
Pre-DyGAE: Pre-training Enhanced Dynamic Graph Autoencoder for
Occupational Skill Demand Forecasting

Xi Chen1,2∗, Chuan Qin2,3, Zhigaoyuan Wang4, Yihang Cheng2, Chao Wang1,5,
Hengshu Zhu2† and Hui Xiong4†

1School of Computer Science and Technology, University of Science and Technology of China
2Career Science Lab, BOSS Zhipin

3PBC School of Finance, Tsinghua University
4Artificial Intelligence Thrust, The Hong Kong University of Science and Technology (Guangzhou)

5Guangzhou HKUST Fok Ying Tung Research Institute Guangzhou, China
chenxi0401@mail.ustc.edu.cn,zwang901@connect.hkust-gz.edu.cn, xionghui@ust.hk,

{chuanqin0426, chengyihang544, chadwang2012, zhuhengshu}@gmail.com

Abstract
Occupational skill demand (OSD) forecasting
seeks to predict dynamic skill demand specific to
occupations, beneficial for employees and employ-
ers to grasp occupational nature and maintain a
competitive edge in the rapidly evolving labor mar-
ket. Although recent research has proposed data-
driven techniques for forecasting skill demand, the
focus has remained predominantly on overall trends
rather than occupational granularity. In this pa-
per, we propose a novel Pre-training Enhanced
Dynamic Graph Autoencoder (Pre-DyGAE), fore-
casting skill demand from an occupational perspec-
tive. Specifically, we aggregate job descriptions
(JDs) by occupation and segment them into sev-
eral timestamps. Subsequently, in the initial times-
tamps, we pretrain a graph autoencoder (GAE),
consisting of a semantically-aware cross-attention
enhanced uncertainty-aware encoder and decoders
for link prediction and edge regression to achieve
graph reconstruction. In particular, we utilize con-
trastive learning on skill cooccurrence clusters to
solve data sparsity and a unified Tweedie and rank-
ing loss to predict the imbalanced distribution.
Afterward, we incorporate an adaptive temporal
encoding unit and a temporal shift module into
GAE to achieve a dynamic GAE (DyGAE), fine-
tuned with a two-stage optimization strategy. Ex-
tensive experiments on four real-world datasets val-
idate the effectiveness of Pre-DyGAE compared
with state-of-the-art baselines.

1 Introduction
With the rapid development of technology, the nature of
occupation is continually changing [Bisello et al., 2022],
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Figure 1: An illustration depicts the dynamic evolution of skill de-
mands for NLP Algorithm Researchers (NLPer) and Algorithm En-
gineers (AE) from 2020 to 2023. The proportions of different colors
on each donut chart represent the proportion of demand for different
skills in the corresponding occupation.

e.g., the skill demand of the occupation. OSD forecasting
plays an important role in research fields related to the la-
bor market and economics, such as labor market evolution
[Sus and Sylwestrzak, 2021], occupational mobility and de-
velopment [Wang et al., 2021b; Wang et al., 2021a; Qin et
al., 2019], and enterprise recruitment [Bilan et al., 2020;
Qin et al., 2022]. In particular, dynamic OSD forecasting is
helpful for the development of individual career construction
and career planning [Guo et al., 2022a]. As for enterprises,
forward-looking OSD is helpful for recruitment.

Previous studies on the analysis between occupation and
skill mainly leverage the survey or interview-based methods,
e.g., Occupational Information Network (O*NET), which is
very labor-intensive and involves human biases [Felten et al.,
2018]. Fortunately, recent years have witnessed the rapid
development of online recruitment platforms, accumulating
massive job postings across different occupations. This pro-
vides an unparalleled chance for implementing large-scale
data-driven OSD forecasting. Along this line, although some
research has been introduced for skill demand prediction [Wu
et al., 2019; Li et al., 2020; Chao et al., 2024] and skill
trend analysis [Mahdavimoghaddam et al., 2022], the skill
demand forecasting at the occupational level is still largely
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under-explored. Predicting skill demand at an occupational
granularity is essential as it acknowledges the varying trends
in skill development across different occupations, highlight-
ing that a singular prediction of overall skill trends falls short
of meeting diverse demands.

Indeed, there are three major challenges for OSD forecast-
ing. Firstly, the trends of identical skills across various occu-
pations exhibit diversification, while the demands for distinct
skills in occupations are intricately interconnected [Langley
et al., 2019]. This intricate interplay complicates the model-
ing in skill demand forecasting at the occupational level. Sec-
ondly, some pioneering skills often go unnoticed in enterprise
recruitment job postings. This oversight makes it difficult to
attain forward-looking forecasting on the skills that have not
yet surfaced in occupations. Lastly, as shown in Figure 1
many skills occur in the long-tailed part, making accurate de-
mand forecasting more challenging.

