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Abstract
Open set recognition is a crucial research theme for
open-environment machine learning. For this prob-
lem, a common solution is to learn compact repre-
sentations of known classes and identify unknown
samples by measuring deviations from these known
classes. However, the aforementioned methods (1)
lack open training consideration, which is detri-
mental to the fitting of known classes, and (2) rec-
ognize unknown classes on an inadequate basis,
which limits the accuracy of recognition. In this
study, we propose an open reconstruction learn-
ing framework that learns a union boundary re-
gion of known classes to characterize unknown
space. This facilitates the isolation of known space
from unknown space to represent known classes
compactly and provides a more reliable recogni-
tion basis from the perspective of both known and
unknown space. Specifically, an adversarial con-
straint is used to generate class-specific boundary
samples. Then, the known classes and approxi-
mate unknown space are fitted with manifolds rep-
resented by class-specific auto-encoders. Finally,
the auto-encoders output the reconstruction error
in terms of known and unknown spaces to rec-
ognize samples. Extensive experimental results
show that the proposed method outperforms ex-
isting advanced methods and achieves new state-
of-the-art performance. The code is available at
https://github.com/Ashowman98/CSGRL.

1 Introduction
In recent years, artificial intelligence models have achieved
human-like performance in numerous settings, most of which
are based on a closed assumption. This assumption implies
that the model must be provided with knowledge of all classes
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during the training phase. However, the real world is full
of unknowns, and the testing phase may present unknown
classes [Yoshihashi et al., 2019]. This is a key issue that has
prevented artificial intelligence models from reaching human-
level performance in areas such as autonomous driving and
medical diagnostics. This issue has drawn significant atten-
tion from researchers and engineers in diverse fields such as
data mining [Lv et al., 2022; Wu et al., 2020; Zhu et al., 2023;
Liu et al., 2023a], computer vision [Hu et al., 2024; Gao et
al., 2023], and multimedia processing [Zhang et al., 2020;
Qian et al., 2023; Cai et al., 2023].

To address classification and recognition tasks with open-
ness, Open Set Recognition (OSR) defines a realistic task ob-
jective, which is to accurately classify samples from known
classes and reject samples from unknown classes [Geng et
al., 2020]. The main challenge of OSR is that the model has
not received any information about unknown classes, which
makes it impossible to directly divide the feature space of the
unknown classes [Scheirer et al., 2013]. Therefore, many ex-
isting works have been proposed to learn compact representa-
tions of known classes, which can isolate the unknown space
and thus reduce the open space risk.

Prototype learning and reconstruction learning show great
power in the representation of known classes. Prototype
learning represents each class by learning class-specific pro-
totype points based on the Gaussian distribution assumption
[Yang et al., 2020], which encourages known samples to ap-
proach prototype points, thus excluding unknown samples.
Unfortunately, the assumption can easily be violated in prac-
tice, which limits the fitting ability of the method. Com-
pared to the prototype representation, reconstruction learn-
ing can learn a more compact feature representation based on
the Auto-Encoder (AE). These methods reconstruct the input
through a compression-recovery process to learn latent repre-
sentations of the original features, which can also be viewed
as learning a low-dimensional manifold to fit the distribution
of known samples [Huang et al., 2023]. Therefore, when the
input comes from an unknown sample outside the manifold,
the AE outputs a higher reconstruction error, which can be
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(a) Closed training paradigms fail to characterize the unknown space.

Class 0

Class 1

Class 2

Class -1

From Generator 2

From Generator 1

From Generator 0

Class 0

Class 1

Class 2

Class -1

From Generator 2

From Generator 1

From Generator 0

(b) Learn the union boundary region of the known classes to approx-
imately characterize the unknown space.

Figure 1: Comparison of reconstruction learning methods. Method
(a) have a limited ability to fit and compact representations, and
for unknown samples on the margins of the manifolds, the low re-
construction error of known classes is not sufficient to reject them.
Method (b) can obtain a compact representation. In addition, it can
identify confusable samples that are still located at the margins of
the manifolds based on known and unknown reconstruction errors.

used as a basis for recognition [Oza and Patel, 2019a]. How-
ever, representing all known classes with a single continuous
manifold is detrimental to the learning of class-specific fea-
tures and potentially devours inter-class regions, thus intro-
ducing the open space risk.

