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Abstract
Collaborative filtering (CF) methods for recom-
mendation systems have been extensively re-
searched, ranging from matrix factorization and
autoencoder-based to graph filtering-based meth-
ods. Recently, lightweight methods that require al-
most no training have been recently proposed to re-
duce overall computation. However, existing meth-
ods still have room to improve the trade-offs among
accuracy, efficiency, and robustness. In particular,
there are no well-designed closed-form studies for
balanced CF in terms of the aforementioned trade-
offs. In this paper, we design SVD-AE, a simple
yet effective singular vector decomposition (SVD)-
based linear autoencoder, whose closed-form solu-
tion can be defined based on SVD for CF. SVD-
AE does not require iterative training processes as
its closed-form solution can be calculated at once.
Furthermore, given the noisy nature of the rat-
ing matrix, we explore the robustness against such
noisy interactions of existing CF methods and our
SVD-AE. As a result, we demonstrate that our sim-
ple design choice based on truncated SVD can be
used to strengthen the noise robustness of the rec-
ommendation while improving efficiency. Code is
available at https://github.com/seoyoungh/svd-ae.

1 Introduction
Recommender systems have been utilized extensively in a
variety of service platforms, including e-commerce and so-
cial media [Ying et al., 2018; Sharma et al., 2022; Choi and
Ryu, 2023; Shin et al., 2024]. Collaborative Filtering (CF), a
crucial task for recommendation, typically learns latent vec-
tors (i.e., embeddings) of users and items from their prior
user-item interactions and provides personalized preferred
recommendations [Rendle et al., 2012; He et al., 2017].
Since the user-item interaction matrix can be represented
as a binary graph, graph-based CF, which learns user and
item embeddings using graph convolutional neural networks

∗Work done while at Yonsei University.
†Corresponding author.

GF-CF EASE ∞-AE SVD-AE

Closed-form Solution ✓ ✓ ✓ ✓
Autoencoder-based ✗ ✓ ✓ ✓
Using SVD ✓ ✗ ✗ ✓
Using Neural Networks ✗ ✗ ✓ ✗
Inference Target Item-item Item-item User-user User-item

Table 1: Comparison of existing lightweight methods [Shen et al.,
2021; Steck, 2019; Sachdeva et al., 2022] and our SVD-AE.

(GCNs) [Kipf and Welling, 2017], has been widely studied
recently [He et al., 2020; Lee et al., 2021; Choi et al., 2021;
Kong et al., 2022; Hong et al., 2022; Choi et al., 2023b;
Kim et al., 2023; Lee et al., 2024].

At the same time, the escalating expense of training mod-
els on massive datasets, including billions of user-item in-
teractions, has become a difficulty in the study of recom-
mender systems. Since LightGCN [He et al., 2020] sim-
plified the GCN-based CF and improved its performance by
eliminating nonlinear activation functions and feature trans-
formations, recent works have attempted to make LightGCN
more lightweight [Mao et al., 2021; Peng et al., 2022].
Despite these advancements, learning-based approaches still
have drawbacks in that they need a lot of time and computa-
tion since they require training.

Therefore, various research has provided lightweight and
effective computing approaches based on closed-form solu-
tions to lessen the computational complexity [Steck, 2019;
Shen et al., 2021; Sachdeva et al., 2022; Choi et al., 2023a].
GF-CF [Shen et al., 2021] designs a simple and computa-
tionally efficient framework that uses various graph filters.
On the other hand, autoencoders (AE) are also used to con-
struct the closed-form solution for CF. EASE [Steck, 2019]
discovers the closed-form solution of the shallow AE-based
recommender system by solving its linear regression-based
formulation via Lagrangian multipliers. ∞-AE [Sachdeva et
al., 2022] suggests adopting the neural tangent kernel (NTK)
to obtain the closed-form solution of the autoencoder with an
infinitely-wide bottleneck layer for recommendation.