To address the above challenges, we introduce Pre-
DyGAE, pre-training enhanced dynamic graph autoencoder
for OSD forecasting. To be specific, we aggregate JDs by oc-
cupation and partition them into several timestamps. Firstly,
leveraging JDs from the initial timestamps, we pre-train the
graph autoencoder (GAE), consisting of an encoder, a link
prediction decoder, and an edge regression decoder. The
encoder is enhanced by semantically-aware cross-attention
and Graph Convolution Neural Networks (GCNs) for ro-
bust representations of both occupations and skills. Besides,
GAE is pre-trained with a link prediction task enhanced by
contrastive learning on skill clusters and an edge regression
task to predict the distribution of skill demand using a uni-
fied Tweedie and ranking loss. Subsequently, in the following
timestamps, we add an adaptive temporal encoding unit and
a temporal shift operator into the pre-trained GAE to achieve
a DyGAE. Furthermore, we fix the GAE and fine-tune the
DyGAE with a two-stage optimization strategy. Finally, we
obtain the evolved representations and achieve the forecast-
ing of future OSD. Extensive real-world dataset experiments
confirm Pre-DyGAE significantly outperforms state-of-the-
art baselines. The code is available online1.

2 Related Work
2.1 Occupational Skill Analysis
Research on occupation and skill plays a crucial role in la-
bor market analysis [Felten et al., 2018; Sun et al., 2021;
Fang et al., 2023; Qin et al., 2024; Qin et al., 2023;
Chen et al., 2021]. Recently, the labor market has under-
gone a rapid transformation driven by technological advance-
ments. Several studies have examined the substitution of
skills [Felten et al., 2018] and the evolution of occupations,
while others have explored occupational mobility and market
changes post-economic crisis [Bisello et al., 2022]. However,
these studies often focus on localized phenomena of occupa-
tions and skills. The emergence of online recruitment plat-
forms has enabled detailed statistical analysis of job postings.
This data, collected from enterprise recruitment efforts, sheds
light on the demand for talents and skills in the labor mar-
ket [Zhu et al., 2016; Zhang et al., 2021; Guo et al., 2022b;

1https://github.com/cx9941/Pre-DyGAE

Chao et al., 2024], helping to predict skill demand for spe-
cific jobs [Wu et al., 2019]. Nonetheless, existing research
tends to concentrate on skills or occupations separately, lack-
ing a holistic analysis of both. Diverging from prior work, our
study adopts an innovative perspective to explore the skill de-
mand at the occupational level over time.

2.2 Dynamic Graph Learning
Dynamic graph learning has garnered significant attention in
recent research, which can model many real-world scenar-
ios such as user-item interaction systems [Yu et al., 2023]
and traffic networks [Zhao et al., 2020]. Many studies seg-
ment nodes based on temporal slices, analyzing static graphs
within each slice and synthesizing temporal representations
through methods like RNN or self-attention mechanisms,
such as JODIE [Kumar et al., 2019], Dyrep [Trivedi et al.,
2019], and CAWN [Wang et al., 2021d]. Specially, focus
on spatio-temporal sequences, GConv [Seo et al., 2018], Dy-
grencoder [Taheri et al., 2019] and TGCN [Zhao et al., 2020]
leveraged a combination of GCN and RNN to exploit spa-
tial and temporal regularities. Besides, DCRNN [Li et al.,
2018] captures the spatial dependency using random walks
on the graph and A3TGCN [Bai et al., 2021] additionally
adds the attention mechanism to assemble global temporal
information. To learn the dynamic topology, EvolveGCN
[Pareja et al., 2019] uses a recurrent model to evolve the
GCN parameters, and AGCRN [Bai et al., 2020] captures
fine-grained graph correlations in time series automatically.
Some transformer-based methods, TCL [Wang et al., 2021c]
and DyGFormer [Yu et al., 2023], learning from node histor-
ical first-hop interactions, efficiently benefit from long histo-
ries. Additionally, several studies have introduced temporal
encoding mechanisms to effectively capture timing patterns
in dynamic graphs, such as TGN [Rossi et al., 2020], TCL
[Wang et al., 2021c] and GraphMixer [Cong et al., 2023].

3 Preliminaries
In this section, we define the key concepts integral to our
study, present the problem formulation of OSD forecasting,
and give an overview of our proposed Pre-DyGAE.
Definition 1 (Occupational Skill Demand). At timestamp t,
each occupation o in the occupation set O contains collected
JDs Pt

o. Each JD p encompasses a set of skills from the skill
set S . Along this line, we define the OSD at timestamp t as:
Rt

o,s =
∑

p∈Pt
o
1(s ∈ p)/|Pt

o|, where Rt ∈ R|O|×|S| and | · |
denotes the size of a set.
Definition 2 (Occupational Skill Demand Graph). At
timestamp t, OSD graph can be represented as an undi-
rected bipartite graph Gt = (V , Et, At), where V = O ∪ S ,
Et is a set of edges between occupations and skills, and
At ∈ R|V|×|V| is the weighted adjacency matrix. The edge
eto,s between o and s is defined as {eto,s ∈ E t|o ∈ O, s ∈ S,
and Rt

o,s ̸= 0}. The weighted adjacency matrix is defined as
At

o,s = At
s,o = Rt

o,s if eto,s ∈ E t, otherwise 0.
Problem 1 (Occupational Skill Demand Forecasting).
Given an OSD graph sequence (G1,G2, ...,GT ), our objec-
tive becomes predicting the OSD graph GT+1 for the upcom-
ing frame T + 1. Specifically, we validate the effectiveness
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Figure 2: An illustration of our proposed Pre-DyGAE.

of dynamic graph forecasting via two common tasks in dy-
namic graph learning: (i) dynamic link prediction, which es-
timates the existence of eT+1

o,s between o and s; (ii) dynamic
edge regression, which infers the weighted adjacency matrix
{AT+1

o,s |eT+1
o,s ∈ ET+1}.

