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Abstract
We study the following parameterization of the
MaxSAT problem: Given a CNF formula F with
m clauses, decide whether at least m/2+µ clauses
in F could be satisfied, where µ is the excess of the
number of satisfied clauses over the trivial lower
bound m/2 and is taken as the parameter. This
perspective is known as the “above guarantee” pa-
rameterization. Since its introduction by Mahajan
and Raman [1999], the analysis of parameterization
above guarantee has become a highly active and
fruitful line of research. In this paper, we develop
a new algorithm with runtime O∗(2.1479µ), sig-
nificantly improving the previous best upper bound
O∗(5.4064µ) for this important problem. Here, the
O∗ notation omits polynomial factors.

1 Introduction
The BOOLEAN SATISFIABILITY problem (SAT), as the first
proven NP-complete problem [Cook, 1971], is a cornerstone
of computational complexity theory. Its optimization ver-
sion, the MAXIMUM SATISFIABILITY problem (MaxSAT),
holds an equal level of significance. Given a CNF for-
mula, SAT is to find an assignment of the variables to sat-
isfy all clauses, while MaxSAT is to satisfy the maximum
number of clauses (or at least k clauses for an input integer
k). SAT, MaxSAT, and many of their variants are arguably
the most influential problems due to their significant applica-
tions in Computer Science, Artificial Intelligence, and many
other fields. Although most of these problems are shown
computationally hard [Schaefer, 1978; Garey and Johnson,
1979], their significance still drives various approaches to
solve them, including heuristic, approximation, exact, and pa-
rameterized algorithms, etc. We refer to [Biere et al., 2021;
Fichte et al., 2023] for more comprehensive surveys.

There has been extensive research on moderately exact ex-
ponential algorithms for SAT, MaxSAT, and their variants.
The trivial algorithm that enumerates all possible assignments
runs in time O∗(2n), where n is the number of variables. The
popular Strong Exponential Time Hypothesis [Impagliazzo
and Paturi, 2001] asserts that no algorithm solves SAT and
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MaxSAT in time O∗((2− ϵ)n) for any constant ϵ > 0. There-
fore, different restricted versions and various measures or pa-
rameters have been considered [Dantsin and Hirsch, 2021;
Samer and Szeider, 2021].

In recent years, several upper bounds for these problems
have been improved. For SAT, Chu et al. (2021) presented
an O∗(1.2226m)-time algorithm, where m is the number of
clauses in the formula, and Peng and Xiao (2023) designed
an O∗(1.0641L)-time algorithm, where L is the length of
the formula. For MaxSAT, the upper bounds have been im-
proved to O∗(1.2886m) [Xiao, 2022] and O∗(1.0911L) [Bril-
liantov et al., 2023], respectively. Prior to this, most of these
bounds had not seen any progress for decades. While pur-
suing better exact exponential algorithms for important NP-
hard problems is worthwhile on its own theoretical side, this
might also be potentially helpful for practical solving. Several
techniques and principles behind these algorithms have been
used in practical solvers [Chu et al., 2023; Li et al., 2023;
Fichte et al., 2023]. In addition, the bottlenecks and revealed
structural obstructions might suggest some directions for un-
derstanding hard instances [Al-Yahya et al., 2023].

We will study exact algorithms for MaxSAT. When mea-
suring the computational complexity of MaxSAT, in addition
to parameters n (the number of variables), m (the number
of clauses) and L (the length of the input) mentioned above,
there is another natural parameter: the number of satisfied
clauses k. From the first algorithm with runtime O∗(1.6181k)
by Mahajan and Raman [1999], the upper bound in terms of k
has been improved several times. Currently, the best result is
O∗(1.3248k) [Chen et al., 2017]. For the case that k is small,
MaxSAT can be solved efficiently. However, MaxSAT is only
interesting for the case that k is relatively large (k > ⌈m/2⌉),
since for any CNF formula with m clauses, either the all-
true or the all-false assignment can satisfy at least ⌈m/2⌉
clauses. Motivated by this, Mahajan and Raman [1999] in-
troduced the following “above guarantee” parameterization
of MaxSAT with parameter µ, which is the excess of the num-
ber of satisfied clauses k over the lower bound ⌈m/2⌉.

MAXSAT ABOVE HALF (MaxSAT-AH)
Input: A CNF formula F with n variables and m clauses,
and a positive integer µ (the parameter).
Question: Does there exist an assignment of n variables
that satisfy at least ⌈m/2⌉+ µ clauses?
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Can we solve MaxSAT-AH efficiently when µ is small, i.e.,
when k is close to ⌈m/2⌉? Mahajan and Raman [1999] affir-
matively answered this question by proving that an O∗(ck)-
time algorithm implies an O∗(c6µ)-time algorithm. Pre-
viously, MaxSAT-AH can be solved in time O∗(5.4064µ),
which was derived from the current best result O∗(1.3248k)
by using the above result [Chen et al., 2017]. To the best
of our knowledge, all previous improvements in the runtime
bound with respect to µ were derived from improvements
with respect to k. In other words, for the parameter µ, the
paradigm for improvements introduced in [Mahajan and Ra-
man, 1999] had stood as the sole one for more than two
decades. This poses the following question: is there another
way to achieve further improvements on the runtime bound
with respect to µ?