Combining the respective advantages of prototype learn-
ing and AE is an effective solution for OSR, i.e., modeling
each known class by class-specific manifolds. This method
incorporates the class-specificity of prototype learning and
the compactness of AE. However, the model is based on a
closed paradigm during the training phase, so it is only al-
lowed to fit the known classes while completely ignoring the
unknown feature space. As illustrated in Figure 1 (a), this
gives rise to two problems: (1) without the characterization
of the unknown classes, the manifolds of the known classes
may still not be completely compact, and (2) it is risky to
rely exclusively on the distinction from the known classes to
recognize the unknown classes.

In light of the above observations, we explore (1) a way to
characterize the unknown feature space and (2) a more reli-
able method for distinguishing between known and unknown
classes. As any samples from the unknown classes are invis-
ible during the training phase, characterizing the global un-
known space is unrealistic. As depicted in Figure 1(b), we
propose that an alternative solution is to learn the boundaries
of known classes to approximately characterize the unknown

space. Once the model learns the union boundary region of
the manifolds of the known classes, similar to the reconstruc-
tion error of the known classes, it can also be used as a ba-
sis for identifying the unknown classes. It is easier to find a
threshold to distinguish the known space from the unknown
space.

In this paper, we propose a Class-specific Semantic Gener-
ation and Reconstruction Learning (CSGRL) method that in-
volves a reconstruction module and a generation module. In
CSGRL, in order to characterize the unknown space, the gen-
eration module is adversarially constrained to generate sam-
ples around the boundary of the manifolds of known classes.
Then, the reconstruction module fits the known classes with
class-specific AEs and fits the unknown space with an addi-
tional AE. The joint optimization of all AEs keeps the un-
known regions out of known samples and known manifolds
out of unknown space, resulting in more compact representa-
tions of known classes. Finally, integrating the reconstruction
errors of the AEs representing the known classes and the AE
representing the unknown classes, CSGRL makes a decision
of classification or rejection. Our contributions are the fol-
lowing:

(1) We propose a training framework with openness, which
learns the union boundary region of known classes by an in-
dependent AE to approximately characterize the unknown
space. This reduces the open space risk and facilitates the
fitting of known classes.

(2) We define class-specific generators that can generate
slack or tight boundary samples as required, which serve as
inputs to augment the reconstruction module.

(3) We recognize the testing samples from two perspec-
tives, the reconstruction error of known classes and unknown
classes, which effectively improves the recognition accuracy.

(4) Experimental results under different protocols demon-
strate CSGRL outperforms baseline methods and achieves
state-of-the-art performance on several public datasets.

2 Related Work
We propose CSGRL to address the OSR problem, which
is naturally related to Out-Of-Distribution (OOD) detection,
and we will discuss their existing work in this section.

2.1 Open Set Recognition
Initially, solutions for OSR were based on traditional machine
learning methods [Scheirer et al., 2014; Mendes Júnior et
al., 2017; Zhu et al., 2018]. However, the performance of
these methods was limited by the technology available at the
time. With the development of deep neural networks, which
have achieved excellent performance in a closed setting, more
attention has been paid to their application in open scenar-
ios. Deploying deep neural networks to solve OSR problems,
prototype-like and reconstruction learning methods are the
two feasible research paths.

Prototype-like learning methods. [Yang et al., 2020] pre-
sented the first convolutional prototype network for the open-
world, which aimed to represent each specific class abstractly.
As a variant of the prototype network, reciprocal point learn-
ing (RPL) [Chen et al., 2020] utilizes the differences between
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samples and the reciprocal points rather than their common-
alities for classification and recognition. In order to enhance
the recognition of unknown classes, RPL further integrated
the adversarial training strategy, named ARPL [Chen et al.,
2021]. [Liu et al., 2023b] derived a multiple Gaussian pro-
totype framework from Bayesian inference, thus preserving
some space for unknown classes. Constrained by Gaussian
distribution assumptions, these methods fail to represent real-
world complexities.