Solution overview In this paper, we introduce Pre-DyGAE,
a two-stage framework comprising pre-training and fine-
tuning phases. An overview of our Pre-DyGAE is graphically
depicted in Fig. 2. Considering the tradeoff between utilizing
data integrity knowledge and capturing evolutionary patterns,
we aggregate JDs from initial timestamps (P1, ...,P∆t) into
P0 to construct the initial graph G0 for pre-training and fine-
tune on the following OSD graphs (G∆t+1, ...,GT ) for dy-
namic representations. In the pre-training stage, we employ a
GAE to pre-train on G0, aiming to obtain robust representa-
tions. In particular, our encoder incorporates a semantically-
aware cross-attention mechanism, utilizing textual informa-
tion stored in JDs to capture intricate relationships between
occupations and skills. Additionally, GCNs are applied to
model uncertainty. To guide comprehensive graph recon-
struction, we introduce a contrastive loss on skill cooccur-
rence clusters for sparse data and a unified Tweedie loss and
ranking loss for imbalanced prediction. In the fine-tuning
stage, we enhance GAE with an adaptive temporal encoding
unit and a temporal shift module for DyGAE. This dynamic
model is fine-tuned using a two-stage optimization strategy,
allowing it to evolve representations from timestamp ∆t + 1
to T . Finally, our framework enables the inference of future
representations and the prediction of future OSD.

4 Pre-training Enhanced Graph Autoencoder
In this section, our objective is to devise a pre-training model
adept at capturing intricate relationships between occupations
and skills to yield robust representations. The architecture
consists of an encoder and two decoders. In the multi-task
training framework, we jointly pre-train the model in a multi-
task framework to guide comprehensive graph reconstruction.

4.1 Encoder
To fully leverage the semantic content of the data, we initial
the primary embeddings of occupation o and skill s as Eo and

Es with their corresponding JDs:

Eo =

∑
p∈P0

o
Bert(p)

|P0
o |

, Es =

∑
p∈P0

s
Bert(p)

|P0
s |

, (1)

where P0
s represents {p|s ∈ p, p ∈ P0}, Bert(p) signifies the

embedding of the p derived from a pretrained BERT model.

Semantically-Aware Cross-Attention Besides, a cross-
attention mechanism is contributed to further harness the in-
tricacies tied to skills and their representations in occupa-
tions. Let’s represent the matrices of occupations and skills
embeddings as EO and ES . We obtain the semantically-
aware cross-attention enhanced occupation and skill embed-
dings ZO as:

EQ = EOWQ, EK = ESWK , EV = ESWV ,

B =
EQ(EK)T√

dK
, ZO = softmax(B)EV , ZS = ES ,

(2)

where WQ, WK , and WV are trainable parameters and dK
is the dimension of EK .

Furthermore, we introduce a semantically-aware cross-
attention mechanism to further harness the semantic intrica-
cies tied to skills and their representations in occupations.
The mechanism can be reformulated as:

ZO = softmax(B +Bbias)EV , (3)

where the bias Bbias ∈ R|O|×|S| is learnable, pivotal for
instilling deep semantic insights into the representations of
occupations and skills. With a cosine similarity function
Sim(x, x′) = x·x′

∥x∥·∥x′∥ , the bias Bbias is defined as:

Bbias
o,s = Sim(FC1(Eo), FC2(Es)), (4)

where FCi(·) is a linear fully connected layer.

Uncertainy-Aware Modeling Furthermore, we utilize
structural data to steer the integration of occupation and skill
representations by GCN. The aggregation process is:

GCN(A0, Z;W 0) = f(D− 1
2 (A0 + I)D

1
2ZW 0), (5)
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where Z is the concatenation of ZO and ZS , f is a activation
function, I is the identity matrix, W 0 is the trainable node
transformation matrix, and D is the degree matrix of A0 + I .

Considering the inherent uncertainty arising from multiple
job postings associated with individual occupations, a deter-
ministic representation may risk overfitting. To address this,
we model the latent variable H0 to adhere to a Gaussian dis-
tribution for deriving more robust representations:

H0 ∼N (µ0, σ0),

µ0 = GCN(A0, Z;Wµ), σ0 = GCN(A0, Z;W σ),
(6)

where N (µ, σ) is the probability density function of the
Gaussian distribution with mean µ and variance σ2, and Wµ

and W σ are two trainable node transformation matrices.