We also highlight that since the introduction of the “above
guarantee” parameterization for MaxSAT and MaxCut by
Mahajan and Raman [1999], analysis of parameterization
above guarantee has become a highly active and fruitful line
of research, not only for MaxSAT-related problems [Gutin
and Yeo, 2017], but also for many other important NP-hard
problems. Examples include VERTEX COVER [Lokshtanov
et al., 2014; Garg and Philip, 2016], MULTIWAY CUT [Cy-
gan et al., 2013], and several others [Mahajan et al., 2009].
For more comprehensive surveys, we refer to [Gutin and Yeo,
2017; Gutin and Mnich, 2022]. Currently, the “above guar-
antee” parameterization has become a standard and active re-
search topic in Parameterized Complexity.

Our Contribution. In this paper, we prove that MaxSAT-
AH can be solved in time O∗(2.1479µ) by developing a
new algorithm that is tailored to the “above guarantee” pa-
rameter µ. This result significantly improves the previous
O∗(5.4064µ). Our algorithm does not use the paradigm intro-
duced by Mahajan and Raman [1999]. Thus, this is the first
algorithm parameterized by µ that does not invoke algorithms
parameterized by k in over two decades.

Our algorithm follows the branch-and-bound paradigm.
Most previous algorithms for SAT and MaxSAT are also
branch-and-bound algorithms and frequently use the simplest
branching scheme that branches on a variable into two sub-
branches by assigning value 1 or 0 to it. To get a running-time
bound in terms of a parameter, we need to analyze how much
the parameter decreases in each sub-branch. However, for the
parameter µ = k−⌈m/2⌉, it may not always decrease even in
a simple branching operation. For example, in a sub-branch,
if the decrease of k is d, the decrease of m may be more than
2d. The situation will get more complicated if the branching
rule needs to assign several variables simultaneously. In gen-
eral, there are several structural obstructions that prevent our
parameter from decreasing, and these are the reasons why the
existing branch-and-bound algorithms for MaxSAT can not
be directly used to analyze a runtime bound with respect to µ.
To address this issue, we develop two novel reduction rules,
namely R-Rule 5 and R-Rule 6, to overcome these obstruc-
tions. As a result, our algorithm manages to efficiently de-
crease the parameter µ in each sub-branch, even if we apply
some complicated branching operations.

In the last step of our algorithm, we handle a special case

of the problem by reducing it to the MINIMUM SET COVER
problem (MSC). This approach has already been used in the
literature [Bliznets and Golovnev, 2012; Chen et al., 2017;
Xiao, 2022]. However, our case is different from those in the
literature, and the methods used in [Bliznets and Golovnev,
2012; Chen et al., 2017; Xiao, 2022] are not efficient enough
to achieve our result. For this issue, we still employ this ap-
proach but make certain adaptations, which enable us to uti-
lize the existing algorithm for MSC [van Rooij and Bodlaen-
der, 2011] more effectively to avoid a bottleneck.

Finally, we can prove that the worst branch in our algorithm
will generate a branching vector not worse than (0.5, 1.5)
(branching into two sub-branches: one reduces µ by at least
0.5 and the other reduces µ by at least 1.5), which implies our
upper bound O∗(2.1479µ).

Proofs of lemmas marked with ♣ are deferred to the full
version of the paper due to space limitations.

2 Preliminaries
A boolean variable (or simply variable) can be assigned
value 1 (TRUE) or 0 (FALSE). A variable has two correspond-
ing literals: the positive literal x and the negative literal x.
We use x to denote the negation of literal x, and thus x = x.
A clause is a set of literals. Given a set V of variables, a CNF
formula (or simply formula) is a set of clauses on V . An as-
signment for V is a map A : V → {0, 1}. A clause is satisfied
by an assignment if at least one literal in it gets value 1 under
the assignment. An assignment is an optimal assignment to
a formula F if it satisfies the maximum number of clauses in
F . An instance of the MaxSAT problem, denoted by (F , k),
asks whether there is an assignment for the variables that sat-
isfies at least k clauses in F .

For two sets of literals C1 and C2, we may simply write
their union as C1C2. A clause containing a single literal x
may be simply written as x. For a set of literals C, we use C
to denote the set of negations of literals in C and use C = 1
(resp., C = 0) to denote that each literal in C is assigned
value 1 (resp., 0). For a formula F , we denote F [C = 1]
as the resulting formula obtained from F by removing all
clauses containing some literal in C and removing all literals
in C from all clauses in F , and let F [C = 0] = F [C = 1].

In a formula F , a variable x is called a d-variable (resp., a
d+-variable) if x appears d (resp., at least d) times in F , and
a literal z is called an (i, j)-literal (resp., an (i+, j)-literal or
(i−, j)-literal) if z appears i (resp., at least i or at most i)
times and z appears j times in F . Similarly, we can define
(i, j+)-literal, (i+, j+)-literal, etc. The length of a clause C,
denoted by |C|, is the number of literals in C. A clause is
a k-clause (resp., k+-clause) if the length of it is k (resp.,
at least k). A clause C is called unit clause (resp., non-unit
clause) if |C| = 1 (resp., |C| ≥ 2). A literal x is called a
singleton if all of its negations x are contained in unit clauses,
and non-singleton otherwise. Let C be a set of literals in
formula F , we use CLS(C) to denote the set of all clauses in
F that contain some literal in C, and use UT(C) to denote
the set of all clauses that only contain literals in C, i.e.,

CLS(C) = {D | D ∈ F and D ∩ C ̸= ∅}, and
UT(C) = {D | D ∈ CLS(C) and D ⊆ C}.
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2.1 Branch-and-Bound Algorithms
Our algorithm is a branch-and-bound algorithm, which first
exhaustively applies some reduction rule to reduce the in-
stance and then searches for a solution by branching.

