
Convexity Certificates for Symbolic Tensor Expressions

Paul G. Rump , Niklas Merk , Julien Klaus , Maurice Wenig and Joachim Giesen
Friedrich Schiller University Jena

{paul.gerhardt.rump, niklas.merk, julien.klaus, maurice.wenig, joachim.giesen}@uni-jena.de

Abstract
Knowing that a function is convex ensures that any
local minimum is also a global minimum. Here,
we implement an approach to certify the convexity
of twice-differentiable functions by certifying that
their second-order derivative is positive semidef-
inite. Both the computation of the second-order
derivative and the certification of positive semidef-
initeness are done symbolically. Previous imple-
mentations of this approach assume that the func-
tion to be minimized takes scalar or vector input,
meaning that the second-order derivative is at most
a matrix. However, the input of many machine
learning problems is naturally given in the form
of matrices or higher order tensors, in which case
the second-order derivative becomes a tensor of at
least fourth order. The familiar linear algebra no-
tations and known rules for determining whether
a matrix is positive semidefinite are not sufficient
to deal with these higher order expressions. Here,
we present a formal language for tensor expres-
sions that allows us to generalize semidefiniteness
to higher-order tensors and thereby certify the con-
vexity of a broader class of functions.

1 Introduction
Convexity certificates for multivariate differentiable func-
tions have been introduced by Klaus et al. [2022]. Their
approach exploits the fact that a twice-differentiable func-
tion is convex, if and only if its Hessian, that is, its second-
order derivative, is positive semidefinite (PSD). Convexity of
a function can therefore be certified by computing its second-
order derivative and proving that it is PSD. The approach
of Klaus et al. [2022] assumes that the function’s input is a
scalar or a vector. For many machine learning problems, how-
ever, it is more natural to express functions not in terms of
vectors but higher-order tensors. A simple example is given
by the Ising model, a multivariate probability distribution that
is given as

p(x) =
exp

(
q(x)

)∑
x′∈X

exp
(
q(x′)

) , with q(x) =
1

2
x⊤ Qx,

where x ∈ X = {0, 1}n and Q ∈ Rn×n is a symmetric pa-
rameter matrix. The matrix Q can be learned from m obser-
vations x(i) of x by maximizing the log-likelihood function

ℓ(Q) =
m∑
i=1

q(x(i))−m log

(∑
x∈X

exp
(
q(x)

))
.

The symbolic Hessian approach for certifying convex-
ity [Klaus et al., 2022], which assumes that the Hessian is
computed as a symbolic function of the input, cannot be
applied directly to the log-likelihood function of the Ising
model, because its second-order derivative with respect to the
input matrix Q is, as for any other function with matrix in-
put, a fourth-order tensor that cannot be expressed in con-
ventional linear algebra notation. Therefore, we generalize
the symbolic Hessian approach to functions with tensorial in-
put of any order. To do so, we resort to a tensor expression
language based on the einsum notation that we present in Sec-
tion 3. In addition to the need for a formal tensor language,
matrix properties, such as positive semidefiniteness, symme-
try, and diagonality, need to be adapted to tensors of arbitrary
(even) order. Inferring from the given information that a sym-
bolic tensor expression is positive semidefinite, symmetric,
or diagonal becomes more challenging, but also offers new
possibilities. We present generalized rules for certifying pos-
itive semidefiniteness in Section 4.5. Finally, in Section 5,
we evaluate our tensorial extension of the symbolic Hessian
approach and show that it is provably more powerful than the
approach restricted to vector input, that is, the extension can
certify the convexity of a larger class of functions.

An interactive implementation of our tensorial symbolic
Hessian approach is available for testing at https://tenvexity.
einsum.org.

2 Related Work
Traditionally, many functions have been manually proven to
be convex. More recently, automatic methods for proving the
convexity of certain types of functions have been developed,
notably the sum-of-squares (SOS) approach for multivari-
ate polynomials [Helton and Nie, 2010; Ahmadi and Parrilo,
2013; Bach et al., 2023]. A multivariate polynomial is called
SOS-convex if its Hessian matrix is an SOS matrix polyno-
mial, which is naturally non-negative. Certifying the SOS-
convexity of a polynomial amounts to solving a semidefinite
program [Parrilo, 2000].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1953

https://tenvexity.einsum.org
https://tenvexity.einsum.org

Input: f DAG: f DAG: ∇ f DAG: ∇2 f

Certificate

Labels Labels Labels Labels

Parsing Differen-

tiation

Differen-

tiation

Annotation Annotation Annotation
Deduction

Figure 1: Overview of the symbolic Hessian approach. The user provides a formal expression for the input function f . The certifying
algorithm parses the input f into an expression DAG and computes its gradient and Hessian by automatic symbolic differentiation. Some
nodes of the expression DAGs of the input and its derivatives can be directly annotated with labels such as diagonal, symmetric, or positive
semidefinte (PSD). Finally, a set of deduction rules is used to propagate these labels to the root of the expression DAG of the Hessian. If the
root is labeled PSD, then the deductions constitute a convexity certificate for f .

