomplete correlation awareness hinder fore-
casting performance [Guo et al., 2019; Bai et al., 2018]; 2)
Issue 2: variable subset agnostic generalization: In a dy-
namic open environment, it is usually unlikely to know which
variables will be absent during inference/testing in advance.
Once available variable subset is changed, we have to retrain
forecasting models, which is inefficient and untimely. More-
over, training many subset-specific forecasting models over
all possible variable combinations is computationally costly
and impractical in real world deployment.

To tackle the two issues of VSF, an intuitive idea is to im-
pute missing data. Prior imputation techniques capture both
inter-variable and intra-variable correlation to impute miss-
ing values [Luo et al., 2018; Tang et al., 2020]. However,
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the complete absence (not partial) of variables impedes their
ability to capture inter-variable information (Issue 1), mak-
ing such techniques unsuitable for the VSF setting. VSF
remained understudied until the work in [Chauhan et al.,
2022] introduced a wrapper approach, i.e., Forecast Distance
Weighting (FDW), to recover missing variables from the
nearest neighbors selected by ensemble weighting. However,
top-K neighbors based recovery only consider partial infor-
mation and could suffer if any top-K neighbor is biased, and
the hyper parameter K is not generalizable. Moreover, FDW
needs to re-search neighbors whenever the missing variable
subset changes (Issue 1 & 2).
To address the issues, we develop deep time series gener-

ative reconstruction flow for VSF. Our approach builds upon
two major contributions:
First, Time-series Reconstruction Flows (TRF) for re-

covering missing subset. To address the first issue, we pro-
pose to reformulate the missing variable reconstruction prob-
lem as deep collective generative task that model the dynamic
temporal pattern of time series data. This generative reformu-
lation inspires a density estimation perspective to generate the
missing variables. Specifically, based on the available vari-
able subset, we intend to estimate the unknown conditional
density of unavailable variables via generative networks and
rebuild the missing variables by leveraging the estimated
distribution. Inspired by human reasoning [Byrne, 2019;
Hu et al., 2024], which seeks to convey complex ideas
through the use of familiar and simple objects, we can ex-
press the intricate density of inaccessible variables by trans-
forming a simple distribution via a set of mapping func-
tion. To implement the mapping process, we introduce invert-
ible Time-series Reconstruction Flows (TRF), a conditional
flows-based generative framework, to reconstruct the miss-
ing variables for multivariate forecasting. The fully invert-
ible flow structure of TRF can ensure accurate reconstruction
by mapping any distribution of missing variable subset to the
Gaussian distribution through forward transformation and re-
building it with the inverse transformation. In addition, we
incorporate the available subset as the conditional input, en-
abling us to effectively constrain the generation of missing
variables by leveraging the inter-variable correlation between
the missing and available variable subset. To update TRF, we
utilize a log-likelihood training schema. This proves advan-
tageous for our framework as it facilitates learning the gen-
eration process without introducing extensive constraints or
losses, making our framework easy to train.
Second, Variable-Agnostic learning paradigm for TRF.

Retraining forecasting models for a dynamic available vari-
able subset and iterating through all possible variable subset
combinations are both impractical and costly. In response, we
propose a meta-learning based training framework, Variable-
Agnostic Meta Learning, to help TRF to quickly adapt to
new available variables subsets. Specifically, we regard di-
verse variable subsets as different meta-learning tasks. For
each epoch, we sample a batch of variable subsets and update
the parameters of TRF for each variable subset. We aggre-
gate the subset-specific parameters and update the TRF by
this aggregated parameters. Hence, the parameters of TRF
can be more generalized for all possible variable subset. For a

new missing variable subset, a small number of gradient steps
will yield good generalization performance, allowing TRF to
quickly adapt to this new scenario and tackle Issue 2.
In summary, we reformulate the VSF problem from a novel

density estimation perspective. We propose a novel flow-
based framework TRF to recover the information of miss-
ing variable subset. To improve the generalization ability
of TRF, we design a training framework, namely Variable-
Agnostic Meta Learning. Ultimately, we conduct extensive
experiments to indicate the effectiveness of our framework.

