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Abstract

This work proposes an efficient parallel algorithm
for non-monotone submodular maximization un-
der a knapsack constraint problem over the ground
set of size n. Our algorithm improves the best
approximation factor of the existing parallel one
from 8 + ϵ to 7 + ϵ with O(log n) adaptive com-
plexity. The key idea of our approach is to cre-
ate a new alternate threshold algorithmic frame-
work. This strategy alternately constructs two dis-
joint candidate solutions within a constant number
of sequence rounds. Then, the algorithm boosts so-
lution quality without sacrificing the adaptive com-
plexity. Extensive experimental studies on three ap-
plications, Revenue Maximization, Image Summa-
rization, and Maximum Weighted Cut, show that
our algorithm not only significantly increases solu-
tion quality but also requires comparative adaptiv-
ity to state-of-the-art algorithms.

1 Introduction
A wide range of instances in artificial intelligence and ma-
chine learning have been modeled as a problem of Sub-
modular Maximization under Knapsack constraint (SMK)
such as maximum weighted cut [Amanatidis et al., 2020;
Han et al., 2021], data summarization [Han et al., 2021;
Mirzasoleiman et al., 2016], revenue maximization in social
networks [Han et al., 2021; Cui et al., 2023a; Cui et al.,
2021], recommendation systems [Amanatidis et al., 2021;
Amanatidis et al., 2020]. The attraction of this problem
comes from the diversity of submodular utility functions
and the generalization of the knapsack constraint. The sub-
modular function has a high ability to gather a vast amount
of information from a small subset instead of extracting a
whole large set, while the knapsack constraint can represent
the budget, the cardinality, or the total time limit for a re-
source. Hence, people are interested in proposing expensive
algorithms for SMK these years [Amanatidis et al., 2021;
Han et al., 2021; Cui et al., 2023a; Pham et al., 2023;
Amanatidis et al., 2020].
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Formally, a SMK problem can be defined such as given
a ground set V of size n, a budget B > 0, and a non-
negative submodular set function (not necessary monotone)
f : 2V 7→ R+. Every element e ∈ V has its positive cost
c(e). The problem SMK asks to find S ⊆ V subject to
c(S) =

∑
e∈S c(e) ≤ B that maximizes f(S).

One of the main challenges of SMK is addressing big data
in which the sizes of applications can grow exponentially.
The modern approach is to design approximation algorithms
with low query complexity representing the total number of
queries to the oracle of f . However, required oracles of f
are often expensive and may take a long time to process on
the machine within a single thread. Therefore, people think of
designing efficient parallel algorithms that can leverage paral-
lel computer architectures to obtain a good solution promptly.
This motivates the adaptive complexity or adaptivity [Balkan-
ski and Singer, 2018] to become an important measurement of
parallel algorithms. It is defined as the number of sequential
rounds needed if the algorithm can execute polynomial inde-
pendent queries in parallel. Therefore, the lower the adaptive
complexity of an algorithm is, the higher its parallelism is.

In the era of big data now, several algorithms that achieve
near-optimal solutions with low adaptive complexities have
been developed recently (See Table 1 for an overview of low
adaptive algorithms). As can be seen, although recent studies
make an outstanding contribution by significantly reducing
the adaptive complexity of a constant factor approximation
algorithm from O(log2 n) to O(log n), there are two draw-
backs, including (1) the high query complexities make them
become impractical in some instances [Ene and Nguyen,
2020] and (2) there is a huge gap between the high approxi-
mation factors of low adaptivity algorithms, e.g. [Amanatidis
et al., 2021; Cui et al., 2023a; Cui et al., 2023b], compared
to the best one, e.g. [Buchbinder and Feldman, 2019]. This
raises to us an interesting question: Is it possible to improve
the factor of an approximation algorithm with near-optimal
adaptive complexity of O(log n)?

Our contributions. In this work, we address the above
question by introducing the AST algorithm for the non-
monotone SMK problem. AST has an approximation factor
of 7 + ϵ, within a pair of O(log n) adaptivity, Õ(nk) query
complexity, where ϵ is a constant input. Therefore, our al-
gorithm improves the best factor of the near-optimal adap-
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Reference Approximation Factor Adaptive Complexity Query Complexity
[Buchbinder and Feldman, 2019] 2.6 poly(n) poly(n)
[Han et al., 2021] 4 + ϵ O(n log k) O(n log k)
[Pham et al., 2023] 4 + ϵ O(n) O(n)
[Ene et al., 2019] e+ ϵ O(log2 n) Õ(n2)
[Amanatidis et al., 2021] 9.465 + ϵ O(logn) Õ(n2)
[Cui et al., 2023a] (Alg.3) 8 + ϵ O(logn) Õ(nk)
[Cui et al., 2023a] (Alg.5) 5 + 2

√
2 + ϵ ≈ 7.83 + ϵ O(log2 n) Õ(nk)

AST (Algorithm 1, this work) 7 + ϵ O(logn) Õ(nk)

Table 1: Algorithms for SMK problem. We use the Õ notation throughout the paper to hide poly(log n) factors and k is the largest cardinality
of any feasible solution. Bold font indicates the best result(s) in each setting.

tive complexity algorithm in [Cui et al., 2023a]. We inves-
tigate the performance of our algorithm on three benchmark
applications: Revenue Maximization, Image Summarization,
and Maximum Weighted Cut. The results show that our al-
gorithm not only significantly improves the solution quality
but also requires comparative adaptivity to existing practical
algorithms.
New technical approach. It is noted that one popular ap-
proach to designing parallel algorithms with near-optimal
adaptivity of O(log n) is based on making multiple guesses
of the optimal solution in parallel and adapting a thresh-
old sampling method1, which selects a batch of elements
whose density gains, i.e., the ratio between the marginal
gain of an element per its cost, are at least a given thresh-
old within O(log n) adaptivity [Amanatidis et al., 2021;
Cui et al., 2023a]. By making the guesses of the optimal
along with calling the threshold sampling multiple times in
parallel, the existing algorithms could keep the adaptive com-
plexity of O(log n) and obtain some approximation ratios.