4.2 Decoders
Upon obtaining the representations, the decoders aim to re-
construct the input graph G0 in two aspects, link prediction to
predict the relationships between occupations and skills and
edge regression for predicting the specific values.
Link Prediction Decoder We model the likelihood P E of
associating skill s with occupation o as follows:

P E(e0o,s ∈ E0) = sigmoid(MeanPooling(H0
o ⊙H0

s )), (7)

where sigmoid(·) is an activation function for calculating the
probability, ⊙ denotes the element-wise multiplication oper-
ation, and MeanPooling(·) calculates the average value along
the last dimension in the matrix.
Edge Regression Decoder Extending the capabilities of
GAE, we utilize a linear layer with an activation function to
estimate R0

o,s:

R̂0
o,s = softplus(FC3(H

0
o ⊙H0

s )), (8)

where softplus(·) is an activation function as a smooth ap-
proximation of the rectifier linear unit activation function.

Through this approach, GAE decodes H0 into distinct
spaces for predicting both relationships between occupations
and skills and OSD, facilitating mutual learning that con-
tributes to the accomplishment of diverse tasks. The predic-
tion within a static time slice also contributes to subsequent
dynamic forecasting.

4.3 Pre-training Objectives
The pre-training objective for graph reconstruction involves
training the primary tasks of link prediction and edge regres-
sion, incorporating two auxiliary tasks. The loss function
is composed of a negative log-likelihood loss (L0

nll) and a
collaborative-aware contrastive loss (L0

con) for link prediction
with sparse data challenge, as well as a Tweedie loss (L0

rg)
and a ranking loss (L0

rank) for imbalanced regression.
Negative Log-Likelihood Loss To achieve the accurate
reconstruction of the graph edges E0, the negative log-
likelihood loss Lnll is minimized:

L0
nll =−

∑
e0o,s∈E0

y0o,s log(P
E(e0o,s))

−
∑

e0o,s /∈E0

(1− y0o,s) log(1− P E(e0o,s)),
(9)

where y0o,s = 1 if e0o,s ∈ E and y0o,s = 0 otherwise.
Collaborative-Aware Constrative Loss To solve the chal-
lenges of predicting relationships between occupations and
less frequent skills, we further introduce a collaborative-
aware contrastive loss. Specifically, by evaluating skill co-
occurrence in P0, we apply a spectral clustering algorithm
to divide the skills into C clusters and Ck is the k-th cluster
contains skills with the closest co-occurrence degree. This
approach tightens the representation of skills within a single
cluster and thus addresses data sparsity, which is defined as:

L0
con = −

∑
Ck∈C

log

∑
s,s′∈Ck

exp(sim(H0
s , H

0
s′)/γ)∑

s,s′∈S exp(sim(H0
s , H

0
s′)/γ)

, (10)

where γ is the temperature coefficient.
Tweedie Loss Considering the OSD follows long-tailed
distribution, directly employing regression loss functions i.e.,
MAE, may hinder the model’s ability to effectively capture
the imbalances present in both the head and tail data in train-
ing. Here, we employ the Tweedie loss to address this issue.

L0
rg =

∑
e0o,s∈E0∪Eneg

(
max(R0

o,s, 0)
2−η

(1− η)(2− η)
−

R0
o,s(R̂0

o,s)
1−η

1− η
+

(R̂0
o,s)

2−η

2− η

)
, (11)

where η ∈ (1, 2) is a hyperparameter defining the power re-
lation between Tweedie distribution mean and variance, and
Eneg is the set of randomly sampled negative edges.
Ranking Loss Furthermore, the diverse skill demands of an
occupation underscore the unique roles each skill plays. For
instance, some foundational skills might be prevalent across
different occupations, whereas the low occurrences could in-
dicate some emerging demand. Therefore, we devise a rank-
ing loss, as a pairwise loss [Wang et al., 2023], to better cap-
ture the distinctions between skills.

L0
rank =

∑
ρ0
o,s>ρ0

o′,s′

max(0, R̂0
o,s − R̂0

o′,s′ + ϵ),
(12)

where ϵ is the margin value and ρ0o,s is the rank. Specifically,
if R0

o,s ≥ 0.1, ρ0o,s = 0; if 0.1 > R0
o,s > 0.01, ρ0o,s = 1;

otherwise, ρ0o,s = 2.
Finally, the pre-training loss function L0

GAE is defined:

L0
GAE = λnllL0

nll+λconL0
con+λrgL0

rg+λrankL0
rank+L0

kl,
(13)

where L0
kl =

1
2

∑
i,j (µ

0
ij

2
+(σ0

ij)
2− 2 log(σ0

ij)− 1) is a KL
loss to minimize the discrepancy between the posterior and
prior distributions of the latent variables, and λnll, λcon, λrg

and λrank are the hyperparameters to balance the effects of
different modules.

5 Dynamic Graph Autoencoder
In this section, we incorporate an adaptive temporal encod-
ing unit and a temporal shift module into GAE . Besides, we
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fix GAE and apply parameter efficient fine-tuning on DyGAE
with a two-step optimization strategy. Finally, we can evolve
the dynamic representations underlying a dynamic graph se-
quence (G∆t+1, ...,GT ) and achieve OSD forecasting.