2 Related Works
Variable Subset Time-series Forecasting. Multivariate
time series forecasting has been an abiding research topic
since last century [Yi et al., 2024b; Yi et al., 2024a; Hu et al.,
2023; Fan et al., 2023; Ren et al., 2022; Fan et al., 2022]. To
model temporal patterns and pairwise dependencies among
variables, researchers has proposed several GNN-based mod-
els, such as DCRNN [Li et al., 2017], MTGNN [Wu et al.,
2020], and ASTGCN [Guo et al., 2019]. However, Vari-
able Subset Time-series Forecast is underexplored. Miss-
ing several variables in the inference phase will consider-
ably hinder the ability of GNN-based models to capture the
inter-dependencies among variables. To tackle this problem,
[Chauhan et al., 2022] propose their wrapper technique by
borrowing data from training set. However, they fail to con-
sider the distribution shift of time series and make an impre-
cise estimation of the missing variables. In this work, we uti-
lize a deep learning method to estimate the density of missing
variables and the empirical results demonstrate the effective-
ness and superiority of our proposed solution.
Normalizing Flows. Normalizing flows are a set of bijec-
tive mapping functions which are designed to model an un-
known distribution based on the given data [Dinh et al., 2014;
Dinh et al., 2016]. For example, based on the coupling layer
proposed by [Dinh et al., 2016], Glow [Kingma and Dhari-
wal, 2018] is constructed with more complex structure and
achieves superior performance. MAF, proposed by [Papa-
makarios et al., 2017], utilizes the autoregressive mechanism
for better density estimation.
Meta-learning. Dissimilar to traditional machine learn-
ing methods, meta-learning algorithms aim to acquire gen-
eralizable information and transfer the knowledge to new
tasks [Vanschoren, 2018]. For instance, MAML algorithm
proposed by [Finn et al., 2017] can prompt faster training
in new tasks by a small number of gradient steps with a
small amount of training data. Reptile [Nichol and Schul-
man, 2018] initials the parameters of a neural network via
stochastic gradient descent on each task.

3 Problem Formulations
Let X(N)

t
2 RN denote the recording of N distinct vari-

ables at time-step t, we define historical L values as the
lookback window X

(N)
t�L:t = {X(N)

t�L+1, · · · ,X
(N)
t

}, and de-
fine the future H values as the horizon window X

(N)
t:t+H

=

{X(N)
t+1, · · · ,X

(N)
t+H

}. For the classical setting of multivariate
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Figure 2: An overview of our proposed methods, consisting of our
Time-series Reconstruction Flows and the training framework of
Variable-Agnostic Meta Learning.

time series forecasting, we intend to find a mapping function
F✓ to project lookback window into horizon window, which
can be formulated as: X(N)

t:t+H
= F✓(X

(N)
t�L:t).

However, in real life, the data collection for time series can
meet a common issue: due to the long-term unavailability of
data [Yick et al., 2008] and resource domain shift in time se-
ries [Hamid and Wibowo, 2018], chances are that only partial
variables are available in the future [Chauhan et al., 2022].
Accordingly, this problem of time series forecasting with par-
tial variables during inference is formulated as Variable Sub-
set Forecasting (VSF) problem. Under such settings, we de-
note the available variable subset as S and the universe of
variables as N , i.e., S ⇢ N and |S| ⌧ |N |, where N is de-
noted as the set ofN integers, [[1...N ]]. In the training phase,
each inputX(N)

t
is a vector in R|N |⇥D while in the inference

phase, each data point can be represented asX(S)
t

2 R|S|⇥D.
In other words, though the models can take all variables in
training, only a small subset of variables is considered in in-
ference; formally, the VSF problem can be written as:

X
(S)
t:t+H

= F✓(X
(S)
t�L:t), t 2 Ttest,

while X
(N)
t:t+H

= F✓(X
(N)
t�L:t), t 2 Ttrain

(1)

where Ttrain and Ttest are sets of the time-step of training
data and test data.

4 Methodology
We introduce our proposed framework for VSF problem.
First, we formulate VSF problem from a novel generative

density estimation perspective in Section 4.1. We recon-
struct the missing variables via density estimation and gen-
eration. Then, we concretely propose a novel generative net-
work, Time-series Reconstruction Flows (TRF) to recover
the information of absent variables and elaborate how to in-
tegrate our framework and forecasting models in Section 4.2.
To further improve the generalization ability of the model, we
propose meta training framework, Variable-Agnostic Meta

Learning, to TRF in Section 4.3.