While these methods exhibit successful considerations for
efficiency and performance in their design, they face chal-
lenges in achieving excellent generalization abilities due to
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Figure 1: The accuracy, robustness, and computation time of various
methods on Gowalla. The x-axis indicates each method’s accuracy
on the original dataset, and the y-axis indicates each method’s ro-
bustness, i.e., its accuracy on the dataset with 5% random interac-
tions added out of all user-item interactions. The computation time
is indicated by how fast each method is compared to LightGCN (1x).

the prevalent presence of noisy interactions in the recom-
mendation data. It is well-known that a user-item interac-
tion matrix, R ∈ {0, 1}|U |×|I|, where U is a set of users
and I is a set of items, often contains noise [Said et al.,
2012]. That is, an interaction does not necessarily mean
that a user is satisfied with an item [Amatriain et al., 2009b;
Sar Shalom et al., 2015]. In this case, EASE and ∞-AE em-
ploy straightforward reconstruction of R, which can lead to
noisy interactions if not properly controlled [Steck, 2020].

In this work, we aim to explore the way for the best overall
balance between accuracy, computational speed, and noise
robustness. Toward this goal, we propose an SVD-AE for CF,
whose optimal solution can be analytically defined with the
truncated SVD, to effectively exclude the noise in the origi-
nal rating matrix when inferring R̂. Additionally, our SVD-
AE directly reveals R̂ from R without any intermediate steps,
thus reducing the computation time, whereas other methods,
e.g., GF-CF, EASE, and ∞-AE, require obtaining the item-
item or user-user similarity matrix from R. We experimen-
tally show that our simple design choice based on truncated
SVD leads to a practical way to i) enhance the balance among
recommendation accuracy, computation time, and robustness,
and ii) enable obtaining a closed-form solution devoid of any
parameters to train. In Table 1, we compare our SVD-AE
with existing lightweight methods, which will be discussed
in more detail in Sections 3.1 and 3.2.

The experiments with 8 baselines on 4 datasets demon-
strate that our SVD-AE marks the best place for HR@10,
NDCG@10, and PSP@10 by non-trivial margins. Further-
more, we study the robustness against the addition of random
noisy interactions of all the baselines and our SVD-AE. As
shown in Figure 1, SVD-AE has the fastest computation time
(spec., 394 times quicker than LightGCN), provides the best
recommendation accuracy (HR@10), and performs best even
with the addition of random noisy interactions, demonstrating
its robustness.

Our contributions can be summarized as follows:

1. Novel Closed-form Solution for CF: Our SVD-AE, a
simple but efficient linear AE using SVD, has a closed-
form solution for CF. We also devise a generalized AE
form that subsumes all existing AE-based CF methods.

2. Robust Methodology: We discuss how to use the trun-
cated SVD to avoid potential overfitting by the noisy in-
teractions. Through in-depth analyses, we also investi-
gate the superior robustness of AE-based recommenda-
tion methods to noise, including our SVD-AE.

3. Comprehensive Validation: Our method outperforms
all baselines in all benchmark datasets for HR@10,
NDCG@10, and PSP@10. Furthermore, compared to
many other existing methods, the computation time is
much shorter as it has an even simpler closed-form so-
lution than others. Therefore, our method offers the best
overall balance between the accuracy of the recommen-
dation, the computation time, and the noise robustness.

2 Related Work & Preliminaries
2.1 Lightweight Collaborative Filtering
In recent years, several CF methods have been developed to
build lightweight recommender systems [Shen et al., 2021;
Choi et al., 2023a; Park et al., 2024]. First, GF-CF [Shen
et al., 2021] designed a simple and computationally effi-
cient framework that leverages various graph filters. Other
methods typically employ autoencoder approaches based
on linear regression [Steck, 2019; Sachdeva et al., 2022].
EASE [Steck, 2019] suggested a shallow autoencoder that
simply calculates an item-item similarity matrix using or-
dinary least squares regression with a closed-form solution.
They also used Lagrangian multipliers to constrain the self-
similarity of each item in the input and output layer to zero.
Recently, ∞-AE [Sachdeva et al., 2022] adopted the NTK to
obtain the closed-form solution of the autoencoder with an
infinitely-wide bottleneck layer for recommendation. RLAE
and RDLAE [Moon et al., 2023] extended EASE by adjust-
ing the degree of diagonal constraints through tuning for L2
regularization with random dropout.

2.2 Generalized Linear Autoencoder for
Recommender Systems

In this section, we describe a generalized linear autoencoder
for recommender systems and demonstrate how simple re-
gression methods solve the problem of finding the optimal
model. We then present existing methods to solving the lin-
ear regression.

The objective function of linear autoencoder is written as:
min
R̂

∥R− R̂∥22, s.t. C, (1)

where C denotes a set of constraints. R ∈ {0, 1}|U |×|I| and
R̂ ∈ {0, 1}|U |×|I| represent a given user-item interaction ma-
trix and a reconstructed interaction matrix, respectively. U
and I denote sets of users and items, respectively.