From another view, we introduce a novel algorithmic
framework named “alternate threshold” to improve the ap-
proximation factor to 7 + ϵ but keep the same adaptivity
and query complexity with the best one [Cui et al., 2023a].
Firstly, we adapt an existing adaptive algorithm to find a near-
optimal solution within O(log n) adaptivity and give a O(1)
number of guesses of the optimal solution. Then, the core of
our framework consists of a constant number of iterations.
It initiates two disjoint candidate sets and then adapts the
threshold sampling to upgrade them alternately during itera-
tions: one is updated at odd iterations, and another is updated
at even iterations. Thanks to this strategy, we can find the con-
nection between two solutions for supporting each other in
evaluating the “utility loss” after each iteration. At the end of
this stage, we enhance the solution quality by finding the best
element to be added to each candidate’s subsets (pre-fixes of
i elements) without violating the budget constraint.

It must be noted that our method differs from the Twin
Greedy-based algorithms [Han et al., 2020; Pham et al.,
2023; Sun et al., 2022], which update both candidate sets
at the same iterations but do not allow the integration of the
threshold sampling algorithm for parallelization. Besides, we

1We refer to threshold sampling methods as ThreshSeq in [Ama-
natidis et al., 2021] and RandBatch in [Cui et al., 2023a] with
O(log n) adaptivity.

carefully analyze the role of the highest cost element in the
optimal solution to deserve more tightness for the problem.

2 Related Works
This section focuses on the related works for the non-
monotone case of the SMK problem.

Firstly, regarding the non-adaptive algorithms, the first al-
gorithm for the non-monotone SMK problem was due to
[Lee et al., 2010] with the 5 + ϵ factor and polynomial
query complexity. Later, several works concentrated on
improving both approximation factor and query complex-
ity [Buchbinder and Feldman, 2019; Gupta et al., 2010;
Mirzasoleiman et al., 2016; Li, 2018; Sun et al., 2022;
Pham et al., 2023; Han et al., 2021]. In this line of works,
algorithm of [Buchbinder and Feldman, 2019] archived the
best approximation factor of 2.6 but required a high query
complexity; the fastest algorithm was proposed by [Pham
et al., 2023] with 4 + ϵ factor in linear queries. For the
non-monotone Submodular Maximization under Cardinality
(SMC) problem, which finds the best solution that does not
exceed k elements to maximize a submodular objective value,
the best factor of 2.6 of the algorithm in [Buchbinder and
Feldman, 2019] still held. Besides, a few algorithmic mod-
els have been proposed for improving running time [Badani-
diyuru and Vondrák, 2014; Kuhnle, 2021b; Li et al., 2022;
Buchbinder et al., 2015]. Among them, the fastest algorithm
belonged to [Buchbinder et al., 2015] that provided a e + ϵ
factor within O(n log(1/ϵ)/ϵ2) queries. However, the above
approaches couldn’t be parallelized efficiently by the high
adaptive complexity of Ω(n).

The adaptive complexity was first proposed by [Balka-
nski and Singer, 2018] for the SMC problem. Regarding
adaptivity-based algorithms for non-monotone SMK, the first
one belonged to [Ene and Nguyen, 2019] with e + ϵ and
O(log2 n) adaptive complexity. However, due to the high
query complexity of accessing, the multi-linear extension of a
submodular function and its gradient in their method becomes
impractical in real applications [Amanatidis et al., 2021;
Fahrbach et al., 2019]. After that, [Amanatidis et al.,
2021] devised a (9.465 + ϵ)-approximation algorithm within
O(log n), which was optimal up to a Θ(log log(n)) factor by
adopting the lower bound in [Balkanski and Singer, 2018].
It is noted that improving the adaptive complexity of a con-
stant factor algorithm from O(log2 n) to O(log n) made an
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outstanding contribution since it greatly reduced the number
of sequential rounds in practical implementation [Cui et al.,
2023a; Ene and Nguyen, 2020; Fahrbach et al., 2019]. More
recently, [Cui et al., 2023a] created a big step when contribut-
ing an efficient parallel one, which resulted in a factor of 8+ϵ
within a pair of O(log n) adaptivity and Õ(nk) query com-
plexity. Nevertheless, this factor still has a huge gap with the
best factor of 2.6 [Buchbinder and Feldman, 2019]. They also
provided an enhanced version of increasing the approxima-
tion factor to 5 + 2

√
2 + ϵ ≈ 7.83 + ϵ. However, it required

a higher adaptivity of O(log2 n). Thus, from this view, the
above result of [Cui et al., 2023a] is the best one until now.