4.1 Density Estimation and Generation for
Variable Subset of Time Series

In VSF problem, the unavailability of the majority variables
(i.e., |N |� |S|) would lead to the missing values and absent
inter-dependencies between variables in S and N\S during
the inference, which largely hinder their forecasting perfor-
mances. For this problem, previous VSF work [Chauhan et

al., 2022] used fixed assumption of similarity and retrieved
neighbors of available variables for imputation. However, it
encounters constraints in completely recovering information
that is missing from the unavailable subset, along with signif-
icant computational costs of measuring pair-wise similarity.
In this paper, we reconsider the VSF problem from a novel
density estimation perspective. We can fully recover the miss-
ing information by leveraging generative models to simulta-
neously reconstruct all the unavailable variables, without in-
troducing additional computational cost.

Formally, given the fully observable training data, we try
to estimate the unknown conditional density pX (X

N\S |XS
)

of the missing variables X
N\S and available subset data

X
S , where X is the input space. Inspired by the hu-

man’s logic of explaining intricate things via understand-
able objects ,we express the density of missing variables
via Gaussian distribution pZ . As a result, we utilize
a set of bijective functions f✓ to learn the dependencies
of time series data and transform the original density into
pZ , i.e., f✓ : X ! Z . Hence, we can express the
conditional density pX (X

N\S |XS
) by the change of vari-

ables formula [Dinh et al., 2014]: pX (X
N\S |XS

) =

pZ(f✓(X
N\S

;X
S
))

���det @f✓

@XN\S (X
N\S

;X
S
)

���.

4.2 Time-series Reconstruction Flows
To estimate the intricate density of high dimensional data,
there are a lot of generative networks such as GAN [Good-
fellow et al., 2014], VAE [Kingma and Welling, 2013].
However, GAN-based models suffer frommodel collapse and
VAE-based model cannot estimate temporal density accu-
rately by maximizing the lower bound of likelihood, so they
are not suitable for time series data with complex temporal
dependencies. Inspired by current normalizing flows [Dinh et
al., 2016; Papamakarios et al., 2017], we propose Time-series

Reconstruction Flows (TRF), a conditional flows-based gen-
erative model to estimate the density of missing variables of
time series. Specifically, along the conditional generation for-
mulation as proposed in Section 4.1, we consider observed
variables as conditional subset embedding to reconstruct the
missing variables, so that our generation framework can bet-
ter access the information of available subset.
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Algorithm 1 Variable-Agnostic Meta Learning
Input: Dvariables: Domain of the variables subsets, ↵, �:

step size hyperparameters
1: Randomly initialize the parameter ✓ of the TRFlows f✓
2: while not done do
3: Sample batch of variables subset Si ⇠ Dvariables

4: for all Si do
5: Evaluate r✓LSi(f✓) with respect to N variables.
6: Compute adapted parameters with the gradient de-

scent: ✓0
i
= ✓ � ↵r✓LSi(f✓)

7: end for
8: Update ✓  ✓ � �r✓

P
Si⇠Dvariables

LSi(f✓0
i
)

9: end while

Conditional Subset Embedding
To model the complex density of time series, the generative
network needs to capture the temporal dependency among
data. While directly modeling the dependencies of the whole
long time series is unrealistic, we cooperate generation with
the forecasting models, and design window based subset em-
bedding for the variables. Formally, we utilize linear layers
to obtain the embedding conditional vector HS as: H

S
=

Projection(X
(S)
t�L:t), where H

S 2 RT⇥S⇥D and X
(S)
t�L:t is

lookback window of available subset S .
Conditional TRF
We construct our window-based TRF consisting of condi-
tional autoregressive layers and batch normalization [Ioffe
and Szegedy, 2015]. Conditional autoregressive layers aim to
estimate the distribution pX of missing variables via a couple
of invertible transformation functions. Formally, we input the
horizon window of missing variablesX(N�S)

t�L:t and accessible
variables X(S)

t�L:t, where X
(N�S)
t�L:t 2 N\S , and X

(S)
t�L:t 2 S .