Many existing recommendation methods can be general-
ized into the above form with specific choices for their own
constraints. Their closed-form solutions for optimal R̂ are
given by:

R̂ =


R · (I− P̂ · diagMat(⃗1⊘ diag(P̂))) (EASE),
K · (K+ λI)−1 ·R (∞-AE),
R̃ ·VΣ̃+QTR (SVD-AE),

(2)
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where the specific interpretations are:

1. In the case of EASE [Steck, 2019], P̂ = (RTR+λI)−1,
λ is a hyperparameter for regularization, and ⊘ denotes
the element-wise division.

2. In the case of ∞-AE [Sachdeva et al., 2022], K ∈
R|U |×|U | is a Gram matrix that represents the similar-
ity of users, i.e., Ku,v := K(Ru,Rv) for all u, v ∈ U .
K denotes a NTK, K : R|I| × R|I| 7→ R over an Repro-
ducing Kernel Hilbert Space H of a single-layer autoen-
coder with an activation function σ. A closed-form solu-
tion is given by K(Ru,Rv) = σ̃(RT

uRv)+ σ̃′(RT
uRv) ·

RT
uRv . σ̃ represents the dual activation of σ and σ̃′ rep-

resents its derivative. λ is a regularization parameter.

3. In the case of our SVD-AE, which will be described in
detail in Section 3, R̃ is a normalized rating matrix given
by R̃ = D

− 1
2

U RD
− 1

2

I . DU = diagMat(R ·1) and DI =

diagMat(1TR) are degree matrices. Q ∈ R|U |×m and
V ∈ R|I|×m are the top-m singular vectors, and Σ̃ de-
notes the top-m singular values of R̃.

For all methods, linear regression is used to discover
the closed-form solution of learning the optimal R̂. We
show how two simple regression methods — ridge regression
and kernelized ridge regression — solve the problem in the
closed-form in the following.

Ridge Regression. EASE applies ordinary least squares re-
gression and derives B using the following convex objective:

min
B

∥R−RB∥2F + λ · ∥B∥2F , (3)

s.t. diag(B) = 0, (4)

where ∥ · ∥F denotes the Frobenius norm and λ is the regu-
larization parameter. The problem in Eq. (3) is a simple ridge
regression and the solution is well-known as follows:

B = (RTR+ λI)−1RTR. (5)

EASE also includes Lagrangian multipliers into the prob-
lem to fulfill the zero diagonal constraints in Eq. (4). This is
important in order to avoid trivial solution B = I.

Kerenelized Ridge Regression. By using the estimated
NTK, ∞-AE conducts Kernelized Ridge Regression (KRR)
which is the same as training an infinitely-wide autoencoder
for an infinite number of SGD steps. They reduce the problem
to KRR as follows:

argmin
[αj ]

|U|
j=1

∑
u∈U

∥Ru − f(Ru|α)∥22 + λ · ∥f∥2H, (6)

s.t. f(Ru|α) =
|U |∑
j=1

αj ·K(Ru,Ruj
), (7)

where α := [α1;α2...;α|U |] ∈ R|U |×|I| are the set of dual
parameters to estimate and λ is a regularization constant. The
KRR problem in Eq. (6) has a closed-form solution given by
α̂ = (K+ λI)−1 ·R s.t. Ku,v := K(Ru,Rv) ∀u, v.

3 SVD-AE
In this section, we describe our three design goals, followed
by our detailed method design and its low-rank approxima-
tion. Finally, we discuss the advantages of SVD-AE and ex-
plore how it relates to other recommendation methods.
Design Goals. Our proposed problem formulation has been
designed for the following three design goals:

1. (Robustness) Its problem formulation should include an
effective inductive bias that can lead to high noise ro-
bustness;

2. (Complexity) Its closed-form solution should be no
more complicated than existing methods based on dif-
ferent closed-form solutions, e.g., EASE and ∞-AE;

3. (Accuracy) Its recommendation accuracy ought to be
comparable to that of existing CF methods.

Method Design. Our SVD-AE solves yet another linear re-
gression problem for the recommendation — however, its
problem formulation can still be in the generalized linear re-
gression regime of Eq. (1), i.e.,

min
B

∥R− R̃B∥2, (8)

where R̃ is a normalized adjacency matrix given by R̃ =

D
− 1

2

U RD
− 1

2

I . DU = diagMat(R · 1) and DI =
diagMat(1TR) are degree matrices.