People have also focused on developing parallel algo-
rithms for non-monotone SMC these years [Kuhnle, 2021a;
Ene and Nguyen, 2020; Fahrbach et al., 2019], etc. The fore-
mentioned contributions of [Ene and Nguyen, 2020] was also
applied for SMC to get the best approximation factor of e+ ϵ,
however it used multi-linear extension and thus had a high
query complexity. Next, [Kuhnle, 2021a] and [Fahrbach et
al., 2019] tried to reduce the adaptive complexity to O(log n)
with 25.64+ϵ and 6+ϵ factors. However, [Chen and Kuhnle,
2022] claimed that both [Kuhnle, 2021a] and [Fahrbach et
al., 2019] had a non-trivial error because they used the same
threshold sampling subroutine which did not work for the
non-monotone objective function. [Chen and Kuhnle, 2022]
further tried to fixed the previous work and recovered the 6+ϵ
factor in O(log n). Recently, [Amanatidis et al., 2021] im-
proved the factor to 5.83 + ϵ in O(log n) adaptivity. Later,
the work of [Cui et al., 2023a] archived the factor of 8 + ϵ in
O(log n) adaptivity or 4 + ϵ factor in O(log2 n).

After all, our algorithm overcome the existing drawbacks
by an improved parallel version with the approximation factor
increasing to 7 + ϵ within O(log n) rounds to parallel Õ(nk)
queries.

3 Preliminaries
Given a ground set V = {e1, . . . , en} and an utility set func-
tion f : 2V 7→ R+ to measure the quality of a subset S ⊆ V ,
we use the definition of submodularity based on the diminish-
ing return property: f : 2V 7→ R+. f is submodular iff for
any A ⊆ B ⊆ V and e ∈ V \B, we have

f(e|A) ≥ f(e|B).

Each element e ∈ V is assigned a positive cost c(e) > 0. Let
c : 2V 7→ R+ be a cost function. Assume that c is modular,
i.e., c(S) =

∑
e∈S c(e) such that c(S) = 0 iff S = ∅.

The problem SMK asks to find S ⊆ V subject to c(S) =∑
e∈S c(e) ≤ B that maximizes f(S). We denote by a tuple

(f, V,B) an instance of SMK. Without loss of generality, f
is assumed non-negative, i.e., f(X) ≥ 0 for all X ⊆ V and
normalized, i.e., f(∅) = 0. We also assume there exists an
oracle query, which, when queried with the set S returns the
value f(S).

For convenience, we denote by S ∪ e as S ∪ {e}. Next,
we denote by O an optimal solution with the optimal value
OPT = f(O) and r = argmaxo∈O c(o). We also define the
contribution gain of a set T to a set S as f(T |S) = f(T ∪
S) − f(S). Also, the contribution gain of an element e to a

set S ⊆ V is defined as f(e|S) = f(S ∪ {e}) − f(S) and
f({e}) is written as f(e) for any e ∈ V .

In this paper, we design a parallel algorithm based on
Adaptive complexity or Adaptivity, which is defined as fol-
lows:
Definition 1 (Adaptive complexity or Adaptivity [Balkanski
and Singer, 2018]). Given a value of oracle of f , the adap-
tivity or adaptive complexity of an algorithm is the minimum
number of rounds needed such that in each round, the algo-
rithm makes O(poly(n)) independent queries to the evalua-
tion oracle.

In the following, we recap two sub-problems which our
algorithm need to solve: Unconstrained Submodular Maxi-
mization and Density Threshold.
Unconstrained Submodular Maximization (UnSubMax)
This problem requires to find a subset S ⊆ V that maximizes
f(S) without any constraint. The problem was shown NP-
hard [Feige et al., 2011a].
To obtain mentioned approximation factor, our algorithm
adapts the low adaptivity algorithm in [Chen et al., 2019]
that achieves an approximation factor of (2 + ϵ) in con-
stant adaptive rounds of O(log(1/ϵ)/ϵ) and linear queries of
O(n log3(1/ϵ)/ϵ4).
Density Threshold (DS). The problem receives an instance
(f, V,B), a fixed threshold τ and a parameter ϵ > 0 as inputs,
it asks to find a subset S ⊆ V satisfies two conditions: (1)
f(S) ≥ c(S) · τ ; (2)

∑
e∈V \S f(e|S) ≤ ϵ · OPT.

Two algorithms in the literature satisfy the above conditions,
including those in [Amanatidis et al., 2021] and [Cui et al.,
2023a]. In this work, we adapt the RandBatch algorithm in
[Cui et al., 2023a]. RandBatch requires the set I , a submod-
ular function f(·), and parameters ϵ,M to control the solu-
tion’s accuracy and complexities. RandBatch is combined
with the aforementioned density thresholds to set up sieves in
parallel for SMK. Due to the space limitations, Pseudocode
for RandBatch is given in the appendix.

For an instance (V, f,B) of SMK, two subsets I,M of V ,
a fixed threshold θ and input parameter ϵ. The performance
of RandBatch is provided in the following Lemmas.
Lemma 1 (Lemma 1 in [Cui et al., 2023a]). The sets
A, L output by RandBatch(θ, I,M, ϵ, f(·), c(·)) satisfy
E[f(A)] ≥ (1− ϵ)2θ · E[c(A)] and ϵ ·M ·

∑
u∈L f(u|A) ≤

OPT.
Lemma 2 (Lemma 2 in [Cui et al., 2023a]). RandBatch has
O( 1

ϵp (log(|I| · β(I)) + M)) adaptivity, and its query com-
plexity is O(|I|k) times of its adaptive complexity, where
β(I) = maxu,v

c(u)
c(v) . If we use binary search in Line 10 of

RandBatch, then it has O( 1
ϵp (log(|I| · β(I)) + M) log(k))

adaptivity, and its query complexity is O(|I|) times of its
adaptivity.