SOS and extensions, such as sums of non-negative cir-
cuit polynomials (SONC) [Dressler et al., 2019; Dressler et
al., 2023], work on concrete instances of functions, that is,
functions in which every parameter is instantiated by a spe-
cific numerical value, whereas symbolic approaches, like the
symbolic Hessian approach, certify whole classes of func-
tions. One drawback of the symbolic class-oriented approach
is that, even if a class is found to be non-convex, individual
instances can still be convex. However, the class-oriented ap-
proach has two distinct advantages:

1. Certifying convexity symbolically avoids the substantial
cost of numerical evaluation. For example, the matrix
A in the quadratic form x⊤Ax takes only a few bytes
to store as a symbol, but a specific instance can have
many entries and thus be extremely large. Processing
time differs accordingly. Computing symbolic convexity
certificates typically takes only milliseconds.

2. Certifying convexity for an entire class of optimization
problems also permits to generate efficient solvers for
the entire class [Laue et al., 2019]. An alternative but
significantly less efficient approach is to transform ev-
ery new instance from the same problem class into some
standard form of a quadratic program (QP), second-
order cone program (SOCP), or semidefinite program
(SDP) that can be solved by a solver for the standard
form [Grant and Boyd, 2008].

Disciplined convex programming (DCP) is a prominent
example of the class-oriented approach that is implemented
within CVX [Grant and Boyd, 2008]. The idea of DCP is to
combine externally certified atomic functions by using opera-
tions that conserve convexity. For instance, a simple DCP rule
is that multiplying a convex function with a positive scalar
results in another convex function. However, functions that
cannot be expressed by using the DCP rules for combining
existing atoms cannot be certified as convex. Therefore, the
DCP approach is limited by the set of atomic convex func-
tions. Every new atom requires a new, externally computed
convexity certificate.

The symbolic Hessian approach by Klaus et al. [2022]
avoids these problems for twice-differentiable functions. It
certifies convexity of expressions from a formal language that
extends standard linear algebra notation by elementwise func-
tions such as log, exp, sin and cos. Here, a convexity certifi-

cate for the input function is given by a formal proof that the
Hessian of the input is positive semidefinite. A schematic
overview of the Hessian approach is given in Figure 1.

So far, the input of the symbolic Hessian approach is lim-
ited to functions with vector input, which does not capture
naturally occurring examples like the log-likelihood function
of the Ising model from the introduction. Here, we gener-
alize the symbolic Hessian approach to higher-order tensors.
While the overall procedure for computing convexity certifi-
cates remains the same, all its individual steps need to be
adapted, which poses various challenges, but also opportu-
nities. In the following sections we explain and resolve the
challenges and point out the opportunities.

3 Formal Language
While the log-likelihood function from the introduction can
be expressed using standard linear algebra notation, this is not
true for its Hessian, which is naturally expressed as a fourth-
order tensor. To generalize the symbolic Hessian approach
so that it can cope with matrix input, it is necessary to cer-
tify even-order tensors as positive semidefinite. To do so, we
need a formal language for tensor expressions that subsumes
the linear-algebra-based language used by Klaus et al. [2022].
The tensor language can be used to specify the input function
as well as all its derivatives, which include its Hessian.

In our context, tensors are mappings from positions to en-
tries. For example, a third-order tensor T ∈ RI×J×K is a
mapping

T : [I]× [J]× [K] → R : (i, j, k) 7→ T (i, j, k),

where for any N ∈ N, [N] is the set of positive natural num-
bers up to N .

The most important operations on tensors are aggregations.
In an aggregation, every entry of the result tensor is a sum of
products of entries from the operand tensors. For example, a
matrix-matrix product is an aggregation between two second-
order tensors. To support tensor aggregations with operand
tensors of any order and any number of operands, we use an
extended version of the einsum notation that we briefly dis-
cuss below.

Furthermore, our tensor-based language also includes com-
mon elementwise functions like addition and transcendental
functions such as exponentials and logarithms. As a result,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1954

the language is rich enough to cover most applications in clas-
sical machine learning. Below, we give an overview of our
tensor-based language, including our version of the einsum
notation. We provide a formal grammar for this language in
the supplemental material.

3.1 Tensor-based Language
Input strings are expressions of the form
declare <variables> expression <expr>.

For example, the log-sum-exp function

log
(∑

ij

(
exp(Aij)

))
,

of a matrix A, which is often used as a smooth approxi-
mation of the maximum function [Blanchard et al., 2020]
and also appears in the concave right part of the log-
likelihood function of the Ising model, could be written as
declare A 2 expression log(sum(exp(A))).

In the following, we use the log-sum-exp function as our run-
ning example.