Based on Theorem 1 and 2, we can derive the closed-form
solution of B as follows:

B = R̃+R = VΣ+QTR. (9)

Theorem 1. The least squares solutions of the minimum
norm of the linear system R̃B = R is given by

B = R̃+R, (10)

where R̃+ is the the pseudo-inverse of R̃.

Theorem 2. Let R̃ be a normalized adjacency matrix and the
SVD of R̃ be

R̃ = QΣVT , (11)
where Q, V are both orthogonal matrices and Σ =
diagMat(σ1, ..., σM ) is a diagonal matrix containing the sin-
gular values of R̃. Then the pseudo-inverse of R̃ denoted by
R̃+ is defined as:

R̃+ = VΣ+QT , (12)

where Σ+ is given by Σ+ = diagMat(1/σ1, ..., 1/σM ).
Low-rank Inductive Bias. However, it is known that the
pseudo-inverse can provide serious effects when used in the
presence of noise [Stiles and Denq, 1985; Murakami and
Aibara, 1987]. The truncated SVD is one method for sta-
bilizing the pseudo-inverse among others.

The truncated SVD uses only the first m columns of Q and
V and the first m largest singular values. The relatively large
and small singular values of the matrix with rank M typically
cluster into two groups, i.e.,

σ1 ≥ σ2 ≥ ... ≥ σm︸ ︷︷ ︸
large group

≫ σm+1 ≥ ... ≥ σM︸ ︷︷ ︸
small group

. (13)
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Figure 2: The performance comparison with different regularization
parameters. The y-axis of (a) is on a log scale.

Noise reduction can be executed by utilizing only the sig-
nificant components represented by m singular values from
the larger group, considering the smaller group as noise.
Truncated SVD is widely used in recommender systems to
handle noise in the rating matrix R [Shen et al., 2021;
Peng et al., 2022]. Since the rating matrix is typically vast
and sparse, it is also useful for speeding up calculations and
information retrieval.

We use the normalized adjacency matrix whose singular
values are between 0 and 1 as shown in the next theorem.
This avoids having singular values that are too small or large.

Theorem 3. Let σ1 ≥ σ2 ≥ ... ≥ σM be the singular values
of R̃ given by R̃ = D

− 1
2

U RD
− 1

2

I , then

0 ≤ σM ≤ ... ≤ σ2 ≤ σ1 ≤ 1. (14)

Using the truncated SVD, Q ∈ R|U |×m and V ∈ R|I|×m

are the top-m singular vectors and Σ̃ denotes the top-m sin-
gular values of R̃ given by Σ̃ = diagMat(σ1, ..., σm). Thus,
the following is the reconstructed (or inferred) interaction ma-
trix R̂ for recommendation:

R̂ = R̃B = R̃ ·VΣ̃+QTR. (15)

Proofs of the theorems are in our full paper [Hong et al.,
2024, Appendix B].

3.1 Why SVD-AE Achieves the Best Balance?
The Presence of Noise. Many algorithms used in recom-
mender systems utilize observed ratings to predict unknown
ratings. The user ratings can be seen as the ground truth of
the user’s preference, which is an underlying assumption in
this method. However, given the presence of noisy data, in-
ferring unknown ratings is challenging. A user-item inter-
action record does not always mean that users are satisfied
with consumed items, which frequently happens for implicit
interactions. Users are also inconsistent in giving their feed-
back, creating an undetermined amount of noise that makes
it more challenging to infer unreported ratings [Amatriain
et al., 2009b; Sar Shalom et al., 2015; Said et al., 2012;
Amatriain et al., 2009a]. Therefore, the two types of inter-
action noises can be summarized as follows:

1. (Noisy 1 in R) A user is not satisfied with an item, but
an interaction is observed between them;
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Figure 3: The smoothing effect of the truncated SVD in reducing
noise. All values are normalized between 0 and 1 for better repre-
sentation. For (a)-(c), 300 users and items from ML-1M are sampled
and all interactions of ML-1M are counted for (d) and (e).

2. (Noisy 0 in R) A user will be satisfied with an item, but
there are no observed interactions between them. The
ultimate goal of recommendation is to accurately reveal
these hidden interactions.