Interestingly, we further explore a useful property of
RandBatch when applying it to our algorithm.
Lemma 3. The sets A, L output by
RandBatch(θ, I,M, ϵ, f(·), c(·)) satisfy E[f(ai|Ai−1)] ≥
(1 − ϵ)2E[c(ai)]θ, where A = {a1, a2, . . . , a|A|}, Ai =
{a1, a2, . . . , ai}.
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4 Proposed Algorithm
In this section, we introduce AST (Algorithm 1), a
(7 + ϵ)-approximation algorithm in O(log n) adaptivity and
O(n2 log2 n) query complexity.
AST receives an instance (f, V,B), constant parameters

δ, ϵ, α as inputs. It contains two main phases. At the first
phase (Lines 1-14), it first divides the ground set V into two
subsets: V0 contains elements with small costs, and V1 con-
tains the rest. AST then calls ParSKP1 [Cui et al., 2023a]
as a subroutine which returns a (1/8− δ)-approximation so-
lution within O(log n) adaptive rounds. Based on that, the
algorithm can offer O(log(1/ϵ)/ϵ) guesses of the optimal so-
lution for the main loop (Lines 4-14). The main loop consists
of O(log(1/ϵ)/ϵ) iterations; each corresponds to a guess of
the optimal. It sequentially constructs two disjoint solutions,
X and Y , one at odd iterations and the other at even itera-
tions. The work of the odd and the even is the same. At the
odd (or even) ones, it sets the threshold θX (θY ) and calls
the RandBatch routine with the ground set I and the func-
tion f(·|X) (f(·|Y )) as inputs to provide the new set Ai (Bi)
(Lines 8, 12). It then updates X (Y ) and I as the remaining
elements (Line 8 or 12).

The second phase (Lines 15-24) is to improve the quality
of solutions. If c(X1 ∪ V0) ≤ ϵB, this phase first adapts
UnSubMax algorithm [Chen et al., 2019] for unconstrained
submodular maximization over X1 ∪ V0 to get a candidate
solution S1 (Lines 15-16). This step is based on an observa-
tion that X1 is important in analyzing the algorithm’s perfor-
mance. It then selects the sets of the first i elements added
into X and Y and finds the best elements without violating
the total cost constraint (Lines 19-24). Finally, the algorithm
returns the best candidate solution (Lines 25-26). The details
of AST are depicted in Algorithm 1.

At the high level, AST works follow a novel framework
that combines an alternate threshold greedy algorithm with
the boosting phase. The term “alternate” means that candi-
date solutions are updated alternately with each other in mul-
tiple iterations. At each iteration, only one partial solution is
updated based on two factors: one guess of the optimal solu-
tion and the remaining elements of the ground set that do not
belong to the other solution.

It should be emphasized that the alternate threshold greedy
differs from recent works [Cui et al., 2023a; Amanatidis et
al., 2021] where two candidate solutions for each guess are
constructed after only one adaptive round. Alternate thresh-
old greedy also differs from the twin greedy method in [Han
et al., 2020], which allows updating both disjoint sets in each
iteration. For the theoretical analysis, the key to obtaining a
tighter approximation factor lines in aspects: (1) the connec-
tions between X and Y after each iteration of the first loop
and (2) carefully considering the role of r to eliminate terms
that worsen the approximation factor.

We now analyze the performance guarantees of AST. We
consider X and Y after ending the first loop. We first intro-
duce some notations regarding AST as follows.

• Xi, Y i is the set of first i elements added into X and Y ,
respectively.

Algorithm 1: AST Algorithm
Input: An instance (f, V,B), parameters α, ϵ, δ

1: V0 ← {e ∈ V : c(e) ≤ ϵB/n}, V1 ← V \ V0, I ← V1,
p← 1

2: S0 ← ParSKP1( 14 , δ, f(·), c(·)), Γ←
8αf(S0)
(1−8δ)ϵB

3: X ← ∅, Y ← ∅, ∆← ⌈log 1
1−ϵ

8α
ϵ2(1−8δ)⌉+ 1,

M ← 1
ϵ2 (

∆
2 + 1)

4: for i = 1 to ∆ do
5: if i is odd then
6: θX ← Γ(1− ϵ)i

7: (Ai, Ui, Li)←
RandBatch(θX , I,M, p, ϵ, f(·|X), c(·))

8: X ← X ∪Ai, I ← I \X
9: else

10: θY ← Γ(1− ϵ)i

11: (Bi, Ui, Li)←
RandBatch(θY , I,M, p, ϵ, f(·|Y ), c(·))

12: Y ← Y ∪Bi, I ← I \ Y
13: end
14: end
15: For T ∈ {X,Y }, define: Ti is T after the iteration i of

the first loop, T i is the set of first i elements added
into T .

16: if c(X1 ∪ V0) ≤ ϵB then
17: S1 ← UnSubMax(X1 ∪ V0)
18: end
19: for i = 1 to |X| do
20: ai ← argmaxe∈V :c(Xi∪e)≤B f(Xi ∪ {e}),

X ′i ← Xi ∪ {ai}
21: end
22: for i = 1 to |Y | do
23: bi ← argmaxe∈V :c(Y i∪e)≤B f(Y i ∪ {e}),

Y ′i ← Y i ∪ {ai}
24: end
25: S ← argmax

T∈{X′i}|X|
i=1∪{Y ′i}|Y |

i=1∪{X,Y,S1}
f(T )

26: return S

• Xi and Yi are X and Y after the iteration i of the first
loop (Lines 4-14) and X0 = Y0 = ∅.