Reconstruction learning methods. [Yoshihashi et al.,
2019] proposed the first Classification Reconstruction learn-
ing for Open Set Recognition (CROSR) based on deep repre-
sentation, which inspired subsequent such methods. C2AE
[Oza and Patel, 2019a] was constructed as a two-stage
method, where a closed-set classifier is first trained, and then
an open set recognition model was trained by reconstruct-
ing conditional on class identity. Based on the unknown
sample detection capability of the variational AE, [Sun et
al., 2020] proposed a conditional Gaussian distribution learn-
ing for open set recognition (CGDL), which classifies known
samples by forcing latent features to approximate different
Gaussian models. To reduce the class activation value of un-
known samples and maximize their difference from known
samples, [Perera et al., 2020] extended the optimal closed
set features and learned both the original and reconstructed
images. Further, [Huang et al., 2023] proposed the CSSR
model that replaces prototype points with manifolds repre-
sented by class-specific AEs, which enhances the represen-
tation of the individual classes and releases the inter-class
space. However, the above work neglects the characteriza-
tion of unknown classes, which may impair the fitting ability
of the model. In addition, reconstructions available only for
known classes are not conducive to finding distinguishable
thresholds.

2.2 Out-of-Distribution Detection
A subtask of OSR is to reject unknown classes, which shares
the same target as some problems. For reasons of AI sys-
tem safety, [Hendrycks and Gimpel, 2017] advocated reliable
methods for detecting samples in the test set that come from
outside the distribution of the training set. Without changing
the pre-trained neural network, [Liang et al., 2018] used tem-
perature scaling and added small perturbations to improve the
separability of in- and OOD images. [Lee et al., 2018] min-
imized the Kullback-Leibler divergence from the predictive
distribution of out-of-distribution samples to the uniform dis-
tribution. To this end, they introduced an OOD dataset for
training and augmented it with boundary samples generated
from low-density regions of known classes. Outlier exposure
[Hendrycks et al., 2019] generalizes to unseen anomalies by
feeding the anomaly detectors with auxiliary data. Similarly,
outlier detection [Zhou and Paffenroth, 2017] and novelty de-
tection [Perera et al., 2019] have been extensively studied to
improve the robustness of models. Most of these works fo-
cus on rejecting OOD (unknown) samples without consider-
ing the ability of the model to classify in-distribution (known)
samples. In addition, some methods introduce OOD data,
which violates the OSR protocol. Obviously, an OSR setup
without any unknown data is more general and realistic in

practice.

3 Preliminaries
In this section, we define the research problem and briefly
describe the relevant research components.

Problem definition. Given a training set of n labeled
samples X = {(x1, y1), (x2, y2), ..., (xn, yn)}, where yi ∈
{1, 2, ..., k} is the label of xi. In the testing phase, any one
sample xt corresponds to the label yt ∈ {1, 2, ..., k, k + 1},
where k + 1 is a uniform label of all unknown classes. The
goal of OSR is to learn a model f from X that establishes a
one-to-one mapping of xt to yt.

A good OSR model should be able to correctly classify
known classes, i.e., minimize the empirical classification risk
RE of labeled known data. In addition, unlike traditional
classification models, OSR models also need to have the abil-
ity to reject unknown classes. As defined in [Scheirer et al.,
2013], open space risk measures the uncertainty that f recog-
nizes sample x as known or unknown classes, which is calcu-
lated as a nonzero integral function

RO(g(f)) =

∫
O g(f(x))∫

X
⋃

O g(f(x))
(1)

where O is the open (unknown) space and g is a binary func-
tion whose output is

g(f(x)) =

{
1 if f(x) ∈ [1, k]
0 otherwise

. (2)