A reduction rule transforms, in polynomial time, an in-
stance I = (F , k) into another instance I ′ = (F ′, k′). A
reduction rule is correct if I is a YES-instance if and only
if I ′ is a YES-instance. We will use (F , k) → (F ′, k′) to
denote a reduction rule. In our algorithm, k > k′ holds for
all reduction rules, and so they can only be applied a polyno-
mial number of times and do not exponentially increase the
running-time bound.

When no reduction rule can be applied, we do branch-
ing. The branching operation will generate a search tree
and the size of the tree is related to the exponential part of
the running-time bound. Let µ(·) be the measure of an in-
stance. In our algorithm, the measure will not increase in
each step, and the problem can be solved in polynomial time
if the measure becomes non-positive. A branching rule will
branch on the current instance I into several sub-instances
I1, . . . , Il such that µ(Ii) < µ(I) for each index i ∈ [l].
The branching rule is called safe if it holds that I is a YES-
instance if and only if at least one of the sub-instances is a
YES-instance. Let T (µ) be an upper bound on the size of the
search tree generated by the algorithm on any instance with
the measure of at most µ. For a branching rule, we will ob-
tain a recurrence relation T (µ) ≤ ∑

i∈[l] T (µ − di), where
di = µ − µ(Ii) for i ∈ [l]. This is also represented by a
branching vector (d1, . . . , dl). The largest root of the func-
tion f(x) = 1−∑l

i=1 x
−di is called the branching factor of

the branching vector. If the largest branching factor among
that of all branching vectors is γ, then T (µ) = O(γµ). More
details about analyzing branching algorithms can be found in
[Fomin and Kratsch, 2010]. We say that one branching vec-
tor is not worse than another if its corresponding branching
factor is not greater than that of the latter.

2.2 The Measure
It should be emphasized that once the measure µ ≤ 0, i.e.,
k ≤ ⌈m/2⌉, the algorithm can report that the instance is
a YES-instance and terminate since there is always an as-
signment satisfying at least ⌈m/2⌉ clauses. To facilitate the
analysis, we will use the measure µ = k − m/2 instead of
k−⌈m/2⌉. This will not affect the running-time bound since
there is only a constant difference between them.

3 Reduction Rules
In this section, we introduce reduction rules (R-Rules for
short) used in our algorithm. Reduction rules are typically de-
veloped to handle some special structures of the instance, and
then we may be able to design more efficient branching rules
for the problem. Although previous algorithms for MaxSAT
have various reduction rules, our algorithm only employs four
of them. This is because we must ensure that when applying
a reduction rule, our measure µ does not increase, thus guar-
anteeing efficient running time. As a result, certain reduction
rules from previous algorithms may not be applicable to our
algorithm. Our algorithm consists of a total of six reduction

rules, with the first four being well-known and used in the lit-
erature. The last two rules, which are newly developed, serve
as crucial components of our algorithm.
R-Rule 1. (F ′ ∧ xxC, k) → (F ′, k − 1).
R-Rule 2 (Bansal and Raman 1999). If there is an (1, 1)-
literal x contained in clauses xC and xD, then (F ′ ∧ xC ∧
xD, k) → (F ′ ∧ CD, k − 1).
R-Rule 3 (Bansal and Raman 1999). (F ′ ∧ xC ∧ xC, k) →
(F ′ ∧ C, k − 1).

In R-Rule 3, we allow C = ∅. For this case, it is equivalent
to deleting two clauses {x} and {x} and decreasing k by 1.
R-Rule 4 (Chen and Kanj 2004). If there is an (a, b)-literal
x contained in at least b unit clauses x, then (F , k) →
(F [x = 1], k − a).

Note that if there is an (1+, 0)-literal x, we can simply as-
sign x = 1. Actually, this is a special case of R-Rule 4.

The following R-Rules 5 and 6 are newly introduced and
crucial in our algorithm. They can guarantee a good com-
plexity for our branching rules introduced later.
R-Rule 5. Let x be an (a, 1)-non-singleton and xD be the
unique clause containing literal x. Assume that there are p
clauses containing some literal from D but no literal x or x,
and q clauses only containing literals from D. If p ≤ q, then
(F , k) → (F [x = 1], k − a).
Lemma 1. R-Rule 5 is correct.

Proof. It is sufficient to prove that there is optimal assign-
ment A′ to F such that x is assigned to value 1.

Let A be an optimal assignment to F that sets x = 0. If
D is satisfied by A, then replacing x = 0 with x = 1 in
A would not decrease the number of satisfied clauses since
xD is the unique clause containing literal x that is already
satisfied. Next, we assume that D = 0 in assignment A.

Let A′ be an assignment obtained from A by replacing
xD = 0 with xD = 0 (i.e., each literal in xD is assigned
1 in A′). We show that A′ is still an optimal assignment to F .

Let G be the set of clauses containing literals in xD or xD,
i.e., G = CLS({x} ∪ {x} ∪ D ∪ D). Note that the number
of satisfied clauses in F \ G under assignments A and A′ is
equal. Therefore, we focus on the clauses in G. On the one
hand, at least q clauses in G are unsatisfied under assignment
A because there are q clauses only containing literals in D,
and assignment A sets D = 0. On the other hand, under the
assignment A′, at most p clauses in G would be unsatisfied.
This is due to the fact that all clauses containing literals in xD
are satisfied, and there are at most p clauses containing liter-
als in xD but no literals in xD, which are the only possible
clauses that might be unsatisfied. Since p ≤ q, the number of
satisfied clauses in F under assignment A′ is not less than that
under assignment A. This implies that A′ is also an optimal
assignment to F such that x = 1.