• O1 is an optimal solution of SMK over instance
(f, V1, B).

• O′ = O1 \X1, O
r = O1 \ {r} and O′r = O′ \ {r}.

• For an element e ∈ X ∪ Y , we denote: X<e, Y<e, θXe
and θYe as X , Y , θX and θY right before e is selected
into X or Y , respectively; l(e) is the iteration when e is
added in to X or Y .

Lemma 4 makes a connection between X and Y after each
iteration.

Lemma 4. After any iteration i of the first loop (Lines 4-14)
of AST, we have:

a) If i ≥ 1, i is odd and c(Xi) ≤ B−c(r). Let T ⊆ Yi−1∩
O1, we have

∑
e∈T f(e|Xi) <

∑
e∈T

E[f(e|Y<e)]
(1−ϵ)3 + ϵ ·
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OPT.
b) If i ≥ 2, i is even and c(Yi) ≤ B−c(r). Let T ⊆ Xi−1∩

O′, we have
∑

e∈T f(e|Yi) <
∑

e∈T
E[f(e|X<e)]

(1−ϵ)3 + ϵ ·
OPT.

Proof. Prove a) If i = 1, Y0 = ∅, the Lemma holds. We
consider the other case. We divide T into several subsets in-
cluding T = T2∪T4∪ . . .∪Ti−1, where Tj is a set of all ele-
ments in T that are added into Yi at iteration j ≤ i− 1. Since
Tj ⊆ Yi−1 ∩O1 and c(Xi) ≤ B − c(r) so c(X<e) + c(e) ≤
c(Xi) + c(e) ≤ B for all e ∈ Tj . We therefore classify the
elements in Tj into two disjoint sets Tj = T 1

j ∪ T 2
j , where

T 1
j = {e ∈ Tj : f(e|X<e)

c(e) < θXe , c(X<e) + c(e) ≤ B} and

T 2
j = {e ∈ Tj :

f(e|X<e)
c(e) ≥ θXe , c(X<e)+ c(e) ≤ B}. Since

(1− ϵ)θXe = θYl(e)∀e ∈ T 1
j , we have:∑

e∈Tj

f(e|X<e) =
∑
e∈T 1

j

f(e|X<e) +
∑
e∈T 2

j

f(e|X<e) (1)

<
∑
e∈T 1

j

c(e)θXe +
OPT

ϵM
(2)

=
∑
e∈T 1

j

c(e)
θYl(e)

1− ϵ
+

OPT

ϵM
(3)

≤
∑
e∈T 1

j

E[f(e|Y<e)]

(1− ϵ)3
+

OPT

ϵM
(4)

where inequality (2) is due to Lemma 1, inequality (4) is due
to applying Lemma 3: E[f(e|Y<e)] ≥ (1 − ϵ)2E[c(e)]θYl(e).
It follows that∑
e∈T

f(e|Xi) =
∑

j=2,4,...,i−1

∑
e∈Tj

f(e|Xi)

 (5)

≤
∑

j=2,4,...,i−1

∑
e∈Tj

f(e|X<e)

 (6)

<
∑

j=2,4,...,i−1

∑
e∈T 1

j

E[f(e|Y<e)]

(1− ϵ)3
+

OPT

ϵM


≤

∑
e∈T

E[f(e|Y<e)]

(1− ϵ)3
+ (

∆

2
+ 1) · OPT

ϵM
(7)

≤
∑
e∈T

E[f(e|Y<e)]

(1− ϵ)3
+ ϵOPT (8)

where inequation (6) is due to the submodularity, inequa-
tion (8) is due to setting of M .
Prove b). If i = 2, X1 ∩ O = ∅, the Lemma holds. If
i > 2, we only consider set T ⊆ Xi−1 ∩ O′ since we
can not bound the f(e|Y<e) if e ∈ X1. We also divide T
into subsets: T = T3 ∪ T5 ∪ . . . ∪ Ti−1, where Tj is a
set added into Xj at the iteration j ≤ i − 1. We also clas-
sify the elements in Tj into two sets Tj = T 1

j ∪ T 2
j , where

T 1
j = {e ∈ Tj : f(e|Y<e)

c(e) < θY<e, c(Y<e) + c(e) ≤ B} and

T 2
j = {e ∈ Tj : f(e|Y<e)

c(e) ≥ θY<e, c(Y<e) + c(e) ≤ B}. By a
similar argument to the previous case, we have:∑

e∈Tj

f(e|Y<e) =
∑
e∈T 1

j

f(e|Y<e) +
∑
e∈T 2

j

f(e|Y<e) (9)

<
∑
e∈T 1

j

c(e)θYe +
OPT

ϵM
(10)

=
∑
e∈T 1

j

c(e)
θXe
1− ϵ

+
OPT

ϵM
(11)

≤
∑
e∈T 1

j

E[f(e|X<e)]

(1− ϵ)3
+

OPT

ϵM
(12)

which implies that∑
e∈T

f(e|Yi) =
∑

j=3,5,...,i−1

∑
e∈Tj

f(e|Yi)

 (13)

≤
∑

j=3,5,...,i−1

∑
e∈Tj

f(e|Y<e)

 (14)

<
∑

j=3,5,...,i−1

∑
e∈T 1

j

E[f(e|X<e)]

(1− ϵ)3
+

OPT

ϵM


≤

∑
e∈T

E[f(e|X<e)]

(1− ϵ)3
+ (

∆

2
+ 1) · OPT

ϵM
(15)

≤
∑
e∈T

E[f(e|X<e)]

(1− ϵ)3
+ ϵOPT. (16)

The proof is completed.