Variable Declaration. The first part of the input string lists
all occurring variables followed by their respective order, that
is, the number of tensor axes. Since the convexity certifying
algorithm works on symbolic expressions, neither the numer-
ical values of the variables nor the lengths of the axes need
to be known at any point in the process. However, users can
optionally provide additional properties in parentheses. For
example,

declare A 2 (SYM) expression <expr>
specifies that the matrix A is symmetric. If the variable dec-
laration is omitted, then we try to deduce the order of A auto-
matically, defaulting to a matrix with no additional properties.

Expressions. The second part of the input string provides
the expression that has to be certified as convex. Here, ten-
sor aggregations are written using the einsum notation as de-
scribed below. Einsum covers anything from simple trans-
positions to complex aggregations over multiple tensors. In
addition, the language supports summation (+) and subtrac-
tion (-), special functions for matrices such as det and inv,
as well as various elementwise functions such as abs, sign,
log, exp, sin and cos. Exponentiation (ˆ) and division
(/) are permitted if the right operand is a scalar.

Shorthands. For convenience, our tensor-based language
also includes a few optional shortcuts. For example, the log-
sum-exp function can be expressed succinctly by using the
sum keyword, which is short for the sum over all elements in
the input tensor. Internally, sum(T) is mapped to the equiv-
alent einsum expression #(i1 ...io → ; T), assuming T is a
tensor of order o. The sum-notation is not only simpler and
more intuitive, but also invariant to the order of T .

3.2 Einsum Notation
Einsum is a quasi-standard notation for tensor aggrega-
tions that is used in popular computational frameworks like
NumPy [Harris et al., 2020], TensorFlow [Abadi et al., 2016],
and PyTorch [Paszke et al., 2019]. In einsum, tensor aggre-
gations are expressed as operations on indices. For example,

Operation Lin. alg. Einsum
elementwise prod. x⊙ y #(i, i → i; x, y)
inner product x⊤y #(i, i →; x, y)
outer product xy⊤ #(i, j → ij; x, y)
matrix transpose A⊤ #(ij → ji; A)
matrix diagonal diag(A) #(ii → i; A)
diagonal matrix diag(v) #(i → ii; v)
matrix product A ·B #(ij, jk → ik; A,B)

Table 1: Translation from linear algebra notation to einsum notation.

the matrix product [A ·B]ik =
∑

j∈[J] AijBjk of A ∈ RI×J

and B ∈ RJ×K in einsum notation becomes

#(ij, jk → ik; A,B) .

The symbol # is necessary to identify einsum expressions
within nested einsum expressions.

In general, einsum expressions take the form

#(I1, . . . , In → Ir; T1, . . . , Tn) ,

where the Ii are the index strings of the operand tensors Ti,
and Ir is the index string of the result tensor. The length of
an index string is the order of the corresponding tensor. We
provide a formal definition of the syntax and semantics of
einsum expressions in the supplemental material. Here, the
translation of standard linear algebra expressions into einsum
notation in Table 1 provides some examples.

4 Certifying Algorithm
The symbolic Hessian approach comprises five steps: Pars-
ing the user’s input into an expression DAG (directed acyclic
graph), automatic symbolic differentiation of the parsed ex-
pression DAG into a symbolic Hessian, simplification of the
resulting expression DAG of the Hessian, annotating nodes
in the Hessian expression DAG with property labels such as
PSD where possible, and deducing labels for unlabeled DAG
nodes using label propagation. If the root node of the Hes-
sian expression DAG can be labeled PSD, then the deductions
constitute a convexity certificate for the input expression.

4.1 Parsing the Input
For further processing, user input, that conforms to the tensor-
based language described in the previous section, is parsed
into an expression DAG [Aho et al., 1986], where common
subexpressions have been eliminated [Cocke, 1970], that is,
every node of the DAG represents a unique subexpression.
For a simple example, Figure 2 shows the expression DAG of
the log-sum-exp function.

log #(ij →) exp A

Figure 2: The valid input string log(sum(exp(A))) with a ma-
trix A is parsed into the depicted expression DAG.

All subsequent steps of the certifying algorithm operate on
the expression DAG of the input expression, including the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1955

derivation of expression DAGs for the gradient and Hessian
of the input expression. The expression DAG of the Hessian
of the log-sum-exp function is shown in Figure 3.

4.2 Computing the Hessian

In principle, the simple and efficient tensor calculus by Laue
et al. [2020] can be used for computing symbolic Hessians
of expressions from our tensor-based language. In practice,
however, two challenges remain when differentiating einsum
expressions.

The first challenge is posed by duplicate indices in
the result index string, that is, expressions of the form
#(i → ii; x) that can naturally appear as derivatives. For
example, #(ii →; A) is a valid einsum expression that rep-
resents the trace of a square matrix A. The derivative of this
expression with respect to A is the expression #(i → ii; 1),
where 1 represents an all-ones vector. Therefore, we need
duplicate output indices in our formal language. However,
duplicate output indices are not supported in popular compu-
tational frameworks like NumPy or PyTorch.