Therefore, the OSR problem can be transformed into an
optimization objective as follows:

argmin
f

{RO(g(f(x))) + λRE(f(x))}, (3)

where λ is a positive regularization parameter.
Class-specific semantic reconstruction learning. Class-

specific Semantic Reconstruction (CSSR) learning utilizes a
set of AEs to learn class-specific low-dimensional manifolds
to fit the distribution of the data, where each AE is a bot-
tleneck structure consisting of an encoder E and decoder D.
The encoder E learns a mapping of the original data from the
low-dimensional embedding space, and then the decoder D
recovers the low-dimensional vectors to the original feature
space. In this process, the loss of compression and the dif-
ference in recovery need to be reduced as much as possible,
i.e., minimizing the reconstruction error. CSSR considers the
reconstruction error as the distance between the sample and
a low-dimensional manifold, and it assigns the test sample to
the nearest manifold. For OSR, samples far from all mani-
folds are regarded as unknown samples. These concepts can
be formalized as follows:

P (y = i|x,A, 1 ≤ i ≤ k) ∝ (−∥f −Di(Ei(f))∥1),
P (y = k + 1|x,A) ∝ min

1≤i≤k
∥f −Di(Ei(f))∥1 ,

(4)

where f = B(x) is the embedding feature of input x extracted
by the backbone network B. AE corresponding to class c is
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denoted as Ac. During training, this method ignores model-
ing the unknown class and only maximizes the probability of
the ground-truth class.

4 The Proposed Method
In order to address the reported problems, we propose
a Class-specific Semantic Generation and Reconstruction
Learning (CSGRL) method. Figure 2 illustrates the overall
architecture of the proposed method. The key theme is to
characterize the unknown space. We first present the overall
architecture of the fitting class. Then, a method for charac-
terizing unknown space is introduced. Finally, we describe
the classification of known classes and the recognition of un-
known classes.

4.1 Learning Class-Specific Manifolds
To make decisions about sample (x, c) ∈ X , we define a re-
construction module R. The module consists of a set of AEs
A = {A1,A2, ...,Ak+1}. Different from the existing meth-
ods, an additional AE Ak+1 is used to represent the unknown
classes. Sample x is output by the backbone network as f ,
the reconstruction error specific to class i can be obtained by
A as d(f ,Ai) = ∥f −Ai(f)∥1. Similar to Eq. (4), the clas-
sification probability of sample x is related to the distance
of the manifolds. Applying the SoftMax activation function,
the reconstruction error can be normalized to probability as
follows:

P (R(f) = i|x,A) =
exp(−γd(f ,Ai))∑k+1

1 exp(−γd(f ,Aj))
, (5)

where γ is a hyperparameter used to control the hardness of
the error-probability transformation, and it is set to 0.1.

We hope that the probability that sample x belongs to the
ground truth class c should be infinitely close to 1, while
the probability that it belongs to the other classes is approx-
imately equal to 0. Therefore, the model optimization is
guided by a loss function as follows:

Lkn = −
m∑
c=1

logP (R(f) = c|x,A). (6)

To minimize the loss, the reconstruction module should guar-
antee a minimum distance mapping from the features to the
manifolds of the true class, based on which the distance to
other manifolds is maximized.

4.2 Characterizing Unknown Space
Due to there being no unknown samples available for train-
ing, the model can only fit known classes. The latent un-
known sample space can be infinite and thus impossible to
cover. We propose to use Ak+1 to fit the union boundary
region. This intuitively approximately characterizes the un-
known space, because most unknown samples are always
closer to their boundary region than the manifolds of known
classes. For this purpose, we need to build a generation
module G = {G1, G2, ..., Gk} to generate boundary sam-
ples for each known class. As an effective generative model,

Algorithm 1 The training procedure of CSGRL
Input:

X : Training data; ε: Hyperparameter.

Output:
B: Backbone network; R: Reconstruction module;
G: Generation module.