5.1 Temporal Feature Learning
Specifically, we design an adaptive temporal encoding unit to
facilitate the learning of temporal representations. Addition-
ally, we model the Gaussian distribution of temporal features,
enhancing our ability to capture and represent dynamic un-
certainties. Notably, we introduce a temporal shift module to
effectively explore the temporal evolution of features, thereby
achieving dynamic representations.
Adaptive Temporal Encoding Unit At timestamp t, the
relationship between occupations and skills hinges on the
prevailing graph structure Gt and the stable graph structure
G0. To harness the wealth of structural information embed-
ded within the relationship between occupations and skills,
we employ the dual-view GCN propagation method, integrat-
ing it with the specified adjacency matrix At and a learnable
graph Aa initialized with A0. With an initial learnable em-
bedding Lt ∈ R(|O|+|S|)×d where d is the feature dimension,
the dual-view GCN propagation layer is devised as:

Aa = softmax(Relu(M tM tT)),

F t = FC4([GCN(At, Lt;W t);GCN(Aa, Lt;W a)]),
(14)

where M t ∈ R(|O|+|S|)×d is a trainable parameter, F t is the
structure enhanced temporal hidden states, and [·; ·] denotes
a concanate operation. Furthermore, We encode the temporal
feature as a Gaussian distribution:

ϕt = FC5(F
t), δt = FC6(F

t), (15)
where ϕt ∈ R(|O|+|S|)×d and δt ∈ R(|O|+|S|)×d.
Dynamic Uncertainty-Aware Modeling While the stable
representations capture the essential characteristics of occu-
pations and skills, learned temporal characteristics enrich the
representation with time-varying nuances. Leveraging the su-
perposition property of normal distributions, we model the
dynamic representations by incorporating the temporal fea-
tures into the stable initial representation:

µt = µ0 + ϕt, σt = σ0 + δt, Ht ∼ N (µt, σt). (16)
This strategy allows us to capture intricate temporal patterns
and facilitate robust representation learning.
Temporal Shift Module Following the assumption that
variance does not depend on time [Gourru et al., 2022], we
infer δ̂t+1 =

∑
δt/T . To explore the evolution of ϕt, we

first decompose ϕt into a stable term αt = FC8(ϕ
t) and a

trend term βt = FC9(ϕ
t). To predict ϕt+1, we add an MLP

to evolve the trend term as ωt = MLP(βt). Then we forecast
the ϕt+1 as αt + ωt.

5.2 Parameter Efficient Fine-Tuning
Leveraging the pre-trained GAE, we initially focus on op-
timizing the temporal features in each timestamp. Follow-
ing this, we delve into exploring the evolution pattern. This
two-step optimization strategy allows for a comprehensive
exploitation of the pre-trained model’s advantages and facili-
tates the accurate capture of evolution characteristics.

Adaptive Temporal Encoding Unit Optimization For dy-
namic OSD, trend changes usually include four situations:
emergence, disappearance, growth, and decline. To explicitly
allow dynamic representations to perceive changes in trends,
for each o and s, we additionally add a linear layer with an
activation function to map temporal features into four trend
labels τo,s as above.

We estimate the likelihood of the trend label between o and
s at t as P τ (o, s, t) = sigmoid(FC7(H

t
o ⊙Ht

s)). The trend-
aware loss is defined as:

Lt
trend = −

∑
o∈O,s∈S

4∑
k=1

1(τo,s = k)·log(P τ
k (o, s, t)). (17)

In each timestamp t ∈ [∆t + 1, T ], we fix the GAE and
fine-tune the adaptive temporal encoding unit via Lt

tem =
λtrendLt

trend + Lt
GAE for the temporal feature distribution

(ϕt, δt), where λtrend is the hyperparameter, Lt
GAE is the

pre-training loss in Eq.13 with Ht as the input of decoders
and Gt as the target graph.
Temporal Shift Module Optimization Based on the tem-
poral feature sequence ((ϕ∆t+1, δ∆t+1), ..., (ϕT , δT )), we in-
tend to predict the temporal feature in the next timestamp
(ϕT+1, δT+1). Firstly we reconstruct the {ϕt|t ∈ [∆t+1, T ]}
with a reconstruction loss Lre:

Lre =
∑

t∈[∆t+1,T ]

MSE(ϕt, αt + βt), (18)

where MSE(x, x′) is a function to compute the mean squared
error between x and x′. Besides, to achieve next-step predic-
tion, we introduce Lne as:

Lne =
∑

t∈[∆t+1,T−1]

MSE(ϕt+1, αt + ωt). (19)

Additionally, we formulate the loss λcom to keep the stable
terms similar and distinguish trend terms.