Here, one can argue that EASE and ∞-AE address these
noises by preventing overfitting through the regularization pa-
rameter λ. In Figure 2, we show that minimizing the Mean
Squared Error (MSE) loss in Eq. (1) does not guarantee the
recommendation performance. We can observe that perfor-
mance does not increase when EASE and ∞-AE use smaller
λ to get closer to R, a trivial solution of R̂. For all cases, the
performance is at the lowest even when the smallest λ is ap-
plied. Using the appropriate λ leads to higher performance by
avoiding overfitting the noise-inherent original rating matrix.

However, rather than using a regularization parameter, we
adopt the truncated SVD to strongly and directly prevent
overfitting of noisy interactions. In the perspective of sig-
nal processing [Ortega et al., 2018], the above two types of
noises correspond to high-frequency signals in R. In other
words, they typically make local abrupt changes in the ad-
jacency structure of R. For instance, the second type means
that a hidden element (edge) of R is zero when its incident el-
ements (edges) frequently have 1 — the first type can also be
interpreted similarly. One effective noise removal method is
to smooth out those local large changes (i.e., high-frequency
signals) by utilizing only the m lowest frequency signals. To
this end, our design is based on the effective low-rank induc-
tive bias based on the truncated SVD with a rank parameter of
m. Among various possible inductive biases, we have chosen
the (low-rank) truncated SVD for its effectiveness.

Figures 3 (a), (b), and (c) show the smoothing effect of the
truncated SVD. We discover that stable structured data ex-
traction is possible by reconstructing the adjacency matrix
using the truncated SVD. The truncated SVD converts the
original data into the good representation by reducing noise.
Comparing Figures 3 (d) and (e), it is clear that the recon-
structed representation (i.e., Figure 3 (e)) has a range of val-
ues as opposed to the existing data distribution (i.e., Figure 3
(d)), which had only values very close to zero.
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Computational Cost. In this part, we examine the compu-
tational cost of SVD-AE. We use a fast randomized truncated
SVD [Halko et al., 2011] and its computational complexity is
O(|U | · |I| · log(m) + (|U |+ |I|) ·m2). This can be done in
the pre-processing step — there exist even more lightweight
methods to approximate the truncated SVD [Shishkin et al.,
2019; Feng et al., 2018], and one can try to further decrease
the time complexity by using them. In the case of EASE
and ∞-AE, they need to compute the matrix inversion of the
data Gram matrix, RTR ∈ R|I|×|I| or RRT ∈ R|U |×|U |.
Then the computation complexity would be O(|I|2.376) or
O(|U |2.376) that are computationally-expensive. However,
since we do not have to compute the matrix inversion, the
computational cost is significantly reduced. The overall com-
putation cost comes out to be O(|U | · |I|2). The computa-
tion complexity of EASE is O(|I| · (|I| − 1)2.376) with the
additional cost O(|U | · |I|2) for pre-processing step whereas
∞-AE’s cost is O(|U |2 · |I|+ |U |2.376).

3.2 Relation to Other Methods
Table 1 summarizes the key distinctions between our SVD-
AE and current lightweight methods. We will now explore
their relationships and compare SVD-AE to others.

EASE, ∞-AE, and SVD-AE share the CF paradigm, utiliz-
ing a shallow autoencoder-based linear regression for prob-
lem resolution, leading to closed-form optimization. EASE
and ∞-AE are based on ridge regression with the regulariza-
tion parameter λ to avoid overfitting. Unlike previous meth-
ods, SVD-AE does not require an additional regularizer by
directly using the truncated SVD as a low-rank inductive bias,
to avoid overfitting more sophisticated. As discussed earlier
in The Presence of Noise, this design choice is based on the
smoothing effect and the efficient low-rank inductive bias of
truncated SVD. For ∞-AE, it needs to build a neural network
to use NTK, but other methods can reconstruct the matrix us-
ing a simple matrix computation. This complexity results in
∞-AE having longer execution times with large datasets than
EASE or SVD-AE (see Section 4.3).

GF-CF [Shen et al., 2021] is a graph filter-based model,
which is a combination of the linear graph filter and the ideal
low-pass graph filter. In GF-CF, the truncated SVD is used to
construct an ideal low-pass graph filter rather than to prevent
overfitting. In other words, it is used as an auxiliary to add
information to the linear graph filter, rather than as the main
mechanism. However, in SVD-AE, the information obtained
solely through the truncated SVD is directly used as the main
objective. This design choice not only simplifies the process
but also enhances efficiency, as it employs an autoencoder and
involves only a linear regression problem. It is in contrast to
the graph-based approach, such as GF-CF, which typically
requires more complex designs and computational steps.