1: Initialize B, R and G.
/** Step-I: Update proposed R **/

2: repeat
3: Update B, R by descending their stochastic gradient

according to Eq. (6)
4: until convergence;

/** Step-II: Alternate update proposed G and R **/
5: repeat
6: Update G by descending its stochastic gradient accord-

ing to Eq. (9)
7: Update B, R by descending their stochastic gradient

according to Eq. (10)
8: until convergence;
9: return B, R and G;

Generative Adversarial Networks (GAN) [Goodfellow et al.,
2014] consists of a generator G

′
and a binary discriminator

D
′
. The generator synthesizes pseudo-samples to augment

the discriminator, while the discriminator guides the genera-
tor to obtain confusable samples. GAN performs a minimax
optimization over D

′
and G

′
as

min
G′

max
D′

[logD
′
(x) + logD

′
(G

′
(x̃))], (7)

where the input of G
′

is a Gaussian noise x̃ ∼ N(0, 1).
However, we need boundary samples to approximate the

unknown space, instead of samples within manifolds of
known classes. Obviously, the boundary samples should
not be too far away from the known samples, but they
should be located near the extreme points. The current
maximum point for class c is collected in each mini-batch
{(x1, c), (x2, c), ..., (xm, c)} as

dc = max(dc, max
1≤i≤m

d(fi,Ac)), (8)

where dc is set to 0 at the beginning of each epoch. Gener-
ating high-dimensional realistic images is challenging [Pid-
horskyi et al., 2018; Zenati et al., 2018], and existing work
[Kong and Ramanan, 2021] has demonstrated that generating
samples at the feature-level works better than at the pixel-
level. Therefore, G directly generates feature-level sam-
ples, and we impose constraints on G to obtain class-specific
boundary samples

LG =−
m∑
c=1

[logP (R(f̃) = c|x,A)

+ log Sigmoid(d(Gc(x̃),Ac)− dc − ε)],

(9)

where ε is a slackness, the larger its value, the looser the re-
sulting boundary. Conversely, the tighter the resulting bound-
ary. To minimize the second term of LG, the generator Gc is
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Figure 2: The architecture of CSGRL compared to previous CSSR-based methods. Our network architecture consists of a backbone network,
a reconstruction module, and a generation module. The backbone network is used to extract features f from the input x. The reconstruction
module reconstructs the features f (Section 4.1). The generation module generates boundary samples from Gaussian noise to augment the
reconstruction module (Section 4.2). Based on the reconstruction errors, the model rejects sample x, or outputs the known class with the
highest probability as the class of sample x (Section 4.3).

forced to generate samples with reconstruction errors higher
than dc − ε. However, if these samples are far from Ac, the
first term of LG should be high. Thus, one can expect that
LG can encourage G to generate valid boundary samples for
each class.

Finally, input real and generated samples to update the re-
construction module, and Eq. (6) is expanded as

LR =−
m∑
c=1

[logP (R(f) = c|x,A)

+ logP (R(Gc(x̃)) = m+ 1|x,A)].

(10)

To minimize the loss, LR encourages the separation of known
and unknown space.

Due to LG involves the computation of the maximum value
of the reconstruction errors for known classes, R is preferen-
tially trained to obtain a stable representation of the known
classes. Then, G and D are alternately optimized. The com-
plete training procedure for the proposed method is summa-
rized in Algorithm 1.

4.3 Recognition and Classification
In order to obtain a reliable score to reject unknown classes,
CSGRL integrates the reconstruction errors relative to known
and unknown classes. OSR methods typically quantify the
difference (or similarity) between a test sample and the
known samples as a score S, and classify the sample into an
unknown class if S exceeds (or is below) than a threshold.
Similarly, referring to Eq. 4, we can utilize the reconstruction
errors of the known classes to recognize the unknown sam-

ples. Known classes should have low relative reconstruction
errors, which can be formulated as

Sk = − min
1≤i≤k

d(f ,Ai). (11)

For unknown classes that are vastly different from all
known classes, e.g., far OOD datasets [Chen et al., 2021],
their samples can lead to significant reconstruction errors.
Therefore, they can be easily recognized based on Sk. How-
ever, there are also unknown samples in the unknown space
with small differences from the known classes, e.g., near
OOD datasets [Chen et al., 2021]. These data may be located
at the margins of the manifolds of known classes, resulting
in lower reconstruction errors. In CSGRL, because the Ak+1

learns the union boundary region of known classes, a natu-
ral idea is to make inferences with the help of reconstruction
errors from Ak+1. This is given by

Su = d(f ,Ak+1). (12)

For a sample located at the margin of known manifolds, al-
though it has a low score |Sk|, it also has a low score |Su|.
Therefore, it is probably from an unknown class. A normal-
ization is applied to Sk and Su to unify the scales:

S̃k =
Sk − E(sk)

Std(Sk)
,

S̃u =
Su − E(su)

Std(Su)
.