Lcom =
∑

t,t′∈[∆t+1,T ],t̸=t′

(Cos(βt, βt′)− Cos(αt, αt′)),

(20)

where Cos(x, x′) is a function, defined as Cos(x, x′) =
1
m

∑m
i=1

xi·x′
i

∥xi∥·∥x′
i∥

, to compute the average cosine similarity
between x and x′ and m is the number of row in x. During
the training process, the three loss functions are combined as
Lshift = λreLre+λneLne+λcomLcom where λre, λne, and
λcom are the hyperparameters.

5.3 Inference Procedure
After the fine-tuning, we can infer the next step temporal
features as ϕ̂T+1 = αT + ωT . Combining with the pre-
trained representation distributions, we forecast the repre-
sentation distributions of occupations and skills ĤT+1 ∼
N (µ0 + ϕ̂T+1, σ0 + δ̂T+1). Furthermore, the OSD graph
ĜT+1 can be inferred with the inferred likelihood P̂ E(eT+1

o,s ∈
ET+1) = sigmoid(MeanPooling(ĤT+1

o ⊙ĤT+1
s )) and the in-

ferred edge weight ÂT+1
o,s = softplus(FC3(Ĥ

T+1
o ⊙ ĤT+1

s )).
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Data Metric DCRNN DyGrEncoder AGCRN A3TGCN TGAT CAWN DyGFormer CHGH Pre-DyGAE

Dai

AUC%↑ 66.42±0.25 72.84±2.89 64.05±0.91 61.91±11.11 90.47±0.09 91.17±0.43 90.83±0.38 70.76±1.18 96.96±0.04**
Hits@1%↑ 11.99±0.44 9.52±0.88 12.59±0.98 1.93±1.91 38.62±7.50 39.30±1.90 29.05±0.85 21.90±1.56 42.97±0.33**
MRR%↑ 16.62±1.01 13.60±2.44 17.24±2.11 4.00±6.52 41.29±3.29 43.06±0.05 41.16±0.21 25.00±1.74 51.92±0.19**
EGM%↓ 0.09±0.00 0.23±0.05 0.09±0.00 0.15±0.08 0.07±0.00 1.12±0.55 1.17±0.97 0.11±0.06 0.06±0.00**
MAE%↓ 0.74±0.02 0.93±0.05 0.89±0.02 1.10±0.10 1.16±0.00 1.83±0.47 2.02±0.80 0.35±0.01 0.30±0.04*
RMSE%↓ 3.58±0.06 2.97±0.10 3.31±0.24 4.17±0.13 5.17±0.00 5.05±0.01 5.16±0.02 1.14±0.02 0.66±0.27*

Fin

AUC%↑ 67.58±0.49 70.15±2.02 65.87±0.95 68.39±2.06 92.17±0.20 92.26±0.03 92.26±0.17 71.51±2.54 96.16±0.09**
Hits@1%↑ 15.08±0.45 15.07±1.85 14.99±0.85 5.11±2.86 46.14±2.66 45.20±5.16 28.25±20.81 23.37±3.84 48.59±0.34*
MRR%↑ 20.52±1.26 19.05±5.44 20.47±1.38 8.84±6.62 48.91±0.64 48.65±0.72 45.09±3.85 26.73±4.17 57.89±0.37**
EGM%↓ 0.12±0.00 0.17±0.01 0.14±0.01 0.39±0.08 0.13±0.00 16.18±10.27 1.29±1.06 0.18±0.04 0.09±0.02**
MAE%↓ 0.67±0.03 0.88±0.01 1.02±0.03 1.58±0.11 1.54±0.00 16.70±10.24 2.71±1.17 0.49±0.05 0.34±0.06**
RMSE%↓ 3.00±0.14 2.74±0.03 3.45±0.16 4.28±0.23 6.12±0.00 17.19±9.87 6.38±0.26 2.31±0.01 0.47±0.24**

IT

AUC%↑ 68.31±0.64 70.32±1.77 63.86±0.79 64.57±1.25 89.13±0.25 89.79±0.36 89.19±0.14 72.49±2.55 96.04±0.06**
Hits@1%↑ 14.03±0.77 14.34±0.83 12.45±0.44 2.88±1.27 40.78±2.46 36.50±2.04 38.24±9.30 26.27±4.34 44.34±0.67**
MRR%↑ 19.63±1.53 20.48±2.21 17.51±1.11 7.52±3.23 46.99±1.05 46.18±1.44 45.58±3.02 29.86±4.58 52.59±0.45**
EGM%↓ 0.17±0.01 0.27±0.02 0.21±0.01 0.46±0.10 33.42±45.23 7.14±0.93 0.53±0.08 0.21±0.04 0.11±0.02**
MAE%↓ 0.93±0.04 1.20±0.05 1.34±0.03 1.80±0.06 34.24±44.96 7.79±0.91 1.95±0.05 0.52±0.04 0.35±0.07**
RMSE%↓ 3.36±0.14 3.92±0.64 4.11±0.10 4.87±0.17 36.33±42.38 8.95±0.71 6.53±0.01 1.39±0.02 0.73±0.34*