Additionally, comparing low-rank and full-rank methods
is another intriguing aspect of our research. SVD-AE is
designed on top of our low-rank inductive bias, while GF-
CF also partially utilizes it. This contrasts EASE and ∞-
AE, which use full-rank information. Moreover, ∞-AE is
an over-parameterized model with an infinitely wide layer.
Our experiments will show that low-rank methods, due to

their low-rank inductive bias, outperform full-rank and over-
parametrized methods for sparse data.

Finally, using a Gram matrix is another distinctive feature
of these approaches. In recommender systems, it is common
to compute an item-item or user-user similarity matrix from
which to derive a new user-item interaction matrix. EASE
and GF-CF utilize an item-item matrix, while ∞-AE uses a
user-user matrix. SVD-AE does not use any of them but di-
rectly infers user-item interactions, which reduces the overall
computation cost as shown in Section 3.1.

4 Experiments
In this section, we describe the experimental settings and then
compare our SVD-AE with state-of-the-art CF methods. We
also discuss our study of the robustness of various algorithms.

4.1 Experimental Environments
Datasets. In our experiments, we use four of the most
widely used publicly available datasets [Cho et al., 2011;
Harper and Konstan, 2015]: Gowalla, Yelp2018, ML-1M,
and ML-10M. More details on datasets are in our full pa-
per [Hong et al., 2024, Appendix C.2].
Evalutation Protocol. We compare SVD-AE with 8 base-
lines: MF-BPR [Rendle et al., 2012], NeuMF [He et al.,
2017], NGCF [Wang et al., 2019], LightGCN [He et al.,
2020], GF-CF, MultVAE [Liang et al., 2018], EASE, and ∞-
AE. We provide details on baselines and their hyperparameter
configurations in our full paper [Hong et al., 2024, Appendix
C.3]. For a fair comparison with previous studies, we use the
same train/validation/test splits as done in [He et al., 2020;
Shen et al., 2021; Sachdeva et al., 2022]. We evaluate the
accuracy of all of the methods using HR@k, NDCG@k, and
PSP@k [Jain et al., 2016].
Implementation Details. We need to take m as a rank
parameter when running the truncated SVD. For simplic-
ity, we use m = ⌊γ × min(|U |, |I|)⌉, where ⌊...⌉ func-
tion denotes the rounding function. We search for γ in the
range of [0.01, 0.02, 0.03, 0.04, 0.05] with the validation set
with HR@10. Note that γ is our sole hyperparameter, and
γ = 0.04 is universally optimal for all datasets, simplifying
the selection of suitable rank parameter m.

4.2 Performance Comparison
The performance of the proposed method and other bench-
mark models are shown in Table 2. Overall, our SVD-
AE achieves comparable to or better performance than other
various methods. SVD-AE yields the best performance
for HR@10, NDCG@10, and PSP@10 across all datasets.
Among all baselines, GF-CF performs well on the relatively
sparse datasets, Gowalla and Yelp2018. AE-based models
such as EASE and ∞-AE perform rather poorly for these
datasets. SVD-AE performs well on sparse datasets com-
pared to other AE-based models, and outperforms EASE and
∞-AE on Gowalla by 5.3% and 22.3%, respectively, in terms
of HR@10. In less sparse datasets like ML-1M and ML-
10M, where user-item interactions are comparatively suffi-
cient, AE models outperform non-AE models. ∞-AE and
EASE show good performance on ML-1M and ML-10M. But
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Dataset Measure MF-BPR NeuMF NGCF LightGCN GF-CF MultVAE EASE ∞-AE SVD-AE

Gowalla

HR@10 12.08 8.87 11.70 14.00 14.08 11.88 13.67 11.77 14.40
HR@100 32.84 27.25 32.22 37.40 38.84 33.56 35.74 34.20 37.34
NDCG@10 12.09 8.27 11.70 13.77 13.50 11.30 13.15 10.84 13.94
NDCG@100 18.44 13.96 17.95 21.04 21.25 18.11 20.08 17.97 21.15
PSP@10 1.92 1.37 1.76 2.26 2.47 2.09 2.31 2.02 2.48