(13)

where E(∗) and Std(∗) denote the mean and standard devi-
ation of the scores, respectively. Finally, they are integrated
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into a final score:

Sc = α S̃k + (1− α)S̃u, (14)

where α is a hyperparameter that controls the weight of the
two reconstruction errors on the recognition result. The trans-
formation from ”Is it close to known classes?” to ”Is it closer
to known classes or to their boundaries?” may be more favor-
able for selecting a threshold in practical scenarios.

A test sample is recognized as an unknown class when Sc

is below a threshold δ, otherwise it is assigned to the known
class with the highest probability. The process can be formu-
lated as

y =


argmin
1≤i≤k

d(f ,Ai) if Sc ≥ δ

k + 1 otherwise

. (15)

5 Experiment
5.1 Implementation Details
The proposed method CGSRL does not involve feature ex-
traction, so it can be plugged into any backbone network. To
be fair, we use the same backbone network and data augmen-
tation technique with [Huang et al., 2023]. In the training
phase, the loss is minimized using the stochastic gradient de-
scent optimizer with momentum = 0.9. We train the network
for 250 epochs with a mini-batch size of 128, including 200
epochs for Step-I and 50 epochs for Step-II in Algorithm 1.
The learning rate was initially set to 0.4

5.2 Experiments for Unknown Detection
The evaluation protocol defined in [Neal et al., 2018] is
widely used for unknown detection.

Datasets. We construct experiments on three image
datasets, including Cifar10 [Krizhevsky, 2009], SVHN [Net-
zer et al., 2011], and Tinyimagenet [Le and Yang, 2015].
For Cifar10 and SVHN, 6 classes are randomly sampled as
known classes and the remaining 4 classes are set as un-
known classes. For Tinyimagenet with 200 classes, the ratio
of known to unknown classes is 20:180. To avoid chance,
the splits of known and unknown classes are randomized five
times, and then their average results are reported. In this ex-
periment, we directly use the same data split with [Huang et
al., 2023].

Evaluation metrics. For most OSR methods, selecting
the appropriate threshold is crucial. Therefore, a threshold-
independent metric, the Area Under the Receiver Operating
Characteristic (AUROC) curve is often used for evaluation. It
reflects the true positive rate against the false positive rate at
different thresholds. In our research problem, AUROC can be
interpreted as the probability that a known sample is assigned
a higher recognition score than an unknown sample.

Baselines. CSGRL was compared to advanced related
methods, including prototype-like learning methods [Yang et
al., 2020], [Chen et al., 2021], [Liu et al., 2023b] and re-
construction learning methods [Yoshihashi et al., 2019], [Oza
and Patel, 2019a], [Oza and Patel, 2019b], [Sun et al., 2020],

Method Cifar10 SVHN Tinyimagenet
GCPL [Yang et al., 2020] 82.8 92.6 -
ARPL [Chen et al., 2021] 91.0 96.7 78.2
MGPL [Liu et al., 2023b] 86.9 94.1 64.3

CROSR [Yoshihashi et al., 2019] 88.3 89.9 58.9
C2AE [Oza and Patel, 2019a] 89.5 92.2 74.8

MLOSR [Oza and Patel, 2019b] 84.5 95.5 71.8
CGDL [Sun et al., 2020] 90.3 93.5 76.2

GFROSR [Perera et al., 2020] 83.1 93.5 64.7
CSSR [Huang et al., 2023] 91.3 97.9 82.3

RCSSR [Huang et al., 2023] 91.5 97.8 81.9
CSGRL (Ours) 94.0 98.3 82.3

Table 1: Performance of comparison methods under various valida-
tion setups.