By using Lemma 4, we further provide the bound of f(O′∪
T ) for T is a subset of X or Y in Lemma 5 when c(r) is very
large, i.e., c(r) ≥ (1− ϵ)B.
Lemma 5. If c(r) ≥ (1 − ϵ)B, one of two following propo-
sitions happens

a) E[f(S)] ≥ (1− ϵ)5αOPT.
b) There exists a subset X ′ ⊆ X so that

f(X ′∪O′) < (1+
1

(1− ϵ)3
)E[f(S)]+(2ϵ+

1

ϵM
)OPT.

Similarly, one of two following propositions happens:
c) E[f(S)] ≥ (1− ϵ)5αOPT.
d) There exists a subset Y ′ ⊆ Y so that

f(Y ′∪O′) < (1+
1

(1− ϵ)3
)E[f(S)]+(2ϵ+

1

ϵM
)OPT.

When c(X1) < ϵB and c(Y2) < ϵB, it’s easy to obtain the
approximation factor due to f(S) ≥ max{f(X1), f(Y2)} ≥
ϵBαΓ(1−ϵ)2. Otherwise, we combine Lemma 5 and the fact
that f(O′) ≤ f(O′ ∪ X) + f(O′ ∪ Y ) to get the bound of
f(O′) in Lemma 6. The proofs of them can be found in the
Appendix.
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Lemma 6. If c(X1) < ϵB and c(Y2) < ϵB, we have:

• If c(r) < (1− ϵ)B, then f(O′) ≤ 5E[f(S)]
(1−ϵ)4 + ϵOPT

• If c(r) ≥ (1− ϵ)B, one of two things happens:

a) E[f(S)] ≥ (1− ϵ)5αOPT.

b) f(O′) ≤ 5E[f(S)]
(1−ϵ)3 + 2(2ϵ+ 1

ϵM )OPT.

Finally, put Lemmata 4,5,6 together and divide O into ap-
propriate subsets, we state the performance’s algorithm in
Theorem 4.1.

Theorem 4.1. For α = 1
7 , ϵ ∈ (0, 1

7 ), δ ∈ (0, 1
8 ), Algorithm 1

needs O(log n) adaptive complexity and O(nk log2 n) query
complexity and returns a solution S satisfying E[f(S)] ≥
(1/7− ϵ)OPT.

Proof. AST first calls ParSKP1 to find a candidate so-
lution S0. This task takes O( 1δ log(

n
δ )) adaptivity and

O(nk log2 n) query complexity [Cui et al., 2023b]. For
the first loop, it calls ThreshSeq ∆ = O( 1ϵ log(

1
ϵ ))

times. Each time, RandBatch needs O( 1ϵ log(
n
ϵ ) + M) =

O( 1ϵ log(
n
ϵ ) + 1

ϵ3 log(
1
ϵ )) = O(log n) adaptive complex-

ity and O(nkϵ log(nϵ ) + nk
ϵ3 log( 1ϵ )) = O(nk log n) query

complexity. In the second phase, the algorithm may need
O( 1ϵ log(

1
ϵ )) adaptivity and O( n

ϵ4 log
3( 1ϵ )) query complex-

ity to call UnSubMax algorithm of [Chen et al., 2019]
(Lines 16-17). Then, it only has two adaptive rounds and
takes O(kn) query complexity to find X ′i and Y ′i (Lines
19-24). Therefore, the adaptive complexity of the algo-
rithm is O( 1δ log

n
δ ) + O( 1ϵ log(

1
ϵ ) log n) + O( 1ϵ log(

1
ϵ )) +

2 = O(log n) and its query complexity is O(nk log2 n) +
O(nk log n) +O( n

ϵ4 log
3( 1ϵ )) +O(nk) = O(nk log2 n).

For the approximation factor, we consider the following
cases:
Case 1. If c(X1) ≥ ϵB or c(Y2) ≥ ϵB, we have

f(S) ≥ max{f(X1), f(Y2)} ≥ ϵBαΓ(1− ϵ)2

>
(1− ϵ)2

7
OPT > (

1

7
− ϵ)OPT.

Case 2. If c(X1) < ϵB and c(Y2) < ϵB, we have

f(O) ≤ f(O ∩ (V1 \X1)) + f(O ∩ (V0 ∪X1)) (17)

= f(O′) + f(O ∩ (V2 ∪X1)) (18)

≤ f(O′) + (2 + ϵ)E[f(S)] (19)

where inequality (17) is due to the submodularity of f and
(V1 \X1)∩ (V0 ∩X1) = ∅, equality (18) is due to the defini-
tion of O′ and inequality (19) is due to applying Algorithm in
[Chen et al., 2019]. We now apply Lemma 6 to bound f(O′).
If c(r) < (1− ϵ)B, then

f(O) ≤ 5E[f(S)]
(1− ϵ)4

+ ϵOPT+ (2 + ϵ)E[f(S)] (20)

≤ 7E[f(S)]
(1− ϵ)4

+ ϵOPT. (21)

Therefore

E[f(S)] ≥ (1− ϵ)5

7
OPT >

1− 5ϵ

7
OPT > (

1

7
− ϵ)OPT.