The second challenge is posed by expressions like
#(ij, j →; A, x), whose derivative with respect to the ma-
trix A is #(j → ij; x), which is not a valid einsum expres-
sion, because the range of the index i cannot be inferred from
the operands, here only the vector x. The range of i is implic-
itly defined by the matrix A, which is missing from the deriva-
tive. We address this challenge by differentiating a different
but semantically equivalent expression to #(ij, j →; A, x),
namely #(i, ij, j →; 1, A, x), which does not change the re-
sult, but the length of the all-ones vector 1 preserves the range
of the index i in the derivative, which is #(i, j → ij; 1, x).

4.3 Simplifying Expression DAGs

In the previous section, we took advantage of the fact that
syntactically different expressions from the tensor language
can be semantically equivalent. In general, however, this
is more of a problem, because not all semantically equiva-
lent representations are equivalently well suited for certifying
convexity. There are two sources of syntactically sub-optimal
representations: First, the user input can include unnecessary
operations and vary in the operand order of commutative op-
erations, and second, symbolically computing derivatives of
the user input using automatic differentiation systematically
creates nested tensor expressions and additional nodes, in-
cluding, in the very first step, a δ-tensor that generalizes the
unit matrix. The δ-tensor nodes are relevant while comput-
ing derivatives, but become unnecessary complications after-
wards. Therefore, we simplify expressions after every pro-
cessing step by removing unnecessary nodes from expression
DAGs, and by denesting nested tensor expressions into a sin-
gle expression with a larger number of operands. Denesting
can remove intermediary results that are not PSD, which be-
come obstructions when propagating positivity information
to the root of the expression DAG of the Hessian.

We illustrate the removal of unnecessary nodes and the
denesting of nested tensor expressions on examples involv-
ing δ-tensors. The δ-tensor δo of order 2o for some o ∈ N0

has the entry

δo(i1, ..., io, j1, ..., jo) =
{
1, if (i1, ..., io) = (j1, ..., jo)
0, otherwise,

at every position (i1, ..., io, j1, ..., jo). Notably, δ0 is the
scalar value 1 and δ1 is a unit matrix. Aggregations with δ-
tensors are not always trivial operations. The following three
examples are different transformations of a matrix A:

#(ijkl, kl → ij; δ2, A) ≡ A,

#(ijkl, lk → ij; δ2, A) ≡ A⊤ and

#(ijkl, jl → ik; δ2, A) ≡ trace(A) · 12.

All three expressions can be simplified. We do so by applying
a sequence of rules that reduce the complexity of an expres-
sion without changing its value. For example, the simplifica-
tion of #(ijkl, kl → ij; δ2, A) is achieved by the following
transformations,

#(ijkl, kl → ij; δ2, A)

→ #
(
ijkl, kl → ij; # (ij → ijij; 12) , A

)
→ #(ij, ij → ij; 12, A)

→ #(ij → ij; A)

→ A,

where we have applied the transformation rules δ-
substitution, where 12 denotes the all-ones matrix, denesting,
neutral multiplication, and identity aggregation. All transfor-
mation rules together with proofs of correctness are presented
in the supplemental material. The second rule, denesting,
merges nested expressions into a single but larger expression,
thereby avoiding intermediary results. Intermediary results
can cause problems in the label propagation phase, where
positivity information is propagated through the expression
DAG, because nested expressions often include non-PSD in-
termediary results, even when the whole expression actually
is PSD. A small example that illustrates the problem is the
linear algebra expression s ·xx⊤, where s is a scalar and xx⊤

is the outer product of a vector x. The expression is PSD if s
is non-negative. It can be expressed as the following nested
einsum expression,

#
(
ij, j → ij; #

(
i, j → ij; # (i,→ i; x, s) , 1

)
, x

)
,

with two non-PSD intermediaries #(i,→ i; x, s) and
#

(
i, j → ij; # (i,→ i; x, s) , 1

)
. The nested expression

can be simplified as follows

#
(
ij, j → ij; #

(
i, j → ij; # (i,→ i; x, s) , 1

)
, x

)
→ #(i, , j, j → ij; x, s, 1, x)

→ #(i, , j → ij; x, s, x) ,

where we have applied the transformation rules denesting and
neutral multiplication. In Section 4.5, we show that the last
expression, #(i, , j → ij; x, s, x), can be certified as convex
by the certifying algorithm if it is known that s ≥ 0.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1956

4.4 Annotating Nodes in Expression DAGs
At its core the symbolic Hessian approach for certifying con-
vexity propagates positivity information through the expres-
sion DAG of the Hessian of the function that has to be cer-
tified. If the root node of the DAG of the Hessian can be
labeled PSD, then the Hessian is PSD and the input function
is convex. Some node labels are either annotated by the user
or can be directly inferred from the expression. For instance,
the argument of the log-function is always positive, as is the
result of the exp-function. Positivity information can then
be propagated through the DAG in the label propagation step
that we describe in the next section.