R-Rule 6. Let x be an (a, b)-literal such that there are a− 1
unit clauses {x}, and let xC1, · · · , xCa be the clauses con-
taining literal x. Assume that there are p clauses containing
some literal in

⋃a
i=1 Ci but no literal x or x, and q clauses

only containing literals in
⋃a

i=1 Ci. If p ≤ q + a − 1, then
(F , k) → (F [x = 0], k − b).
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Lemma 2. R-Rule 6 is correct.

Proof. It suffices to show that there is an optimal assignment
A′ to F where x is assigned to value 0.

Let A be an optimal assignment to F that sets x = 1. If at
least one of Ci(1 ≤ i ≤ a) is satisfied under A, then replac-
ing x = 1 with x = 0 in A would not decrease the number of
satisfied clauses. This is because setting x = 0 satisfies a− 1
unit clauses {x}, and makes at most a − 1 clauses among
xC1, · · · , xCa become unsatisfied. Next, we assume that as-
signment A sets LC = 0, where LC =

⋃a
i=1 Ci.

Let A′ be an assignment obtained from A by replacing
xLC = 0 with xLC = 0 (i.e., x = 0 and each literal in
LC is assigned 1 in A′). We show that A′ is still an optimal
assignment to F .

Let G be the set of clauses containing some literals in xLc

or xLc, i.e., G = CLS({x}∪{x}∪Lc∪Lc). We only need to
consider the clauses in G since assignment A and A′ satisfy an
equal number of clauses in F \G. There are a−1 unit clauses
{x} and q clauses only containing literals in LC , which are
all unsatisfied under assignment A since x = 1 and LC = 0
in A. Thus, the number of clauses in G that are not satisfied
under assignment A is at least q+a−1. However, assignment
A′ only results in a maximum of p unsatisfied clauses in G.
This is because under assignment A′, all clauses containing
literals in xLC (which include all clauses with literal x or x)
are satisfied. Additionally, there are at most p clauses that
contain some literals in xLC but no literals in xLC , which
are the only possible clauses that might not be satisfied under
assignment A′. Since p ≤ q + a− 1, the number of satisfied
clauses in F under assignment A′ is not less than that under
assignment A. Therefore, assignment A′ is also an optimal
assignment to F where x = 0.

Definition 1. A formula is reduced if none of the above re-
duction rules can be applied to the formula.

Lemma 3 (♣). For any formula F , applying any reduction
rule will not increase the measure µ. Moreover, it takes poly-
nomial time and polynomial space to apply the reduction
rules to transfer F to a reduced one.

Lemma 4 (♣). In a reduced formula, all variables are 3+-
variables.

Lemma 5. Let F be a reduced formula and S be a set of
distinct literals without complementary literals. Then, after
assigning value 1 to all literals in S, the measure decreases
by at least |CLS(S)|−|UT(S)|

2 , i.e., µ(F) − µ(F [S = 1]) ≥
|CLS(S)|−|UT(S)|

2 .

Proof. After assigning value 1 to all literals in S, all clauses
containing some literals from S (i.e., CLS(S)) would be sat-
isfied and be removed from the formula. Besides, all clauses
only containing literals from S (i.e., UT(S)) would be re-
moved from the formula since all literals in them are assigned
value 0. Note that CLS(S) and UT(S) are disjoint. Conse-
quently, after assigning value 1 to all literals in S, parameter
m, the number of clauses, decreases by |CLS(S)|+ |UT(S)|,
and parameter k, the number of clauses that need to be sat-
isfied, decreases by |CLS(S)|. Therefore, the measure µ =

k−m/2 decreases by at least |CLS(S)|− |CLS(S)|+|UT(S)|
2 =

|CLS(S)|−|UT(S)|
2 .

Lemma 6. Let F be a reduced formula and x be an (a, b)-
literal in it. If there are t unit clauses x (resp., x) in F , then
branching on x results in a branching vector not worse than
(a2 ,

b−t
2 ) (resp., (a−t

2 , b
2 )).

Proof. If t = 0, then the lemma holds by applying Lemma 5
to both sub-branches. Consider the case that there are t > 0
unit clauses {x}. Since R-Rule 3 can not be applied, there is
no unit clause {x}. Thus, by Lemma 5, the measure decreases
by a−0

2 (resp., b−t
2 ) after assigning x = 1 (resp., x = 0).

Similarly, for the case that there is t > 0 unit clauses {x}, the
branching vector is not worse than (a−t

2 , b
2 ).

4 The Main Algorithm
Our algorithm consists of three main parts: (1) applying the
reduction rules iteratively until obtaining a reduced formula;
(2) checking if µ ≤ 0 and, if so, reporting that the current
instance is a YES-instance and terminating the algorithm; (3)
employing branching rules to search for a solution. We have
six branching steps, each of which is going to handle some
type of literals. The branching vectors and branching factors
in each step are listed in Table 1.

Steps Literal Types Vectors Factors

1 6+-variables
(4, 1)-literals (0.5, 1.5) 2.1479

2 (3, 2)-literals (1.5, 0.5) 2.1479
(1, 2) 1.6181

3 (a ≥ 2, 1)-nsin (1, 1) 2

4 (2, 2)-literals (1, 1) 2
(1, 1.5) 1.7549

(2, 1)-sin (0.5, 1.5) 2.1479

5 (3, 1)-sin in 2-clauses (1, 1.5) 1.7549
(3, 1)-sin in 3-clauses (1, 1.5, 2) 2.1479

6 (3, 1)-sin in 4+-clauses,
reduced to MSC - 2.1467

Table 1: A summary of branchings in the algorithm, where bottle-
neck cases are bold. In the table, “nsin” stands for “non-singletons”
and “sin” stands for “singletons”.