If c(r) ≥ (1− ϵ)B, we consider two cases:
- If a) in Lemma 6 happens, then

E[f(S)] ≥ (1− ϵ)5

7
OPT > (

1

7
− ϵ)OPT.

- If b) in Lemma 6 happens, then

f(O) ≤ 5E[f(S)]
(1− ϵ)3

+ (4ϵ+
2

ϵM
)OPT+ (2 + ϵ)E[f(S)]

<
7E[f(S)]
(1− ϵ)3

+
29

7
ϵOPT. (22)

where the inequality (22) is due to ϵM = 1
ϵ (

∆
2 +1) > 14

ϵ for
ϵ ∈ (0, 1

7 ), δ ∈ (0, 1
8 ). It follows that

E[f(S)] ≥ 1

7
(1− ϵ)3(1− 29

7
ϵ)OPT > (

1

7
− ϵ)OPT

which completes the proof.

5 Experimental Evaluation
This section evaluates our AST’s performance by compar-
ing our algorithm with state-of-the-art algorithms for non-
monotone SMK including:

• ParSKP1: The parallel algorithm in [Cui et al., 2023a]
that runs in O(log n) adaptivity and returns a solution S
satisfying E[f(S)] ≥ (1/8− ϵ)OPT.

• ParSKP2: The algorithm in [Cui et al., 2023a] that
runs in O(log2 n) adaptivity and returns a solution of
E[f(S)] ≥

(
1/(5 + 2

√
2)− ϵ

)
OPT.

• ParKnapsack: The parallel algorithm in [Amanatidis et
al., 2021] achieves an approximation factor of (9.465 +
ε) within O(log n).

• SmkRanAcc: The non-adaptive algorithm in [Han et al.,
2021] that achieves an approximation factor of 4 + ϵ in
query complexity of O(n log(k/ϵ)/ϵ).

• RLA: The non-adaptive algorithm in [Pham et al., 2023]
with a factor of 4 + ϵ in linear query complexity of
O(n log(1/ϵ)/ϵ).

We experimented with the following three applications:
Revenue Maximization (RM). Given a network G =
(V,E) where V is a set of nodes and E is a set of edges.
Each edge (u, v) in E is assigned a positive weight w(u, v)
sampled uniformly in [0, 1] and each node is assigned a pos-
itive cost c(u) defined as c(u) = 1 − e

√∑
(u,v)∈E w(u,v).

The revenue of any subset S ⊆ V is defined as f(S) =∑
v∈V\S

√∑
u∈S wu,v . Given a budget of B, the goal of

the problem is to select a set S with the cost at most B to
maximize f(S). As in the prior work, [Amanatidis et al.,
2021], we can construct the graph G using a YouTube com-
munity network dataset [Han et al., 2021] with 39,841 nodes
and 224,235 edges.
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Maximum Weighted Cut (MWC). Consider a graph G =
(V,E) where each edge (u, v) ∈ E has a non-negative weight
w(u, v). For a node subset S ⊂ V , define the weighted cut
function f(S) =

∑
u∈V \S

∑
v∈S w(u, v). The maximum

weighted cut problem seeks a subset S ⊆ V that maximizes
f(S). As in recent work [Amanatidis et al., 2020], we gen-
erate an Erdős-Rényi random graph with 5, 000 nodes and an
edge probability of 0.2. The node costs c(u) are randomly
uniformly sampled from (0, 1).

Image Summarization (IS). Consider a graph G = (V,E)
where each node u ∈ V represents an image, and each
edge (u, v) ∈ E has a weight w(u, v) showing the sim-
ilarity between images u and v. Let c(u) be the cost
to acquire image u. The goal is to find a representa-
tive subset S ⊆ V under the budget B that maximizes a
value f(S) =

∑
u∈V maxv∈S wu,v − 1

|V |
∑

u∈V

∑
v∈S wu,v

[Mirzasoleiman et al., 2016; Han et al., 2021]. As in recent
works [Han et al., 2021; Mirzasoleiman et al., 2016], we cre-
ate an instance as follows: First, randomly sample 500 im-
ages from the CIFAR dataset [Krizhevsky, 2019] of 10,000
images, then measure the similarity between images u and v
using the cosine similarity of their 3,072-dimensional pixel
vectors.
Experiment setting. In our experiments, we set the accu-
racy parameter ϵ = 0.1 for all algorithms evaluated, and
for AST, we set δ = 0.12. We used OpenMP to pro-
gram with C++ language. Besides, we experimented on a
high-performance computing (HPC) server cluster with the
following parameters: partition=large, #threads(CPU)=128,
node=4, max memory = 3,073 GB. For UnSubMax, we
use setting of previous works [Amanatidis et al., 2021;
Cui et al., 2023a], i.e, we adapt Algorithm in [Feige et al.,
2011b] returning 1/4−ϵ ratio in one adaptive round and O(n)
query complexity.

Experimental Result. In Figures 1(a), (c), and (e), we
compare the objective values between different algorithms.
The results show that our AST achieves the best objective val-
ues for both the RM and MWC applications. In RM, the ob-
jective values achieved by RLA, SmkRanAcc, and ParSKP1
are the same, ParKnapsack attains lower objective values
while ParSKP2 hits the lowest objective values among the
algorithms. Especially, our one marks the highest value when
B = 0.015, about 1.3 times higher than the others in RM. In
IS, ParKnapsack reaches the highest values while ParSKP2
hits the lowest. Our algorithm results in best values at some
points and drops at others. As shown in Figure 1 (c), most
algorithms fluctuate widely. The variation in the quality of
these algorithms might be due to the characteristics of this
dataset.