We distinguish two types of labels: (1) Property labels,
which ensure that a tensor has a certain mathematical prop-
erty or conforms to a certain shape, and (2) interval labels that
ensure that every entry of a tensor is within a given interval.

Property Labels
We use the following property labels: positive semidefinite
(PSD), positive definite (PD), negative semidefinite (NSD),
negative definite (ND), symmetric (SYM) and diagonal (DIA).
We need to generalize these properties, which are typically
defined only for matrices, to higher-order tensors.

A tensor T of even order 2o is labeled PSD, if and only if

#(i1 ...io, i1 ...ioj1 ...jo, j1 ...jo → ; x, T, x) ≥ 0,

for any tensor x of order o, which has axes that match those
of T in length. The tensor T is labeled NSD, if and only if
−T is PSD. Similarly, T is labeled PD, if and only if

#(i1 ...io, i1 ...ioj1 ...jo, j1 ...jo → ; x, T, x) > 0,

for any tensor x of order o and with at least one non-zero
entry, which has axes that match those of T in length. The
tensor T is labeled ND, if and only if −T is PD. Finally, T is
labeled SYM, if and only if

T = #(i1 ...ioj1 ...jo → j1 ...joi1 ...io; T)

and DIA, if and only if

T (i1, ..., io, j1, ..., jo) = 0

for all (i1, ..., io) ̸= (j1, ..., jo).
Property annotations for leaf nodes in an expression DAG

can be provided as part of the user input, as specified in Sec-
tion 3. Furthermore, leaf nodes that represent constants are
labeled automatically. For example, a square matrix with the
same entry in every position is always symmetric.

Interval Labels
In the label propagation phase, we also keep track of the range
of a tensor’s entries. Knowing the range sometimes allows us
to derive property labels. For example, if we know that the
range of a scalar s is [0,∞), then when multiplying s with a
PSD tensor T , we can deduce that the result tensor s · T is
also PSD. Similarly, if the range of s is (−∞, 0], then we can
deduce that the result tensor s · T is NSD.

In the label propagation phase, we keep track of a bounding
interval for the entries of every tensor subexpression, where
tensor subexpressions are represented by nodes of the expres-
sion DAG. Subexpressions are intially annotated by the inter-
val (− inf; inf), which can be narrowed down by user input

or by functional constraints. For example, log(T) requires
that every entry in T is positive, and

√
T requires that every

entry in T is non-negative. A more complex example is given
by log(log(T)), which requires that log(T) > 0 and therefore
that every entry in T is larger than 1.

4.5 Propagating Node Labels
Our goal when certifying convexity is to label the root node of
the simplified and annotated expression DAG of the Hessian
PSD. For this, we can generalize the three basic rules from
the vector case. The rules apply locally to nodes in the DAG
and their children, and are used to propagate labels, such as
PSD, NSD, or SYM, upwards from the leaf nodes to the root
node. The three rules read as:

1. Outer products #(I, J → IJ ; T, T) of a tensor T with
itself are PSD.

2. The product of a PSD expression with a non-negative
scalar is PSD. Multiplying it with a non-positive scalar
results in an NSD expression, and similarly for PD,
NSD, and ND expressions.

3. Elementwise operators can be handled as in the vector
case [Klaus et al., 2022], that is, interval annotations can
be propagated just as for scalars [Hickey et al., 2001]
and property annotations for even-ordered tensors can
be propagated as for matrices. For example, the elemen-
twise sum of two PSD tensors is also PSD.

The practical challenge is to represent tensor expressions such
that the application of these rules becomes straightforward.
We demonstrate the general principle by using the Hessian
of the log-sum-exp function as an example, which is shown
in Figure 3. The expression not only requires the three ba-
sic rules but furthermore serves as an example for applying
a more general rule, namely a rule for inferring the label of
the difference of a positive diagonal tensor and a PSD tensor,
which generalizes from the vector case [Klaus et al., 2022].

We present all propagation rules together with proofs of
their correctness in the supplemental material.

The expression DAG of the Hessian of the log-sum-exp
function has four nodes that denote einsum operations. The
einsum operation at the root multiplies a fourth-order tensor
with a scalar. Therefore, the result is PSD if the scalar is non-
negative and the operand tensor is PSD. The einsum operation
#(ij → ijij; A) turns a matrix A into a fourth-order diag-
onal tensor, which is PSD if the matrix A is non-negative,
that is, has only non-negative entries. The einsum operation
#(ij → ; A) is the same as sum(A), which adds up all en-
tries of the matrix A. If A is non-negative, then the result
is a non-negative scalar. The remaining einsum operation,
#(ij, , kl → ijkl; A, s,A), is more interesting. It serves as a
good example for dealing with einsum expressions with mul-
tiple operand tensors.