Before giving the detailed branching steps, we first show
two frequently used properties.
Lemma 7. Let x be an (a, 1)-literal with the unique clause
containing literal x being xD. It is safe to branch with (B1)
x = 1; (B2) x = 0 and D = 0.

Proof. Let A be an optimal assignment to F that sets x = 0.
If D is satisfied by A, then setting x = 1 in A would not de-
crease the number of satisfied clauses since xD is the unique
clause containing literal x that is already satisfied. Hence,
there exists an optimal assignment with either x = 1 or with
x = 0 and D = 0.
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Lemma 8. Let x be an (a, b)-literal such that there are a −
1 unit clauses {x}. Let the clauses containing literal x be
xC1, · · · , xCa. It is safe to branch with (B1) x = 0; (B2)
x = 1 and Ci = 0 for 1 ≤ i ≤ a.

Proof. Let A be an optimal assignment to F that sets x = 1.
If at least one of Ci(1 ≤ i ≤ a) is satisfied under A, setting
x = 1 would make a − 1 unit clauses {x} to be satisfied,
but only at most a − 1 clauses among xC1, · · · , xCa to be
unsatisfied. Hence, there exists an optimal assignment with
either x = 0 or with x = 1 and Ci = 0 for 1 ≤ i ≤ a.

Next, we are going to present our branching steps. When
introducing one branching step, we assume that the current
instance is a reduced instance and no previous branching step
can be applied to it.

4.1 Step 1: 6+-Variables and (4, 1)-Literals
Directly branching on a high-degree variable leads to a good
branching vector. In this step, we deal with such variables.

B-Rule 1. If there is a 6+-variable or a (4, 1)-literal x, then
branch with (B1) x = 1; (B2) x = 0.

Lemma 9. The branching vector of B-Rule 1 is not worse
than (1.5, 0.5).

Proof. The following three cases cover all possible configu-
rations for x.

Case 1: x is a (4+, 1)-literal. There is no unit clause x
since R-Rule 4 is not applicable, and there is at most one unit
clause x. By Lemma 6, we know that the branching vector is
not worse than ( 4−1

2 , 1
2 ) = (1.5, 0.5).

Case 2: x is a (4+, 2)-literal. There is at most one unit
clause x by R-Rule 4 and if there is a unit clause x, then there
is no unit clause x by R-Rule 3. There are at most two unit
clauses x, and if there is a unit clause x, then there is no unit
clause x by R-Rule 3. By Lemma 6, the branching vector is
not worse than ( 42 ,

2−1
2 ) = (2, 0.5) or ( 4−2

2 , 2
2 ) = (1, 1).

Case 3: x is an (a, b)-literal, where a ≥ b ≥ 3. Since
R-Rule 4 and R-Rule 3 can not be applied, we know that the
formula does not contain unit clauses x and x simultaneously
and it contains at most b−1 unit clauses x or at most min{a−
1, b} unit clauses x. By Lemma 6, the branching vector is not
worse than (a2 ,

b−(b−1)
2 ) = (a2 ,

1
2 ) for the former case and not

worse than (a−(a−1)
2 , b

2 ) = ( 12 ,
b
2 ) for the latter case. Since

a, b ≥ 3, the branching vector is not worse than (1.5, 0.5).

4.2 Step 2: (3, 2)-Literals
In this step, we deal with (3, 2)-literals. Let x be a (3, 2)-
literal with five clauses xC1, xC2, xC3, xD1, and xD2.

B-Rule 2. If D1 ∪ D2 ̸= ∅, branch with (B1) x = 1; (B2)
x = 0.

Lemma 10. The branching vector of B-Rule 2 is not worse
than (1.5, 0.5).

Proof. There is at most one unit clause x since D1∪D2 ̸= ∅.
If there is no unit clause x, then there is at most one unit

clause x by R-Rule 4. By Lemma 6, the branching vec-
tor is not worse than ( 32 ,

2−1
2 ) = (1.5, 0.5). If there is one

unit clause x, then there is no unit clause x by R-Rule 3 and
the branching vector is not worse than ( 3−1

2 , 2
2 ) = (1, 1) by

Lemma 6, which is also not worse than (1.5, 0.5).

B-Rule 3. If D1 = D2 = ∅, branch with (B1) x = 0; (B2)
x = 1 and C1 = C2 = C3 = 0 according to Lemma 8.

Lemma 11. The branching vector of B-Rule 3 is not worse
than (1, 2).

Proof. There are two unit clauses x (i.e., |UT(x)| = 2) by
the condition of this rule and no unit clause x by R-Rule 3.
By Lemma 5, the measure decreases by at least 2−0

2 = 1 in

the first sub-branch and |CLS(xC1C2C3)|−|UT(xC1C2C3)|
2 in the

second sub-branch. Let p = |CLS(C1C2C3) \ CLS(x ∪ x)|
and q = |UT(C1C2C3) \ CLS(x ∪ x)|. We have p ≥
q + 3 since R-Rule 6 can not be applied. With |CLS(x)| =
3 and |UT(x)| = 2, it holds that |CLS(xC1C2C3)| −
|UT(xC1C2C3)| = (|CLS(x)| + p) − (UT(x) + q) =
(3 + p) − (2 + q) = 1 + p − q ≥ 4. Thus, the branching
vector is not worse than (1, 4

2 ) = (1, 2).

4.3 Step 3: (2+, 1)-Non-Singletons
B-Rule 4. If there is an (2+, 1)-non-singleton x with the
unique clause containing x being xD, then branch with (B1)
x = 1; (B2) x = 0 and D = 0 according to Lemma 7.