Man

AUC%↑ 68.20±0.89 72.73±3.24 65.45±1.39 69.75±1.73 89.18±0.24 90.12±0.11 90.47±0.28 71.14±1.76 96.92±0.07**
Hits@1%↑ 12.87±0.99 13.74±1.62 14.04±1.71 3.13±1.26 35.07±2.21 41.80±1.51 28.54±1.90 22.47±2.39 45.62±0.63**
MRR%↑ 17.12±1.73 18.25±3.90 18.40±4.06 6.86±2.44 45.86±0.85 49.03±1.86 44.86±0.80 25.69±2.66 53.85±0.46*
EGM%↓ 0.12±0.00 0.23±0.06 0.14±0.01 0.32±0.05 0.12±0.00 2.58±1.22 7.69±9.58 0.16±0.03 0.07±0.02**
MAE%↓ 0.66±0.01 0.89±0.07 0.94±0.04 1.29±0.03 1.31±0.00 3.20±1.14 8.51±9.22 0.40±0.03 0.30±0.06**
RMSE%↓ 2.42±0.05 2.64±0.14 3.11±0.17 3.96±0.08 5.18±0.00 5.35±0.42 10.29±7.23 1.27±0.02 0.68±0.18**

Table 1: OSD forecasting performance comparisons across four datasets. Each result was derived from four repetitive experiments. The
best results are highlighted in bold, while the second-best results are underscored. Asterisks indicate statistical significance: * denotes
performance improvement at the 0.05 level, and ** denotes a significant improvement at the 0.01 level, as determined by the paired t-test.

6 Experiments
6.1 Experimental Settings
Datasets The datasets used in our experiments were col-
lected from the public information of one of the largest online
recruitment platforms. We gathered JDs spanning a diverse
range of occupations, covering the period from January 2020
to December 2023. Along this line, we constructed large-
scale datasets from four industries, i.e., the Daily dataset
(Dai), Finance dataset (Fin), IT dataset (IT), and Manufac-
turing dataset (Man). As mentioned above, we used half-year
intervals as the basic time step, dividing each dataset into 8
timestamps. In our experiment setup, we selected ∆t = 4,
which entailed using JDs from the first 4 timestamps for pre-
training and the subsequent 3 timestamps for dynamic tem-
poral feature learning. Besides, more parameter experiments
are in the Appendix, and we choose λnll, λcon, λrg , λrank,
λtrend, λre, λne, and λcom as 1, 0.05, 100, 0.1, 1, 1, 1, and 1.
Meanwhile, we partitioned the JDs from the first month of the
final timestamp to create a validation set, while the remaining
five months’ JDs were used as a test set. Detailed statistics
and divisions of our datasets are provided in the Appendix.
Evaluation Metrics We evaluated the effectiveness of our
approach via dynamic link prediction and edge regression
tasks. Therefore, we employed several link prediction met-
rics, including AUC [Zha et al., 2023], MRR, and Hits@1
[Wang et al., 2022], and regression metrics, including EGM
[Yang et al., 2021], MAE [Zhu et al., 2016], and RMSE
[Chang et al., 2014]. In particular, EGM was used to mea-
sure the heavy-tailed nature of our data distributions.
Baselines We compared Pre-DyGAE with a state-of-the-art
method, i.e., CHGH [Chao et al., 2024]. In addition, we in-
cluded dynamic graph learning baselines, including DCRNN

[Li et al., 2018], DyGrEncoder [Taheri et al., 2019], AGCRN
[Bai et al., 2020], A3TGCN [Bai et al., 2021], TGAT [Xu et
al., 2020], CAWN [Wang et al., 2021d], and DyGFormer [Yu
et al., 2023]. To maintain fairness in comparison, each base-
line was trained with data within the former 7 timestamps.
Besides, we also compared some traditional methods, but due
to not achieving competitive results and page limitations, we
have put their experimental results in the Appendix.

6.2 Experimental Results
Performance Comparison Table 1 illustrates the compre-
hensive performance evaluation of Pre-DyGAE and baselines
across four datasets. According to the results, there are sev-
eral observations. Firstly, our proposed model has significant
improvements over all baselines in all datasets, thus demon-
strating the effectiveness of our framework in OSD forecast-
ing. Specifically, the AUC metric showcases a remarkable
performance of 96%. This confirms its capability to precisely
predict future skills across a variety of occupations, a criti-
cal aspect for subsequent edge regression. Additionally, our
approach demonstrates proficiency by improving the average
RMSE in four datasets from 1.527% to 0.635%, an increase
of 58% compared with the best-performing baseline, pro-
viding precise insights into the distribution of demand, and
highlighting its capability to forecast future skill demand ac-
curately. Moreover, the improvement in the EGM directly
signifies the competence of our model in predicting unbal-
anced distribution. Thirdly, baseline models often show im-
balanced results in both link prediction and regression met-
rics, indicating the complexity of integrating these two tasks.
In contrast, our model excels in all metrics, demonstrating
Pre-DyGAE’s ability to improve performance on both tasks.
Finally, it is noteworthy that RNN-based methods such as
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Metrics AUC%↑ MRR%↑ EGM%↓ MAE%↓
NGCF 70.15±0.09 14.23±0.10 0.03±0.00 0.51±0.01
LightGCN 76.45±1.10 15.74±1.00 0.34±0.05 0.86±0.08
MultVAE 77.22±0.00 12.08±0.00 0.02±0.00 0.51±0.00

w/o con 93.38±0.06 19.46±0.25 0.09±0.04 0.22±0.08
w/o rank 94.52±0.03 21.19±0.33 0.09±0.07 0.27±0.09
w/o bias 94.37±0.11 21.16±0.31 1.09±0.62 1.49±0.73
L1 94.44±0.15 21.54±0.21 0.06±0.03 0.12±0.02