Method IN-C IN-R LS-C LS-R
PROSER[Zhou et al., 2021] 84.9 82.4 86.7 85.6

ODL [Liu et al., 2022] 86.1 84.2 87.1 85.6
ConOSR [Xu et al., 2023] 89.1 84.3 91.2 88.1
MGPL [Liu et al., 2023b] 86.2 86.2 86.9 86.8

CROSR [Yoshihashi et al., 2019] 72.1 73.5 72.0 74.9
C2AE [Oza and Patel, 2019a] 83.7 82.6 78.3 80.1

CGDL [Sun et al., 2020] 84.0 83.2 80.6 81.2
GFROSR [Perera et al., 2020] 75.7 79.2 75.1 80.5

CSSR [Huang et al., 2023] 92.9 90.9 94.1 93.5
RCSSR [Huang et al., 2023] 93.3 91.5 94.0 94.0
MEDAF [Wang et al., 2024] 91.5 90.0 92.2 92.6

CSGRL (Ours) 94.0 93.3 94.8 95.1

Table 2: Performance of comparison methods under various OSR
setups.

[Perera et al., 2020], [Huang et al., 2023]. Among these
methods, [Chen et al., 2021] uses GAN for OSR.

Result comparison. Table 1 shows the AUROC results
for the thirteen methods on the three benchmark datasets. In
all the tables presenting the experimental results, the results
are presented as percentages and the best results are in bold.
The results show that CSGRL outperforms other methods on
all three datasets. This is attributed to the reasonable charac-
terization of the unknown space, thus enabling the model to
separate the known and unknown samples more efficiently.

5.3 Experiments for Open Set Recognition
An effective OSR method not only rejects unknown samples,
but also categorizes known samples. [Yoshihashi et al., 2019]
provided a setup for OSR experiments, and we apply it in this
section.

Experimental setup. Cifar10 is used as the training set,
and samples from other datasets are collected into the test
set. We collect 10,000 unknown samples from ImageNet and
LSUN respectively, which is the same number of samples as
the Cifar10 test set. Then, we crop or resize them to ensure
that their image sizes are consistent with the known samples.
In this experiment, we use the version of the four datasets
released by Liang et al. [Liang et al., 2018], i.e., ImageNet-
Crop (IN-C), ImageNet-Resize (IN-R), LSUN-Crop (LS-C),
and LSUN-Resize (LS-R). Since AUROC can only evaluate
the recognition of unknown classes and not the classifica-
tion performance of the method on known classes, we use
the macro-averaged F1-scores to evaluate the overall perfor-
mance of the method on 10 known classes and 1 unknown
class. Furthermore, except for prototype-like and reconstruc-
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Method In:CIFAR10/Out:CIFAR100 In:CIFAR10/Out:SVHN
DTACC AUROC AUIN AUOUT DTACC AUROC AUIN AUOUT

ODL [Liu et al., 2022] - - - - 90.2 93.5 91.7 95.3
GCPL [Yang et al., 2020] 80.2 86.4 86.6 84.1 86.1 91.3 86.6 94.8
ARPL [Chen et al., 2021] 83.4 90.3 91.1 88.4 91.6 96.6 94.8 98.0

CSI [Tack et al., 2020] - 92.2 - - - 97.9 - -
OpenGAN [Kong and Ramanan, 2021] 84.2 89.7 87.7 89.6 92.1 95.9 93.4 97.1

CSSR [Huang et al., 2023] 83.8 92.1 89.4 89.3 95.7 99.1 98.2 99.6
RCSSR [Huang et al., 2023] 85.3 92.3 92.9 91.0 95.7 99.1 98.3 99.6
MEDAF [Wang et al., 2024] 85.4 92.5 93.2 91.1 95.3 99.1 98.0 99.6

CSGRL (Ours) 87.7 94.1 94.5 93.2 98.0 99.8 99.5 99.9

Table 3: Performance of comparison methods under different OOD setups.

tion learning methods, other types of OSR methods [Zhou et
al., 2021], [Liu et al., 2022], [Xu et al., 2023], [Wang et al.,
2024] are introduced for comparison.