We can rewrite the expression the original density with hori-
zon windows as:

pX (X
(N�S)
t�L:t |X(S)

t�L:t) = pZ(f✓(X
(N�S)
t�L:t |X(S)

t�L:t)�����det
@f✓

@X
(N�S)
t�L:t

(X
(N�S)
t�L:t ;X

(S)
t�L:t)

�����
(2)

We can further express the conditional probability by the
chain rule of probability as pX (X

(N�S)
t�L:t |X(S)

t�L:t, ✓) =
Q

i
pXi(X

(N�S)
i

|X(N�S)
1:i�1 ,X

(S)
t�L:t, ✓). Due to the dynamic

pattern of time series data, the transformation process is dif-
ficult and requires a couple of layers, i.e., f✓ = f

0
✓
� f

1
✓
�

· · · � fN

✓
. So for the forward calculation, we define the input

of the first flows layer as h0
:= X

(N�S)
t�L:t , and the output of

the last layer as hN . We can utilize the following recursion
to construct the nth layer:

h
n+1
i

= h
n

i
· exp(fn

✓,si
(h

n

1:i�1;H
S
)) + f

n

✓,bi
(h

n

1:i�1;H
S
)

(3)

where, fn

✓,si
and f

n

✓,bi
are the unconstrained functions to ob-

tain scale and bias. The log determinant can be calculated as
log

���det @f
n
✓

@hn (h
n
;H

S
)

��� = �
P

i
f✓,si(h

n

1:i�1;H
S
).

To implement the function f
n

✓,si
and f

n

✓,bi
, we utilize the

masking technique of MADE [Germain et al., 2015]. For the
n
th, the general form of masking matrix can be formulated

as MW
n

k0,k = 1mn(k0)�mn�1(k), where k and k
0 are the hidden

unit index, and the values of mn
(k) for each hidden layer

n 2 {1, · · · , N} are sampled uniformly. And for the last
layer, the masking rule is MV

k,d
= 1d>mN (k). With the help

of MADE, we can estimate the density without the sequential
loop, and accelerate the training process of TRFlows.
We utilize batch normalization to further improve the prop-

agation of signal. With batch normalization, we can not only
stabilize the training process, but also train a deeper stack of
coupling layers to model more complex conditional distribu-
tion. The procedure of normalization of nth layer can be writ-
ten as hn 7! hn�eµp

e�2+✏
. Here, eµ and e�2 are the estimated batch

mean and variance. We can calculate the Jacobian determi-
nant as

�Q
i

�
e�2
i
+ ✏

��� 1
2 . To update TRF, we can derive the

negative log-likelihood as the loss function by applying chain
rules to Equation 2:

L(f✓) = �logpZ(f✓(X
(N�S)
t�L:t ;X

(S)
t�L:t)

�
N�1X

n=0

log

����det
@f

n

✓

@hn
(h

n
;X

(S)
t�L:t)

����
(4)

Forecasting Process
In the inference stage of VSF, we randomly sample noisy
vectors from Gaussian distribution and employ the in-
verse function of equation 3 to recursively reconstruct
missing variables, which can be written as: h

n

i
=

exp(�f
n

✓,si
(h

n+1
1:i�1;H

S
)) · (hn+1

i
� f

n

✓,bi
(h

n+1
1:i�1;H

S
)). We

denote the final reconstructed missing variables as X̂(N�S)
t�L:t .

We concatenate the available variables and reconstructed
missing variables in the inference stage of the multivariate
time series forecasting models for prediction, which can be
formulated as: X(N)

t:t+H
= F✓(CONCAT(X

(S)
t�L:t, X̂

(N�S)
t�L:t )).

It should be noted that our proposed method is applicable to
any forecasting models that leverage inter-correlation.