GAE 95.56±0.06 22.64±0.27 0.02±0.02 0.09±0.05

Table 2: OSD graph completion performance on Fin dataset. We
introduced four variants of our GAE: “w/o rank”, “w/o con”, “w/o
bias”, and “L1”. The first three variants denote our model with-
out the Lrank (Eq.12), Lcon (Eq.10), and semantically-aware cross-
attention, respectively. The last variant indicates the substitution of
the Tweedie Loss with L1 loss in Eq.11.

DCRNN and CAWN outperform Transformer-based methods
such as DyGFormer in these datasets. This is attributed to the
Transformer’s primary focus on addressing long-horizon au-
tocorrelation while overlooking variable trends, aligning with
the unique characteristics of our forecasting problem.
GAE Performance on OSD Graph Completion We con-
ducted a validation experiment to assess the robustness of
GAE’s learned representations by predicting missing skill de-
mand within the same time interval. JDs from the initial 4
timestamps were randomly split into training and test sets
at a ratio of 50%, with corresponding occupational skill de-
mand in triplet form (o, s,R0

o,s). For comparison, we se-
lected NGCF, LightGCN, and MultVAE as the baselines [He
et al., 2020]. The results in Table 2 show that GAE improved
AUC and MRR compared to all baselines, indicating effec-
tive representations of occupations and skills. Specifically,
“w/o bias” significantly impacts EGM and RMSE, demon-
strating the importance of the semantically-aware cross at-
tention. The ranking loss distinguishes feature spaces, and
contrastive learning on skill clusters enhances metrics, guid-
ing recognition of sparse skills. Additionally, comparing L1
loss and the Tweedie loss suggests that the latter is more suit-
able for predicting imbalanced distributions. Comprehensive
results across all datasets are detailed in the Appendix.
Ablation Studies We performed ablation studies to assess
different modules in Pre-DyGAE, as depicted in Fig. 3. Re-
sults show Pre-DyGAE’s performance compared to various
backbones, highlighting GAE’s robust representation and its
ability to enhance capturing temporal features. Ablation ex-
periments on the temporal module affirm our model’s capabil-
ity to capture demand distribution shifts caused by subsequent
temporal changes based on the backbone representation.
Parameter Experiment We have carefully considered the
balance between leveraging data integrity knowledge and
capturing evolutionary patterns. As shown in Fig. 4, the trend
of rising first and then falling suggests the advantages of sta-
ble representations for capturing subsequent changes and the
necessity of preserving some future time slices for mining
evolutionary patterns. The consistency in the number of time
frames across different metrics in parameter experiments fur-
ther supports the effectiveness of our pre-training and fine-
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Figure 3: OSD Forecasting Ablation Study on Fin dataset. The
red histogram examines the impact of backbone ablation on OSD
forecasting, while the green histogram assesses the adaptive tem-
poral encoding unit and temporal shift module’s effectiveness. Be-
sides, “w/o pre-train” denotes GAE without pretraining directly ap-
plied to learn the temporal features. And “w/o adaptive” and “w/o
trendweight” denote the adaptive temporal encoding unit without the
learnable graph Wa (Eq.14) and trend loss Ltrend, respectively.
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Figure 4: The influence of ∆t on Fin dataset. We varied timestamps
for aggregating JDs to construct G0 and pre-trained GAE with ∆t
ranging from 1 to 6. Pre-DyGAE performed best with ∆t = 4.

tuning framework. More details can be seen in the Appendix.

7 Conclusion
In this paper, we addressed the critical task of forecast-
ing skill demand in specific occupations, a key aspect in
the dynamics of labor markets and economics. Specifi-
cally, we introduced Pre-DyGAE, a novel approach involv-
ing pre-training on initial timestamps, followed by parameter-
efficient fine-tuning in subsequent timestamps. This ap-
proach leveraged the overall interaction between occupations
and skills over an extended period, enabling the discern-
ment of stable associations between them. The pre-training
of GAE incorporated a semantically-aware cross-attention
enhanced uncertainty-aware encoder and a multi-task pre-
training framework. These components proved effective in
establishing fundamental representations. Based on the pre-
trained GAE, DyGAE excelled in capturing dynamic tempo-
ral features through a two-stage optimization process involv-
ing adaptive temporal encoding units and a temporal shift
module. Extensive experiments on four real-world datasets
have demonstrated the effectiveness of our Pre-DyGAE.
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