Expressions with More than Two Operand Tensors
The elementary rules that we use to propagate labels upwards
in an expression DAG correspond to either binary or unary
tensor operations. For example, simple outer products, multi-
plication with a scalar, and adding two tensors are binary op-
erations, whereas elementwise functions such as log or exp

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1957

#(ijkl, →ijkl)

-

#(ij, , kl→ijkl)#(ij→ijij)

1/

#(ij→)

exp A

PSD
(scalar

multiple)

PSD
(template)

PSD
(outer product,

scalar multiple)

PSD
(diagonal

tensor)

> 0

> 0

> 0

Figure 3: This shows the expression DAG of the Hessian of the log-
sum-exp function, where child nodes are ordered from left to right.
The exp-node can be annotated with the interval (0,∞), whereas
labels at the other nodes need to be derived by label propagation.

are unary operations. However, tensor expressions with more
than two operand tensors also appear naturally. We deal with
einsum expressions with more than two operand tensors by
considering a semantically equivalent nested einsum expres-
sion in which the outer and all inner einsum expressions are
PSD and have at most two operand tensors. For this, we use
the same rule set that we use for simplifying expressions. Our
example expression #(ij, , kl → ijkl; A, s,A) is semanti-
cally equivalent to the nested expression

#
(
ijkl,→ ijkl; # (ij, kl → ijkl; A,A) , s

)
,

which is PSD if the scalar is non-negative, because the inner
expression #(ij, kl → ijkl; A,A) is an outer product of A
with itself and thus PSD, and the outer expression just mul-
tiplies the result of the inner expression, which is PSD, with
the scalar s.

In Section 4.3 we have claimed that the denested expres-
sion #(i, , j → ij; x, s, x) can be certified as PSD for non-
negative scalars s. As in the example from above, this can be
shown by nesting the expression into

#
(
ij,→ ij; # (i, j → ij; x, x) , s

)
,

where the inner expression is also an outer product of a tensor
with itself and thus PSD.

It is important to note that in the simplification step we de-
nest expressions to avoid non-PSD intermediary results, be-
cause they obstruct label propagation. Here, if possible, we
nest expressions such that all intermediary results are PSD.
For label propagation, it is sufficient to know that such a se-
mantically equivalent nested expression exists. The actual re-
placement is not necessary for further processing.

PSD Expression Template
To finish the example of the Hessian of the log-sum-exp func-
tion, we still need to discuss the subtraction node that sub-

tracts a PSD tensor from a positive diagonal tensor. In gen-
eral, the difference of two PSD tensors can be PSD, NSD, or
neither. However, differences are provably PSD if they con-
form to the expression template shown in Figure 4. Klaus
et al. [2022] have shown that a similar template applies to
many naturally occurring expressions, including the Hessian
of the log-sum-exp function, when the basis Z of the template
is a vector. In Figure 3 the sub-DAG that correspond to the
template is highlighted in light gray, and the sub-DAG that
correspond to the basis Z in dark gray, matching Figure 4.

−#(I→II) #(I,J,→IJ)

Z #(I→) 1/

Figure 4: For any tensor Z with only non-negative entries, this tem-
plate expression is PSD. Child nodes are ordered from left to right.

5 Discussion
It is natural to ask what we gain by extending the symbolic
Hessian approach beyond vector input. Of course, the ten-
sorial extension subsumes the vector case, that is, any prob-
lem with vector input can also be handled by the tensorial
extension. The translation from linear algebra language to
einsum can even be automated [Klaus et al., 2023]. How-
ever, tensorial input can also be flattened into vector input,
which can then be addressed by the vectorial symbolic Hes-
sian approach. But flattening tensorial input has three signifi-
cant disadvantages: First, at the moment it is not clear how to
automatize the flattening of input that is naturally given in the
form of tensors. Second, there are expressions that can not be
flattened symbolically, because knowledge about the length
of the tensor axes is necessary, rendering the whole process
less general. Examples include the determinant of a matrix,
but also practically relevant einsum expressions, such as the
interleaving rule

#(IK, JL → IJKL; S, T) ,

which we explain in the supplemental material, for PSD ten-
sors S and T . Third, tensors can have properties, such as
symmetry or positive definiteness, that have no natural analog
for vectors and which would be lost by flattening. There are
expressions that are only PSD when some of the input tensors
are defined on restricted domains, for instance, the set of PSD
matrices. A prominent example is the function log (det(A)) ,
which is concave only on the domain of symmetric PSD ma-
trices A.