Yelp2018

HR@10 3.86 3.25 3.68 4.32 4.87 4.31 4.65 4.62 4.90
HR@100 16.97 14.39 16.88 19.01 20.86 18.75 17.74 18.33 19.79
NDCG@10 3.70 3.08 3.50 4.19 4.66 4.10 4.55 4.48 4.74
NDCG@100 8.50 7.16 8.33 9.57 10.53 9.37 9.37 9.54 10.22
PSP@10 0.34 0.27 0.32 0.39 0.44 0.43 0.42 0.43 0.45

ML-1M

HR@10 28.49 27.95 28.40 29.07 30.81 27.86 30.43 31.15 31.79
HR@100 57.21 54.24 57.58 57.62 59.10 57.67 57.74 60.75 59.33
NDCG@10 29.84 29.36 29.43 30.30 32.37 28.44 31.90 32.27 33.55
NDCG@100 39.47 37.98 39.27 39.95 42.00 39.34 40.95 42.54 42.57
PSP@10 2.89 2.75 2.90 3.01 3.17 3.13 3.16 3.22 3.22

ML-10M

HR@10 33.28 25.75

Timed Out

34.79 35.10 34.20 36.30 35.83 36.76
HR@100 64.16 58.63 64.11 64.23 64.55 64.78 64.48 64.80
NDCG@10 33.58 25.32 35.60 36.02 34.48 37.63 36.93 37.75
NDCG@100 44.32 36.90 46.14 45.71 45.23 46.74 46.27 46.97
PSP@10 4.60 3.52 4.69 4.73 4.82 4.76 4.74 4.93

Table 2: Performance evaluation of overall performance among SVD-AE and baselines. Bold values indicate the best values in each row,
while underlined values indicate the second-best values. Higher values are preferable for all measures.

Model ML-1M ML-10M

Pre-processing Training Pre-processing Training

MF-BPR N/A 24.48m N/A 48.56h
NeuMF N/A 2.68h N/A 145.98h
NGCF N/A 4.83h N/A Timed Out
LightGCN N/A 2.44h N/A 132.97h
GF-CF 4.62s 6.37s 28.98s 1260.80s
MultVAE N/A 221.78s N/A 1293.76s
EASE 4.52s 5.72s 52.63s 6.05s
∞-AE N/A 2.24s N/A 388.39s

SVD-AE 0.54s 2.06s 47.59s 3.06s

Table 3: Efficiency comparison on overall computation time.

once again, SVD-AE has the greatest performance aside from
HR@100 on ML-1M. In highly sparse datasets, AE-based
models struggle to reconstruct the rating matrix for deriving
the inferred matrix. However, SVD-AE maintains consistent
performance across dataset types, possibly owing to our low-
rank inductive bias.

One can argue that the accuracy improvements of SVD-AE
over baselines are often incremental. However, we emphasize
that the goal of this work is to design a method that achieves
a reasonable level of accuracy compared to baselines, while
considerably diminishing computational time and improving
robustness to noisy interactions, which will be validated in
the subsequent sections.

4.3 Efficiency Comparison
We contrast the training time for our method with that of
baseline models. For all models, we employ the same ex-
perimental setups and batch sizes. For runtime studies, we

use the smallest and largest datasets, ML-1M and ML-10M.
Table 3 illustrates the huge discrepancy between the two

methods—training models (i.e., MF-BPR, NeuMF, NGCF,
LightGCN, and MultVAE) and non-training models (i.e.,
EASE, GF-CF, ∞-AE, and SVD-AE). The limitation of train-
ing models is clearly seen when the data size is huge. No-
tably, their efficiency may be acceptable for small datasets,
but may take several days to train for large datasets. Espe-
cially in the case of NGCF, it is impracticable to train the
model for ML-10M. Among the training models, MultVAE,
the AE-based model shows a tolerable calculation time re-
gardless of the size of the dataset.

The non-training models like GF-CF, EASE, and ∞-AE
have relatively faster computation times. The presence of
closed-form solutions makes this feasible. In the case of ∞-
AE, however, compared to other AE-based models, it takes a
lot longer to compute as the size of the data increased. This
is because ∞-AE employs the NTK, making it more com-
plex than lighter methods. Most importantly, our SVD-AE
can achieve good performance in less time, which further il-
lustrates the high efficiency of SVD-AE.