4.3 Variable-Agnostic Meta Learning
Reconstructing missing variables set N\S is challenging
since the subset S is randomly chosen, and training one spe-
cific generative model for every possible combination of vari-
able subsets is unrealistic. As a result, we need to improve
the generalization ability of TRFlows f✓ to make a precise
estimation of all possible combination of missing variables.
Inspired by the meta-learning technique [Finn et al., 2017],
we design Variable-Agnostic Meta Learning as the training
framework to learn the common information and transfer the
knowledge to new variable subset.
Formally, we define the domain of the variables subsets as

Dvariables = {S1, ..., Sz}, where z is the number of variable
subsets, and each variable subset Si containsN variables with
different missing variables combinations. It should be noted
that the selection of variable subset should be consistent with
that of inference phase. We sample a batch of variable subsets
Si, and when adapting to different subsets, we update the pa-
rameters ✓ of flows f✓ to ✓0i: ✓0i = ✓�↵r✓LSi(f✓)where ↵ is
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Backbone MTGNN ASTGCN T-GCN

Setting Partial Reconstruct Partial Reconstruct Partial Reconstruct

VSF Method N/A TRF(Ours) N/A TRF(Ours) N/A TRF(Ours)
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
ET

R
-L
A 0.05 5.209 10.33 3.843 7.837 5.807 11.26 5.185 10.13 9.154 15.89 8.546 14.52

0.15 4.597 9.391 3.739 7.672 5.593 10.66 5.135 9.858 8.885 15.16 8.343 14.21
0.25 4.441 9.077 3.685 7.567 5.276 10.24 5.101 9.752 8.531 14.56 8.092 13.90

SO
LA

R 0.05 5.495 7.526 3.997 5.927 6.257 8.412 4.382 6.254 9.319 12.50 5.533 7.750
0.15 4.286 6.146 3.703 5.718 5.786 8.058 4.279 6.223 8.909 12.25 5.487 7.967
0.25 3.825 5.650 3.540 5.480 5.374 7.692 4.205 6.168 8.386 11.70 5.460 8.038

TR
A
FF

IC 0.05 22.21 43.17 11.58 28.05 23.04 43.39 18.84 39.03 47.69 74.80 38.30 59.55
0.15 18.60 38.12 11.57 27.98 22.43 43.09 18.90 39.22 45.53 70.95 38.43 59.86
0.25 16.05 34.69 11.52 27.93 21.73 42.54 18.86 39.24 42.92 66.40 38.39 59.86

EC
G
50
00 0.05 4.220 6.832 3.596 6.344 3.712 6.248 3.477 5.903 6.825 11.28 6.298 9.977

0.15 4.082 6.592 3.546 6.147 3.604 6.053 3.476 5.675 6.704 10.68 6.218 9.962
0.25 3.819 6.327 3.457 6.039 3.565 5.966 3.473 5.921 6.555 9.892 6.148 9.770

Table 1: Variable Subset Time-series Forecasting performance of backbones and TRF (Ours) under Partial and Reconstruct setting.

the learning rate of the inner loop optimization, and LSi(f✓)

is the loss following equation 4. To train the model parame-
ters, we optimize the performance of the adapted generation
model f✓0

i
via diverse tasks sampled fromDvariables. We for-

mulate the meta-objective as:

min
✓

X

Si⇠Dvariables

LSi(f✓0i) =
X

Si⇠Dvariables

LSi(f✓�↵r✓LSi
(f✓))

(5)
We target to update the model parameters in such a man-
ner that optimal performance can be achieved via minimum
gradient steps on a new task. So we employ the stochas-
tic gradient descent (SGD) and update the parameters ✓ by
computing the gradient of LSi(f✓0

i
), which can be written as:

✓  ✓ � �r✓

P
Si⇠Dvariables

LSi(f✓0
i
), where � is the meta

learning rate of the outer loop optimization. The training pro-
cess of the Meta-flows is shown in Algorithm 1.

5 Experimental Results
5.1 Experimental Setup
Dataset. We conducted our experiments on four real world
datasets: (1) METR-LA [Li et al., 2017] includes statistics
on traffic speed gathered from 207 loop detectors on county
highways during Mar 1st 2012 and Jun 30th 2012 in Los An-
geles. (2) SOLAR contains the solar power output of the 137
plants in Alabama in 2007. (3) TRAFFIC describes road oc-
cupancy rates collected by 862 sensors in the San Francisco
Bay area from 2015 to 2016. (4) ECG5000 contains 140 elec-
trocardiograms (ECG) with a length of 5000 each.
Multivariate Time Series Forecasting Model Backbone
Setting. After missing variable reconstruction, we em-
ployed the widely-used models as backbones for our down-
stream multivariate time series forecasting task: (1) T-GCN
[Zhao et al., 2019]: utilizes graph convolutional network and
gated recurrent unit to model spatial-temporal correlation. (2)
ASTGCN [Guo et al., 2019] exploits spatial and temporal
attentions to model correlations among dynamic time series.