Additional Property Propagation Rules
A less obvious advantage of the tensorial extension is that it
gives us additional rules for propagating properties such as
SYM and PSD through an expression DAG on domains that
are restricted by these properties.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1958

Operation Expression Convex in Time (ms)
log-sum-exp − log(sum(exp(A))) A 16.02 ± 0.27
least squares regression sum((# (ij, i → j; A, x)− y)2) x 3.01 ± 0.37
UV-decomposition sum((A−#(ij, kj → ik; U, V))2) U, V 4.60 ± 0.38
logdet − log(det(A)) A: SYM, PSD 1.08 ± 0.46
logtrace − log(trace(A)) A 3.00 ± 0.40
exptrace exp(trace(A)) A 12.37 ± 0.38
symmetric trace trace(# (ia, ij, jb → ab; A,B,A)) A 2.51 ± 0.55
Tucker decomposition sum((X −#(ijk, ia, jb, kc → abc; T,A,B,C))2) A,B,C 7.00 ± 0.38
rank-1 decomposition sum((X −#(i, j, k → ijk; u, v, w))2) u, v, w 5.00 ± 0.34

Table 2: Examples of convex functions together with their representation in our formal language and running times of the certifying algorithm.
Here, sum(T) is a shortcut for #

(
I → ; T

)
as explained in Section 3.

Remember that a tensor T is PSD, if and only if

#(i1 ...io, i1 ...ioj1 ...jo, j1 ...jo → ; X,T,X) ≥ 0,

for all tensors X of order o. Therefore, the indices of a PSD
tensor T of order 2o always come in pairs (in, jn), n ∈ [o]
such that the in-th axis and the jn-th axis of T both corre-
spond to the n-th axis of X . Operations on T that preserve
positive definiteness must maintain a pair structure, that is,
they can only rearrange, combine, omit or create indices in
pairs, but not individually. When an expression is only de-
fined on a restricted domain of tensors, then the PSD condi-
tion can be restricted to the same domain. For instance, on the
restricted domain of symmetric (and PSD) tensors, the tensor
T is PSD if it satisfies the PSD condition for all symmetric
(and PSD) tensors X . With this restriction, T may not be
PSD in the general sense, but only on the restricted domain.
When certifying convexity over such a domain, this leads to
two new propagation rules for unary einsum expressions of
the form

T ′ = #(π(ijkl) → ijkl; T)

where T is a PSD tensor and π is a permutation of the four
indices i, j, k, l. We show in the supplemental material that
the result T ′ is also PSD in the general sense if

π(ijkl) = ijkl (identity), or
π(ijkl) = klij (transposition), or
π(ijkl) = jilk (pair permutation).

We also show that T ′ satisfies the PSD-condition with respect
to symmetric matrices X if π(ijkl) = jikl, and that T ′ satis-
fies the PSD-condition with respect to symmetric PSD matri-
ces X if π(ijkl) = ikjl. A simple counting argument shows
that combining the four permutations that maintain positive
semidefiniteness with respect to symmetric PSD matrices X
results in 24 = 16 out of 4! = 24 permutations on the indices
i, j, k and l. A fifth permutation of four indices that can be
combined with the existing four permutations can not exist,
because 25 > 24. The additional propagation rules gener-
alize from the matrix case (o = 2) to tensors, where these
rules swap the indices in four blocks of size o/2 for all even
o > 2. The counting argument still holds for rules that per-
mute these four blocks, but further permutations within the
blocks remain possible.

Comparison to the Vector Case and to CVX
CVX is, unlike the vectorial Hessian approach as imple-
mented by Klaus et al. [2022], able to certify the concavity of
the logdet function. However, to do so, CVX makes use of an
atom specifically for this function. Other functions with simi-
larly restricted domains would need their own atoms. For ex-
ample, in contrast to the tensorial symbolic Hessian approach,
CVXPY (Version 1.4.1) [Diamond and Boyd, 2016] is not
able to certify the convexity of the function trace(ABAB),
which in einsum notation reads as

#(ab, bc, cd, da → ; A,B,A,B) ,

for PSD parameter matrices B, and symmetric PSD argument
matrices A. To certify the convexity of this function, CVX
would need a new atom specifically for this function.

Examples and Computation Time
In Table 2, we list some convex examples from the domain of
machine learning together with the time that is needed by our
implementation of the tensorial symbolic Hessian approach.
The reported computation times are the mean of ten single-
threaded executions, measured on a Windows 11 machine
with an AMD Ryzen 9 7900X CPU. Note that running times
in the low milliseconds range are brief enough for real-time
user interaction.

An interactive version of our implementation can be tested
at https://tenvexity.einsum.org.

6 Conclusions
Motivated by optimization problems from machine learning
that in their natural formulation feature tensorial, for instance
matrix, input, we have generalized the symbolic Hessian ap-
proach for certifying convexity of twice-differentiable func-
tions with vector input to tensorial input of arbitrary order.
With this extension, we are able to certify the convexity of
functions that are defined only on restricted domains, such as
log(det(A)), and of functions with input that cannot easily be
flattened into a vector.