Lemma 12. The branching vector of B-Rule 4 is not worse
than (1, 1).

Proof. Let x be an (a, 1)-non-singleton such that a ≥ 2. By
Lemma 5, the measure decreases by at least a−0

2 = a
2 in the

first sub-branch since D ̸= ∅, and at least |CLS(xD)|−|UT(xD)|
2

in the second sub-branch. Since that x is an (a, 1)-non-
singleton and R-Rule 4 is not applicable, we know that
|CLS(x)| = 1 and |UT(x)| = 0. Let p = |CLS(D) \
CLS(x ∪ x)| and q = |UT(D) \ CLS(x ∪ x)|. we have
p ≥ q + 1, other R-Rule 5 can be applied. Thus, it holds that
|CLS(xD)|−|UT(xD)| = (|CLS(x)|+p)−(|UT(x)|+q) =
1 + p − q ≥ 2. Thus, the branching vector is not worse than
(a2 ,

2
2 ), and so not worse than (1, 1) since a ≥ 2.

4.4 Step 4: (2, 2)-Literals and (2, 1)-Singletons
B-Rule 5. If there is a (2, 2)-literal x such that there is no
unit clause x or x, then branch with (B1) x = 1; (B2) x = 0.

Lemma 13. The branching vector of B-Rule 5 is not worse
than (1, 1).

Proof. By Lemma 6, the branching vector is not worse than
( 2−0

2 , 2−0
2 ) = (1, 1).

B-Rule 6. Let x be a (2, 2)-literal or (2, 1)-literal such that
there is exactly one unit clause x. Let the two clauses con-
taining x be xC1 and xC2. Branch with (B1) x = 0; (B2)
x = 1 and C1 = C2 = 0 according to Lemma 8.

Lemma 14. The branching vector of B-Rule 6 is not worse
than (0.5, 1.5).
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Proof. There is no unit clause x, otherwise R-Rule 3 can be
applied. Thus, we know C1, C2 ̸= ∅. By Lemma 5, in the first
sub-branch, the measure decreases by at least 2−0

2 = 1 if x is
a (2, 2)-literal and at least 1−0

2 = 0.5 if x is a (2, 1)-literal.
By Lemma 5 again the measure decreases by at least

|CLS(xC1C2)|−|UT(xC1C2)|
2 in the second sub-branch. Let

p = |CLS(xC1C2) \ CLS(x ∪ x)| and q = |UT(xC1C2) \
CLS(x ∪ x)|. We have p ≥ q + 2, otherwise R-Rule 6
can be applied. With |CLS(x)| = 2 and |UT(x)| = 1, we
have |CLS(xC1C2)| − |UT(xC1C2)| = (|CLS(x)| + p) −
(|UT(x)|+ q) = (2 + p)− (1 + q) = 1 + p− q ≥ 3.

Thus, the branching vector is not worse than (1, 3
2 ) =

(1, 1.5) if x is a (2, 2)-literal and not worse than (0.5, 3
2 ) =

(0.5, 1.5) if x is a (2, 1)-singleton.

Lemma 15. After Step 4, the formula only contains (3, 1)-
singletons and their negations.

Proof. By Lemma 4, all variables in a reduced formula are
3+-variables. Step 1 deals with all 6+-variables and (4, 1)-
literals. Step 2 deals with all (3, 2)-literals. After Step 2,
the formula only contains 4-variables and 3-variables. For
a (2, 1)-literal, it is handled by Step 3 if it is a (2, 1)-non-
singleton and handled by Step 4 otherwise. All (2, 2)-literals
are handled by Step 4. Moreover, all (3, 1)-non-singletons
are handled by Step 3. Consequently, the remaining literals
in the formula are (3, 1)-singletons and their negations.

4.5 Step 5: (3, 1)-Singletons in Short Clauses
In this step, we are going to deal with (3, 1)-singletons con-
tained in clauses with a length of 2 or 3.
Definition 2. An instance is simplified if the formula only
contains (2+, 1)-singletons and their negations.

By Lemma 15, we know that the current instance is a sim-
plified instance. We assume w.l.o.g. that all literals in unit
clauses are negative literals in a simplified instance. By this
assumption, we have that |CLS(x)| = 3 for any positive lit-
eral x in the formula and |UT(x)| = 1 for any negative literal
x in the formula.

First, we introduce a structural property of simplified in-
stances, which allows us to apply a better branching.
Lemma 16. A simplified instance has an optimal assignment
that satisfies all non-unit clauses.

Proof. Let A be an optimal assignment that satisfies the max-
imum number of non-unit clauses. Assume that there is a
non-unit clause C that is unsatisfied under A. Let x be some
literal in C. Then assignment A sets x = 0. Since x is a
(2+, 1)-singleton, there is only one unit clause x that contains
x and it is satisfied by A. Let A′ be the assignment obtained
from A by replacing x = 0 with x = 1. Then, assignment
A′ satisfies the non-unit clause C and makes at most one unit
clause x unsatisfied. This shows that the number of clauses
satisfied by A′ is not less than that by A. However, the num-
ber of non-unit clauses satisfied by A′ is greater than that by
A, a contradiction to the assumption on A.

Based on Lemma 16, we apply the following two branch-
ing rules to eliminate 2-clauses and 3-clauses.

B-Rule 7. If there is a 2-clause xy, then branch with (B1)
x = 1; (B2) x = 0 and y = 1.

Lemma 17. The branching vector of B-Rule 7 is not worse
than (1, 1.5).