We also report pre-processing time as some methods in-
cluding our method require pre-processing. GF-CF and SVD-
AE require the truncated SVD before training. In the case of
EASE, it computes RTR in the pre-processing step. Table 3
shows that the time taken for the truncated SVD increases
with the data size. However, since 10M interactions take only
a minute, the procedure is not onerous.

4.4 Robustness Analyses
Robustness on Observed Noise. Similar to Figure 4, here
we investigate the influence of the rank parameter γ of our
SVD-AE. On all datasets, we examine the effectiveness of
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Figure 4: Performance comparison w.r.t. γ.

SVD-AE with different γ. More results in other datasets are
in our full paper [Hong et al., 2024, Appendix D]. We ob-
serve that the MSE loss decreases as γ (consequently, m)
increases. This is because the truncated SVD is performed
as closely as possible to the original matrix as m increases.
We can see, nevertheless, that recommendation performance
is not always enhanced by using larger m. As the MSE loss
decreases, the recommendation performance increases up to
a certain level. However, beyond a certain threshold, we
can observe a decline in the recommendation performance
instead. This is because the noise from the rating matrix
would be included in the reconstructed matrix if m is too
large. Such an occurrence further demonstrates that mini-
mizing MSE loss does not ensure that recommendations may
work better, which is consistent with what we discovered in
the previous experiments on existing AE-based recommender
systems which is illustrated in Figure 2. Furthermore, it sup-
ports our low-rank inductive bias.

Robustness on Unobserved Noise. In this part, we study
the noise robustness of various CF methods. To evaluate the
robustness of the proposed method and baselines, we show
the performance of all methods on Gowalla and Yelp2018
with different noise levels in Figure 5. To simulate the noise,
we generate random user-item interactions from 0.5% to 5%
of the dataset size, thereby adjusting the amount of noise to
different dataset sizes.

We explore the robustness of four AE models, including
MultVAE, EASE, ∞-AE, and our SVD-AE, and four non-AE
models, including MF-BPR, NGCF, LightGCN, and GF-CF.
Note that NeuMF is excluded for better visualization due to
its significantly lower performance. In Figure 5, we can ob-
serve that our method can continue to perform steadily and
competitively on noisy data of different degrees. We can see
the greatest HR@10 and NDCG@10 are maintained regard-
less of the noise levels for Gowalla and Yelp2018.

On the other hand, a noteworthy feature is a significant
disparity in noise robustness between AE and non-AE mod-
els. We discover that non-AE methods that disregard noise,
such as MF-BPR, NGCF, and LightGCN, perform noticeably
worse than the others when the noisy interactions are added.
As a result, their HR@10 and NDCG@10 fall more signifi-
cantly as the noise level increases. We can show that, among
non-AE models, GF-CF is the most stable. We believe this is
the indirect effect of using truncated SVD, although GF-CF
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Figure 5: Robustness evaluation against noise level. Solid line for
non-AE models, dashed line for AE-based models.

does not use it to avoid the overfitting problem.
Additionally, we can observe that AE-based models, in-

cluding MultVAE, EASE, and ∞-AE, are consistently stable
for various noise levels. However, as shown in Figure 5, they
perform less reliably than SVD-AE. Notably, they also of-
ten perform worse than LightGCN and GF-CF in the exper-
iment on Gowalla as shown in Figures 5 (a) and (b). Based
on these observations, our SVD-AE provides the best recom-
mendation accuracy while maintaining robust performance
even with the addition of noise.

5 Conclusion
We proposed a simplified but efficient linear AE based on
SVD and featuring a closed-form solution for CF. Our SVD-
AE outperforms various recommender systems including AE-
based and non-AE models. Furthermore, compared to other
methods, our method’s runtime complexity is remarkably
low. We discovered that our low-rank inductive bias via the
truncated SVD makes it possible to obtain a closed-form so-
lution and to effectively improve the robustness of the rec-
ommendation. Given the noisy nature of the rating matrix,
we also discussed the overfitting issues with current recom-
mender systems and presented the superior noise robustness
of AE-based techniques, including SVD-AE. Our approach
achieves the best balance between recommendation accuracy,
computation time, and noise robustness. We expect much
follow-up research work based on our observations of the new
closed-form solution to the recommendation problem, in ad-
dition to the recent successes of developing lightweight meth-
ods with closed-form solutions.
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