(3) MTGNN [Wu et al., 2020] utilizes a graph learning to
describe uni-directed relations among variables.
To evaluate the average performance of our method, we

randomly set the number of available variables |S| for 100
times, in order to indicate various missing percentages,. Dur-
ing training, all the time series backbone models were trained
with all variables available in lookback windows and horizon
windows. During inference (testing), we created three set-
tings: 1) Partial: partial variables were observed and avail-
able. We set missing variables to 0. This setting aims to
show missing variables will lower time series forcasting per-
formance. 2) Reconstruct: Not just partial observed variables
were available, but also the other missing variables were re-
constructed by our method in both in lookback and horizon
windows; in other words, our reconstruction method plays a
role. This setting aims to show reconstruction can advance
forecasting. By default, we adopted the Reconstruct setting
during inference (testing), unless specified otherwise. 3) Or-
acle: All variables were observed and there are no miss-
ing variables. Yet, we evaluate the forecasting performance
only on the partially available variable subset (S) in Setting
2). This setting aims show effective reconstruction of miss-
ing variables can approach the performances of all variables
available. The lengths of horizon windows and lookback win-
dows were set to 12.

Evaluation Metrics. Since the Oracle setting use data
with fully observed and available variables, the perfor-
mance of the Oracle setting can be seen as the upper
bound of forecasting. Thereafter, we measure the per-
formance difference between Reconstruct and the Oracle
settings with respect to MAE and RMSE, which is for-
mulated as �MAE =

E
reconstruct
MAE �E

oracle
MAE

E
oracle
MAE

⇥ 100%, and

�RMSE =
E

reconstruct
RMSE �E

oracle
RMSE

E
oracle
RMSE

⇥100%, where,Ereconstruct

MAE

and E
reconstruct

RMSE
represent the average MAE and RMSE of

the Reconstruct setting, and E
oracle

MAE
and E

oracle

RMSE
are the av-
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Backbone MTGNN ASTGCN T-GCN

Setting Reconstruct Reconstruct Reconstruct Reconstruct Reconstruct Reconstruct

VSF Method FDW TRF(Ours) FDW TRF(Ours) FDW TRF(Ours)
Metric �MAE �RMSE �MAE �RMSE �MAE �RMSE �MAE �RMSE �MAE �RMSE �MAE �RMSE

M
ET

R
-L
A 0.05 9.16% 7.16% 8.67% 6.82% 2.17% 3.06% 1.96% 2.72% 7.02% 5.8% 6.65% 5.31%

0.15 6.49% 4.68% 6.08% 4.42% 1.89% 2.72% 1.65% 2.48% 5.03% 5.43% 4.74% 5.10%
0.25 4.97% 3.45% 4.62% 3.29% 1.53% 2.34% 1.38% 2.11% 3.83% 4.50% 3.59% 4.22%

SO
LA

R 0.05 39.1% 31.9% 36.9% 30.1% 11.5% 10.4% 10.8% 9.78% 9.43% 7.45% 7.95% 6.23%
0.15 28.7% 24.4% 26.2% 22.9% 7.95% 7.29% 7.48% 6.87% 7.08% 4.62% 6.32% 4.19%
0.25 22.8% 19.8% 20.7% 17.2% 6.15% 5.68% 5.79% 5.24% 5.70% 3.49% 5.41% 3.28%

TR
A
FF

IC 0.05 2.83% 4.52% 2.67% 4.27% 0.23% 0.49% 0.21% 0.46% 0.65% 0.42% 0.61% 0.38%
0.15 1.98% 2.79% 1.86% 2.59% 0.19% 0.45% 0.17% 0.41% 0.68% 0.42% 0.65% 0.39%
0.25 1.76% 2.00% 1.61% 1.86% 0.16% 0.41% 0.15% 0.38% 0.64% 0.38% 0.63% 0.36%