Proof. By Lemma 5, we know that the measure decreases
by at least 3−1

2 = 1 in the first sub-branch and at least
|CLS(xy)|−|UT(xy)|

2 in the second sub-branch.
Since that a negative literal is contained in a unique unit

clause, and a unit clause only contains a negative literal, we
have that |CLS(xy)| = |CLS(x)| + |CLS(y)| = 1 + 3 = 4
and |UT(xy)| = |UT(x)|+ |UT(y)| = 0+ 1 = 1. Thus, the
branching vector is not worse than (1, |CLS(xy)|−|UT(xy)|

2 ) =

(1, 4−1
2 ) = (1, 1.5).

B-Rule 8. If there is a 3-clause xyz, then branch with (B1)
x = 1; (B2) x = 0 and y = 1; (B3) x = y = 0 and z = 1.

Lemma 18. The branching vector of B-Rule 8 is not worse
than (1, 1.5, 2).

Proof. By the same argument in the proof of Lemma 17, we
can show that the measure decreases by at least 1 and 1.5 in
the first and second sub-branches respectively.

Consider the third sub-branch. We have |CLS(xyz)| =
|CLS(x)| + |CLS(y)| + |CLS(z)| = 1 + 1 + 3 = 5 since
that a negative literal is only contained in a unit clause, and
a unit clause only contains negative literal. Note that all 2-
clauses have been handled by B-Rule 7, the length of a non-
unit clause is at least 3 now. Thus, |UT(xyz)| = |UT(xy)|+
|UT(z)| = 0 + 1 = 1 holds. By Lemma 5, the measure de-
creases by at least |CLS(xyz)|−|UT(xyz)|

2 = 5−1
2 = 2. There-

fore, the branching vector is not worse than (1, 1.5, 2).

4.6 Step 6: Fast Solving the Remaining Part
After Step 5, all non-unit clauses in F are 4+-clauses. Recall
that we denote by n the number of variables and by m the
number of clauses in F , and there are n unit clauses and m−n
non-unit clauses in F .

Lemma 19. If 0.7m + 0.037n ≥ k holds in a simplified
instance (F , k) with all non-unit clauses being 4+-clauses,
then we can find an assignment satisfying at least k clauses
in polynomial time.

Proof. We set p = 0.26 and assign each variable with value
1 with probability p. Then, each unit clause is satisfied with
a probability of 1 − p. Since every non-unit clause contains
at least 4 positive literals, a non-unit clause is satisfied with a
probability of 1 − (1 − p)4. Thus, by the linearity of expec-
tation and setting p = 0.26, the expected number of satisfied
clauses under this random assignment would be

n(1− p) + (m− n)(1− (1− p)4)

≥ 0.74n+ 0.7(m− n)

≥ 0.7m+ 0.04n ≥ 0.7m+ 0.037n ≥ k.

By using the method of conditional expectation, we can de-
terministically construct an assignment that satisfies at least
k clauses in polynomial time.
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Next, we assume that 0.7m + 0.037n < k. Thus, 0.6m +
0.11n < 3(k − 0.5m) = 3µ. For this case, we follow the ap-
proach proposed in [Bliznets and Golovnev, 2012] and reduce
the problem to the MINIMUM SET COVER problem, which is
formally defined as follows.

MINIMUM SET COVER (MSC)
Input: A universe U and a family S of subsets of U ; A
positive integer s.
Question: Does there exist a subfamily C ⊆ S such that
|C| ≤ s and the union of C is U?

An instance of MSC is denoted by (U ,S, s). A subfam-
ily C ⊆ S is a set cover for S if

⋃
D∈C D = U . We use

|U| to denote the number of elements in universe U and |S|
to denote the number of subsets in family S . For an ele-
ment e ∈ U , the frequency of e, denoted by f(e), is de-
fined as the number of subsets in S that contain e. It was
shown in [van Rooij and Bodlaender, 2011] that MINIMUM
SET COVER can be solved in time O∗(1.28759k(U,S)), where
k(U ,S) = ∑

e∈U v(f(e)) +
∑

S∈S w(|S|), and v and w are
weight functions N → R+. The maximum value of v is
0.595723 and the maximum value of w is 1. We note that the
maximum value of w for sets of size at most 3 is 0.706023
(refer to the end of section 3 in [van Rooij and Bodlaender,
2011]). Thus, the following result can be utilized.
Lemma 20 (van Rooij and Bodlaender 2011). If each subset
in S has a size of at most 3, then MINIMUM SET COVER
can be solved in time O∗(1.287590.595723|U|+0.706023|S|) ⊆
O∗(1.290.6|U|+0.71|S|) and polynomial space.

Given a simplified instance I = (F , k) of MaxSAT, we
reduce it to an instance I ′ = (UF ,SF ,m − k) of MSC as
follows. For each non-unit clause Cz in F , there is an element
eCz

in the universe UF . For each variable xi in F , there is a
subset Sxi

= {eCz
| literal xi appears in clause Cz} in the

family SF . We have |UF | = m−n and |SF | = n. Moreover,
each subset in SF has a size of 3, since each positive literal xi

is a (3, 1)-singleton. This reduction has been used in several
algorithms for MaxSAT. The proof of the correctness of this
reduction (i.e., Lemma 21) is deferred to the full version of
this paper.
Lemma 21 (♣). The simplified instance I of MaxSAT is a
YES-instance if and only if the instance I ′ of MSC is a YES-
instance.
Lemma 22. Each execution of Step 6 can be done in time
O∗(2.1467µ) and polynomial space.