Results comparison. As shown in Table 2, CSGRL out-
performs all methods on four datasets. This indicates that the
proposed method is generally more in line with the goal of
OSR, i.e., CSGRL possesses higher classification accuracy
for known samples and stronger capability for unknown de-
tection. In addition, CSSR and its reciprocal version RCSSR
have mutual advantages in different setups. In order to reject
unknown classes, instead of considering whether to represent
the known classes by prototype or reciprocal points, CSGRL
characterizes both known and unknown classes to separate
them directly.

5.4 Experiments for Out-of-Distribution Detection
OOD detection aims to detect samples that come from out-
distribution, which may be similar to, or very different from,
in-distribution samples. The setup of the OOD experiment in
[Chen et al., 2021] is adopted in this section.

Experimental setup. We conduct two sets of experiments
where the models are trained on Cifar10 as the in-distribution
dataset. Then, they are tested on Cifar100 or SVHN as the
near OOD dataset and far OOD dataset, respectively. In
addition to the previously introduced methods, we compare
CSI [Tack et al., 2020] and OpenGAN [Kong and Ramanan,
2021], which enhance the representation of known classes
from different perspectives. Following [Chen et al., 2021],
we use DTACC, AUROC, AUIN, and AUOUT as evalua-
tion metrics. DTACC calculates the maximum value of clas-
sification accuracy at different thresholds. AUPR measures
the area of graph plotting precision against recall at different
thresholds. When in-distribution (or out-distribution) sam-
ples are specified as positive, AUPR is further represented by
AUIN (or AUOUT).

Results comparison. Based on the results in Table 3, we
can summarize the following conclusions:

(1) Under different OOD settings, CSGRL outperformed
OpenGAN on four metrics, which indicates that the conven-
tional GAN has limited improvement in unknown detection.

(2) It is easier to recognize far OOD data than near OOD
data, so its performance is close to saturation on most meth-
ods. Despite this, CSGRL improves performance over other
methods.

(3) For near OOD data, CSGRL is ranked first. This indi-
cates that CSGRL is better able to distinguish unknown sam-
ples that are similar to known samples.

Cifar10 Tinyimagenet In:CIFAR10/Out:SVHN
60

70

80

90

100

AU
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CSGRL-G-Sun CSGRL-G CSGRL

Figure 3: Ablation study of various components.

5.5 Ablation Study
In this section, we construct ablation experiments to inves-
tigate the effectiveness of two key designs for CSGRL. As
in the dataset setup in Section 5.2 and Section 5.4, the ex-
periment includes three datasets commonly used in OSR: Ci-
far10, SVHN, and Tinyimagenet.

Ablation terms. (1) Generation Module G: the model
learns the union boundary region to approximately charac-
terize the unknown space. (2) Reconstruction Score of Un-
known Classes Sun: the model introduces the reconstruction
error of the unknown classes as the recognition score.

Result comparison. Figure 3 shows the AUROC results of
the ablation experiments. From these results, we can obtain
the following three observations:

(1) Learning a union boundary region benefits more com-
pact representations of known classes.

(2) The reconstruction score of unknown classes can effec-
tively improve the recognition accuracy of unknown classes.

(3) As more CSGRL components are integrated into the
model, the performance of the model gradually improves.
This indicates the necessity of the components for OSR.

6 Conclusion
In this paper, we proposed CSGRL, a class-specific semantic
generation and reconstruction learning. In contrast to previ-
ous reconstruction learning for OSR, this method follows an
open paradigm in the training phase, where it learns a union
boundary region to approximately characterize the unknown
space. In addition, the reconstruction error of the unknown
classes is introduced as a decision score, which further sepa-
rates the confusing unknown samples from the known space.
Experimental results under multiple protocols demonstrated
that this method outperforms other state-of-the-art methods.
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