EC
G
50
00 0.05 5.24% 6.29% 4.84% 5.92% 0.28% 1.06% 0.26% 0.99% 1.79% 2.79% 1.70% 2.62%

0.15 2.16% 3.14% 2.04% 2.98% 0.26% 1.03% 0.23% 0.94% 2.31% 3.11% 2.18% 2.91%
0.25 1.17% 2.40% 1.07% 2.27% 0.23% 0.98% 0.21% 0.93% 1.66% 1.98% 1.54% 1.85%

Table 2: Performance comparisons with the state-of-the-art method in variable subset time-series forecasting under the Reconstruct setting
(all of the metrics are measured by �MAE and �RMSE).

erage MAE and RMSE of the oracle setting.

5.2 Overall Performance
We evaluated the performance under the reconstruct setting
(i.e., partial variables available with missing variable recon-
struction) with respect to different available variable subset
sizes (|S|), i.e., 5%, 15%, 25% of total variables. Table 1
presents a comparative analysis of three time series forecast-
ing backbone models under the partial setting (without re-
construction) and the reconstruct setting (with our TRF re-
construction). The results show that our TRF reconstruction
of missing variables advance the three backbone forecasting
models. In the Appendix D.1, Table 5 details the results un-
der an oracle setting. Notably, when operating under a re-
construct setting with a subset of variables, there is a marked
decrease in the performance of the backbone models. How-
ever, the integration of our reconstruction method leads to
significant enhancements across all backbone models. For in-
stance, in the TRAFFIC dataset, with only 5% variables avail-
able, integrating our TRF method can boost the performance
of MTGNN by 47.86% (i.e., improving the Mean Absolute
Error (MAE) from 22.21 to 11.58). Similarly, for the SO-
LAR dataset with 5% variables available, ASTGCN’s perfor-
mance is elevated by 29.97% (reducing the MAE from 6.257
to 4.382). These results support the effectiveness of our gen-
erative flow as missing variable reconstruction strategy.

5.3 Comparison with Variable Subset Time-Series
Forecasting under the Reconstruct Setting

Under the reconstruct setting (i.e., reconstruct missing vari-
ables then forecast), we compared our method with the state-
of-the-art VSF model, namely the Forecast Distance Weight-
ing (FDW) ensemble method [Chauhan et al., 2022] Table 2
shows that our method outperform FDW, achieving an av-
erage performance improvement of over 5%. One possible
explanation is that our deep generative flow learning method
is capable to model temporal patterns to estimate time series

Methods METR-LA SOLAR TRAFFIC ECG5000
TRF 6.08 / 4.42 26.2 / 22.9 1.86 / 2.59 2.04 / 2.98
KNNE 8.21 / 9.68 31.7 / 27.4 2.07 / 2.62 2.24 / 3.05
MICE 32.3 / 22.7 34.1 / 19.1 37.3 / 25.2 41.0 / 26.8
TRMF 72.4 / 54.7 57.2 / 25.4 174 / 92.1 37.5 / 22.8

US-GAN 23.9 / 25.2 36.0 / 24.4 20.0 / 24.1 5.32 / 8.18
SAITS 6.24 / 4.56 32.8 / 28.7 2.22 / 3.23 2.17 / 3.02
CSDI 6.67 / 4.94 28.5 / 24.0 2.38 / 3.15 2.42 / 3.53

Table 3: Performance comparisons with Multivariate Time Series
Imputation techniques on MTGNN across four datasets (measured
by�MAE /�RMSE).

density distribution of missing variables for recovery. This
feature is particularly significant as non-parametric methods
often fail to effectively recover missing values.

5.4 Comparison with Imputation Methods
Imputation can complete missing data as well. We compared
our method with six popular imputation baseline methods,
i.e., CSDI [Tashiro et al., 2021], kNNE [Domeniconi and
Yan, 2004], MICE [Van Buuren and Groothuis-Oudshoorn,
2011], TRMF [Yu et al., 2016], SAITS [Du et al., 2023] and
US-GAN [Miao et al., 2021] with respect to various forecast-
ing backbone models under the reconstruct setting. Due to
page limits, we only present the results for MTGNN while
other results are detailed in the Appendix D.2. Table 3 shows
that our framework can outperform all of the imputation base-
lines, except the RMSE of traffic dataset. This can be ex-
plained as imputation methods are insufficient in modeling
inter-variable correlation under time series dynamics.