Proof. By reducing a simplified instance to an instance of
MCS with |U| = m− n and |S| = n, we can solve the prob-
lem in time O∗(1.290.6n+0.71(m−n)) by Lemma 20. Note
that 0.6(m − n) + 0.71n = 0.6m + 0.11n < 3µ, we have
1.293k < 2.1467k, which proves the lemma.

4.7 The Final Result
Now we are prepared to present our main result. The algo-
rithm will execute the above six branching steps in order.
Before applying each branching step, reduction rules are ex-
haustively applied until the instance is reduced. It is impor-
tant to note that, before each step, if the measure µ ≤ 0, then
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Figure 1: The bases of running-time bounds (which have been con-
verted into bounds in terms of m) of algorithms Aµ, Ak, and Am

under different values of r = k/m. The shaded area is unexplored.

the algorithm will report that the input instance is a YES-
instance and terminate. All reduction rules can be executed
in polynomial time. As shown in Table 1, for the first five
steps, the largest branching factor is 2.1479, corresponding
to the branching vector (1.5, 0.5) in Steps 1, 2, 4, and 5.
The last step (Step 6) can be executed in time O∗(2.1467µ)
by Lemma 22. Thus, the problem can be solved in time
O∗(2.1479µ). Clearly, each step requires only polynomial
space. In conclusion, we obtain
Theorem 1. MaxSAT can be solved in O∗(2.1479µ) time and
polynomial space, where µ = k − ⌈m/2⌉.

5 Discussion and Conclusion
In this paper, we have presented a new algorithm for MaxSAT
with running-time bound O∗(2.1479µ), where µ = k −
⌈m/2⌉. We compare our algorithm with the algorithms pa-
rameterized by k and m. Denote by Aµ our algorithm, by
Ak the O∗(1.3248k)-time algorithm [Chen et al., 2017], and
by Am the O∗(1.2886m)-time algorithm [Xiao, 2022]. Let
r = k/m be the ratio of clauses in a formula that one
wants to satisfy. The bounds O∗(1.3248k) and O∗(2.1479µ)
can be expressed in terms of m, i.e., O∗(1.3248rm) and
O∗(2.1479(r−0.5)m), respectively. Figure 1 shows the front
line of these algorithms, which indicates that our algorithm
Aµ is faster when 0.5 < r ≤ 0.791, Ak is superior for
0.791 < r ≤ 0.901, and Am excels for 0.901 < r ≤ 1.

In our algorithm, the two newly introduced reductions R-
Rule 5 and R-Rule 6 are crucial in our worst-case-based anal-
ysis. Whether they also have a good performance and appli-
cation scenarios in practical solving deserves further research.

Another direction for further study is to consider other
“above guarantee” parameterizations of MaxSAT. Given a
formula F and a parameter µ′, an “above guarantee” param-
eterization of MaxSAT asks whether g(F) + µ′ clauses can
be satisfied. Here, g(F) is a lower bound on the maximum
number of clauses that can be satisfied. The lower bound
considered in this paper is ⌈m/2⌉. Different lower bounds
can be obtained if some constraints are imposed on the in-
put CNF-formula. For MaxSAT above other lower bounds,
most existing algorithms are based on reducing to other
problems [Kim and Williams, 2011; Crowston et al., 2012;
Gutin et al., 2013]. It would be interesting to investi-
gate whether other paradigms (e.g., the branch-and-bound
paradigm) are applicable to design better algorithms for these
“above guarantee” parameterizations of MaxSAT.
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dering for in-processing bounded variable elimination in
SAT solvers. In Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2023, pages 1979–1987. ijcai.org, 2023.

[Lokshtanov et al., 2014] Daniel Lokshtanov, N. S.
Narayanaswamy, Venkatesh Raman, M. S. Ramanu-
jan, and Saket Saurabh. Faster parameterized algorithms
using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014.

[Mahajan and Raman, 1999] Meena Mahajan and Venkatesh
Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

[Mahajan et al., 2009] Meena Mahajan, Venkatesh Raman,
and Somnath Sikdar. Parameterizing above or below guar-
anteed values. J. Comput. Syst. Sci., 75(2):137–153, 2009.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1942



[Peng and Xiao, 2023] Junqiang Peng and Mingyu Xiao.
Fast algorithms for SAT with bounded occurrences of vari-
ables. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI 2023,
pages 2004–2012. ijcai.org, 2023.

[Samer and Szeider, 2021] Marko Samer and Stefan Szeider.
Fixed-parameter tractability. In Handbook of Satisfiability
- Second Edition, pages 693–736. IOS Press, 2021.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat-
isfiability problems. In Proceedings of the 10th Annual
ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, pages 216–226. ACM, 1978.

[van Rooij and Bodlaender, 2011] Johan M. M. van Rooij
and Hans L. Bodlaender. Exact algorithms for dominat-
ing set. Discret. Appl. Math., 159(17):2147–2164, 2011.

[Xiao, 2022] Mingyu Xiao. An exact maxsat algorithm: Fur-
ther observations and further improvements. In Proceed-
ings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, pages 1887–1893. ij-
cai.org, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1943


	Introduction
	Preliminaries
	Branch-and-Bound Algorithms
	The Measure

	Reduction Rules
	The Main Algorithm
	Step 1: 6+-Variables and (4, 1)-Literals
	Step 2: (3, 2)-Literals
	Step 3: (2+, 1)-Non-Singletons
	Step 4: (2, 2)-Literals and (2, 1)-Singletons
	Step 5: (3, 1)-Singletons in Short Clauses
	Step 6: Fast Solving the Remaining Part
	The Final Result

	Discussion and Conclusion