The extension works for functions that are specified in a
formal language of extended tensor expressions. The lan-
guage is comprehensive enough to cover most areas of ma-
chine learning and artificial intelligence. It is also natural in
the sense that it is close to standard mathematical notation
and does not require externally certified atoms, that is, new
symbols, to cover additional functions.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1959

https://tenvexity.einsum.org

Acknowledgements
This work was supported by the Carl-Zeiss-Stiftung within
the project ‘Interactive Inference’.

References
[Abadi et al., 2016] Martı́n Abadi, Paul Barham, Jianmin

Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A Sys-
tem for Large-Scale Machine Learning. In Kimberly Kee-
ton and Timothy Roscoe, editors, USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 265–283. USENIX Association, 2016.

[Ahmadi and Parrilo, 2013] Amir Ali Ahmadi and Pablo A.
Parrilo. A complete characterization of the gap between
convexity and sos-convexity. SIAM Journal on Optimiza-
tion, 23(2):811–833, 2013.

[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[Bach et al., 2023] Francis R. Bach, Elisabetta Cornacchia,
Luca Pesce, and Giovanni Piccioli. Theory and ap-
plications of the Sum-Of-Squares technique. CoRR,
abs/2306.16255, 2023.

[Blanchard et al., 2020] Pierre Blanchard, Desmond J.
Higham, and Nicholas J. Higham. Accurate Computation
of the Log-Sum-Exp and Softmax Functions. IMA Journal
of Numerical Analysis, 41(4):2311–2330, 08 2020.

[Cocke, 1970] John Cocke. Global common subexpression
elimination. In Robert S. Northcote, editor, Proceedings
of a Symposium on Compiler Optimization, pages 20–24.
ACM, 1970.

[Diamond and Boyd, 2016] Steven Diamond and Stephen P.
Boyd. CVXPY: A Python-Embedded Modeling Language
for Convex Optimization. Journal of Machine Learning
Research, 17:83:1–83:5, 2016.

[Dressler et al., 2019] Mareike Dressler, Sadik Iliman, and
Timo de Wolff. An approach to constrained polynomial
optimization via nonnegative circuit polynomials and ge-
ometric programming. Journal of Symbolic Computation,
91:149–172, 2019.

[Dressler et al., 2023] Mareike Dressler, Salma Kuhlmann,
and Moritz Schick. Geometrical study of the cone of
sums of squares plus sums of nonnegative circuits. CoRR,
2305.14848, 2023.

[Grant and Boyd, 2008] Michael C. Grant and Stephen P.
Boyd. Graph implementations for nonsmooth convex pro-
grams. In Vincent D. Blondel, Stephen P. Boyd, and Hi-
denori Kimura, editors, Recent Advances in Learning and
Control, volume 371 of Lecture Notes in Control and In-
formation Sciences, pages 95–110. Springer, 2008.

[Harris et al., 2020] Charles R. Harris, K. Jarrod Millman,
Stéfan van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585:357–362, 2020.

[Helton and Nie, 2010] J. William Helton and Jiawang Nie.
Semidefinite representation of convex sets. Mathematical
Programming, 122(1):21–64, 2010.

[Hickey et al., 2001] Timothy J. Hickey, Qun Ju, and
Maarten H. van Emden. Interval arithmetic: From princi-
ples to implementation. Journal of the ACM, 48(5):1038–
1068, 2001.

[Klaus et al., 2022] Julien Klaus, Niklas Merk, Konstantin
Wiedom, Sören Laue, and Joachim Giesen. Convexity
Certificates from Hessians. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022.

[Klaus et al., 2023] Julien Klaus, Mark Blacher, and
Joachim Giesen. Compiling Tensor Expressions into
Einsum. In International Conference on Computational
Science (ICCS), volume 14074 of Lecture Notes in
Computer Science, pages 129–136. Springer, 2023.

[Laue et al., 2019] Sören Laue, Matthias Mitterreiter, and
Joachim Giesen. GENO - GENeric Optimization for Clas-
sical Machine Learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 2187–2198,
2019.

[Laue et al., 2020] Sören Laue, Matthias Mitterreiter, and
Joachim Giesen. A Simple and Efficient Tensor Calcu-
lus. In AAAI Conference on Artificial Intelligence (AAAI),
pages 4527–4534, 2020.

[Parrilo, 2000] Pablo Parrilo. Structured semidefinite pro-
grams and semialgebraic geometry methods in robustness
and optimization. PhD thesis, California Institute of Tech-
nology, 2000.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems
(NeurIPS), pages 8024–8035, 2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1960

	Introduction
	Related Work
	Formal Language
	Tensor-based Language
	Einsum Notation

	Certifying Algorithm
	Parsing the Input
	Computing the Hessian
	Simplifying Expression DAGs
	Annotating Nodes in Expression DAGs
	Property Labels
	Interval Labels

	Propagating Node Labels
	Expressions with More than Two Operand Tensors
	PSD Expression Template

	Discussion
	Additional Property Propagation Rules
	Comparison to the Vector Case and to CVX
	Examples and Computation Time

	Conclusions