5.5 Ablation Study
We evaluated the effectiveness of each component of our
method on four datasets. We denoted TRF w/o VAML as
the variant of our method without Variables-Agnostic Meta
Learning. TRF w/o BZ is another variant without batch nor-
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(a) METR-LA. (b) TRAFFIC. (c) SOLAR.

Figure 3: Ablation study of different baselines on datasets (all per-
formances are measured in �MAE).

(a) MTGNN. (b) ASTGCN. (c) T-GCN.

Figure 4: Hyperparameter analysis of the number of coupling lay-
ers on METR-LA dataset, where all performances are measured in
�MAE and�RMSE.

malization. Figure 3 shows that removing different com-
ponents reduces forecasting accuracy for diverse backbones.
This illustrates that all components of our method works as
one for estimating the unknown density of missing variables
and reconstruct the missing relationship. Moreover, we ob-
served that TRF w/o VAML generally perform better than
TRF w/o BZ. A potential explanation is that stabilizing the
training process is more crucial for recovering missing infor-
mation compared to emphasizing generalization ability.

5.6 Model Analysis
Horizon Analysis. We evaluated the influence of different
horizon lengths on model performance. Figure 5 shows
that when dealing with a smaller horizon window, the per-
formance difference between the reconstruct setting and the
oracle setting is smaller, indicating a better forecasting ac-
curacy. On the contrary, we observed that under the oracle
setting, forecasting accuracy is not influenced by the horizon
window size. This is because, all variables are observed and
available under the oracle setting.
Analysis of the Number of Coupling Layers. We evalu-
ated the impact of the number of coupling layers. Figure 4
shows that the performance of our proposed framework ex-
hibit limited correlation with the number of coupling layers
under T-GCN. In contrast, the performance is sensitive to the
number of coupling layers under ASTGCN andMTGNN. For
instance, �MAE and �RMSE decrease when the number of
coupling layers increases, while�MAE and�RMSE become
larger when the number of coupling layers increases. This
shows there exist an optimal coupling layer number. The
potential reason for this trend is that increasing the number
of coupling layers in a certain level can improve the perfor-
mance of framework since flows without deep stack cannot
model intricate density, but when the number of coupling lay-
ers gets large enough, it adds additional training challenges to
impede model convergence.

(a) METR-LA. (b) TRAFFIC. (c) SOLAR.

Figure 5: Horizon analysis of different baselines on datasets (all
performances are measured in�MAE).

(a) MTGNN. (b) ASTGCN. (c) T-GCN.

Figure 6: Hyperparameter analysis of number of hidden layers in
each MADE on METR-LA dataset, where we measure performance
in �MAE and�RMSE.

(a) MTGNN. (b) ASTGCN. (c) T-GCN.

Figure 7: Hyperparameter analysis of number of hidden layers in
each MADE on SOLAR dataset (all performances are measured in
�MAE and�RMSE).

Analysis of the Number of Hidden Layers. Figure 6 and
Figure 7 show how the performance of our method changes
over the number of hidden layers in each MADE. We ob-
served that the lager the number of hidden layers is, the poorer
the forecasting accuracy is. It is highly possible that more
hidden layers will bring more training obstacles and more
complex masking transformation for the TRF so that the per-
formances of TRF are greatly hindered.

6 Conclusion
In this work, we reformulate the VSF problem from the
perspective of density estimation. To assist the forecast-
ing model in reconstructing the missing values and captur-
ing inter-dependencies among variables, we first estimate the
unknown density of inaccessible variable subset, and then re-
construct the missing variables by generation. Specifically,
we propose Time-series Reconstruction Flows (TRF), a con-
ditional flows-based generative framework consisting of con-
ditional autoregressive layers based on subset embedding, to
estimate the density and rebuild missing variables. To further
improve the generalization ability, we design the Variables-
Agnostic Meta Learning as the training framework such that
TRF can adapt to estimate the density new variables subset
more accurately. Finally, we conduct experiments on real-
world datasets to indicate our proposed method can recover
the most of the performance of forecasting models.
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