In Figures 1(b), (d), and (f), we make the comparisons
about the number of adaptive rounds. The results show that
SmkRanAcc and RLA always require the highest number of
adaptive rounds across all three applications. For the AST,
the number of adaptive rounds is equivalent to ParSKP1 for
RM and MWC. Besides, for IS, the adaptive number of
rounds for AST is higher than that of ParSKP1, which has
the lowest number of rounds. However, the higher number in
this case is insignificant. Overall, our algorithm outperforms

the others in both solution performance and the quantities of
adaptivity.
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Figure 1: Performance of algorithms for non-monotone SMK on
three instances: (a), (b) Revenue Maximization; (c), (d) Image Sum-
marization and (e), (f) Maximum Weighted Cut. The budget values
represent fractions of the total cost of all elements.

6 Conclusions
Motivated by the challenge of the large scale of input data,
in this work, we focus on parallel approximation algorithms
based on the concept of adaptive complexity. Moreover, the
requirement of improving the approximation factor while de-
creasing the adaptivity down to log(n) motivates us to pro-
pose a competitive new algorithm. We have proposed an
efficient parallel algorithm AST based on a novel alternate
threshold greedy strategy. To our knowledge, our AST algo-
rithm is the first to achieve a constant factor approximation of
7+ ϵ for the above problem in the aforementioned adaptivity.
Our algorithm also expresses the superiority in solution qual-
ity and computation complexity compared to state-of-the-art
algorithms via some illustrations in the experiment in three
real-world applications. In the future, we will address an-
other valuable question: can we reduce the query complexity
of parallelized algorithms for the SMK problem?

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1967



Acknowledgments
The first author (Tan D. Tran) was funded by the Master, PhD
Scholarship Programme of Vingroup Innovation Foundation
(VINIF), code VINIF.2023.TS.105. This work has been car-
ried out partly at the Vietnam Institute for Advanced Study in
Mathematics (VIASM). The second author (Canh V. Pham)
would like to thank VIASM for its hospitality and financial
support.

References
[Amanatidis et al., 2020] Georgios Amanatidis, Federico

Fusco, Philip Lazos, Stefano Leonardi, and Rebecca Reif-
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Vondrák. Maximizing non-monotone submodular func-
tions. SIAM Journal on Computing, 40(4):1133–1153,
2011.

[Gupta et al., 2010] Anupam Gupta, Aaron Roth, Grant
Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secre-
tary algorithms. In International Workshop on Internet and
Network Economics, 2010.

[Han et al., 2020] Kai Han, Zongmai Cao, Shuang Cui, and
Benwei Wu. Deterministic approximation for submodu-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1968



lar maximization over a matroid in nearly linear time. In
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, 2020.

[Han et al., 2021] Kai Han, Shuang Cui, Tianshuai Zhu, En-
pei Zhang, Benwei Wu, Zhizhuo Yin, Tong Xu, Shao-
jie Tang, and He Huang. Approximation algorithms for
submodular data summarization with a knapsack con-
straint. Proceedings of the ACM SIGMETRICS confer-
ence on Measurement and Analysis of Computer Systems,
5(1):05:1–05:31, 2021.

[Krizhevsky, 2019] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical Reports, Uni-
versity of Toronto, 2019.

[Kuhnle, 2021a] Alan Kuhnle. Nearly linear-time, paralleliz-
able algorithms for non-monotone submodular maximiza-
tion. In Proceedings of the 30th AAAI Conference on Arti-
ficial Intelligence 2021, pages 8200–8208, 2021.

[Kuhnle, 2021b] Alan Kuhnle. Quick streaming algorithms
for maximization of monotone submodular functions in
linear time. In Proceedings of the 24th International Con-
ference on Artificial Intelligence and Statistics 2021, vol-
ume 130 of Proceedings of Machine Learning Research,
pages 1360–1368, 2021.

[Lee et al., 2010] Jon Lee, Vahab S. Mirrokni, Viswanath
Nagarajan, and Maxim Sviridenko. Maximizing non-
monotone submodular functions under matroid or knap-
sack constraints. SIAM Journal on Discrete Mathematics,
23(4):2053–2078, 2010.

[Li et al., 2022] Wenxin Li, Moran Feldman, Ehsan Kazemi,
and Amin Karbasi. Submodular maximization in clean lin-
ear time. In Advances in Neural Information Processing
Systems, pages 7887–7897, 2022.

[Li, 2018] Wenxin Li. Nearly linear time algorithms and
lower bound for submodular maximization. preprint,
arXiv:1804.08178, 2018.

[Mirzasoleiman et al., 2016] Baharan Mirzasoleiman, Ash-
winkumar Badanidiyuru, and Amin Karbasi. Fast con-
strained submodular maximization: Personalized data
summarization. In International Conference on Machine
Learning, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1358–1367, 2016.

[Pham et al., 2023] Canh V. Pham, Tan D. Tran, Dung T. K.
Ha, and My T. Thai. Linear query approximation algo-
rithms for non-monotone submodular maximization under
knapsack constraint. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pages 4127–4135. ijcai.org, 2023.

[Sun et al., 2022] Xiaoming Sun, Jialin Zhang, Shuo Zhang,
and Zhijie Zhang. Improved deterministic algorithms for
non-monotone submodular maximization. In Yong Zhang,
Dongjing Miao, and Rolf H. Möhring, editors, Computing
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