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Abstract

Most active constraint acquisition systems suffer
from two weaknesses. They require the explicit
generation of the set of potential constraints (the
bias), whose size can be prohibitive for practical
use of these systems, and the answers to queries
contain little information. In this paper, we in-
troduce ACQNOGOODS, an active learning schema
that does not require the construction of a bias. We
then propose LLMACQ, an active learning system
that incorporates a Large Language Model com-
ponent in the ACQNOGOODS schema. LLMACQ
interprets the user’s answers given in natural lan-
guage, leading to more informative communica-
tion. As our experiments show, the non require-
ment of a bias in extension combined to the higher-
level communication with the user allow LLMACQ
to learn constraints of any arity and to dramatically
decrease the number of queries.

1 Introduction
In Constraint programming (CP), the user specifies the con-
straints of the problem and the solver searches for solutions.
Specifying the constraints of the problem can be a challenge
for non-CP experts. The purpose of constraint acquisition is
to offer assistance to the user in specifying the constraints.

There are two main categories of constraint acquisition sys-
tems: passive learning algorithms and active learning algo-
rithms. In passive learning systems, the user provides a set
of examples of solutions and/or non-solutions, and the sys-
tem learns a set of constraints that correctly classifies these
examples (CONACQ1 [Bessiere et al., 2004; Bessiere et al.,
2005], MODELSEEKER [Beldiceanu and Simonis, 2012], SE-
QACQ [Prestwich, 2020], COUNT-CP [Kumar et al., 2022]).
Passive learning systems may fail when the user does not pro-
vide a set of examples sufficiently representative of the prob-
lem. Active learning can help overcome this limitation by
asking the user queries whose answers will help the system
in learning missing constraints for converging on a unique
constraint network. In CONACQ2, complete assignments of
the variables of the problem are proposed to the user for
classification as positive or negative [Bessiere et al., 2007;

Bessiere et al., 2017]. CONACQ2 may require an exponen-
tially large number of queries to converge. To overcome this
issue, QUACQ asks the user to answer partial queries, that is,
queries involving a subset of the problem variables [Bessiere
et al., 2013]. Numerous QUACQ-based algorithms have
been introduced in the literature, incrementally improving
the basic version (e.g., MULTIACQ [Arcangioli et al., 2016],
MQUACQ [Tsouros et al., 2018], MQUACQ2 [Tsouros et
al., 2019], PREDICT&ASK [Daoudi et al., 2016], QUACQ2
[Bessiere et al., 2023a]).

A common weakness of all these systems is that the com-
munication between the user and the learner is limited to
”yes/no” answers. The consequence is that we need strong
restrictions on the learning bias if we want to have a chance to
learn a network in a reasonable time and/or number of exam-
ples. Some systems, such as MODELSEEKER or COUNT-CP,
put strong restrictions on where a constraint may lie (e.g., on
rows, columns of a matrix). Most others put strong restric-
tions on the kind of relations to be used to define constraints
(e.g., CONACQ-based, SEQACQ, QUACQ-based). The prob-
lem is even more accurate on active learners because they
usually need to explicitly represent the learning bias, that is,
the set of all possible constraints that could belong to the tar-
get network. For instance, in a problem with 50 variables, the
relation stating that the sum of three variables is equal to a
given constant k would give rise to

(
50
3

)
= 19, 600 constraints

in the bias. Two recent works address this issue. In [Bessiere
et al., 2023b], a passive learner is proposed that does not need
any language or bias to be explicitly represented because its
goal is to learn the (small set of) relations that will be used
to express the whole problem. GROWACQ is an active learner
that builds the bias step by step by adding variables incremen-
tally during the learning process. It is shown that it allows the
system to deal with much larger biases than other QUACQ-
based systems [Tsouros et al., 2023].

In this paper we address the two issues described above:
the problem of the size of the learning bias and the low
amount of information contained in user’s answers. Our first
contribution is an active constraint acquisition schema, called
ACQNOGOODS, that is able to acquire any constraint network
without the need of a bias. (In fact, it does not even need
a language). Like QUACQ-based systems, ACQNOGOODS
uses partial queries. To avoid the need of a bias, ACQNO-
GOODS learns forbidden tuples (aka, nogoods) rather than
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constraints. The downside is obviously a potentially large
number of queries. But ACQNOGOODS is not intended to be
used as a standalone acquisition system. It will serve as a
basic framework in which our main contribution will be em-
bedded.

Our main contribution is to improve QUACQ-based con-
straint acquisition by enhancing the amount of information
contained in the user’s answers to queries. A first attempt in
that direction was proposed in [Freuder and Wallace, 1998].
When asked to classify a negative example, the user provides
a ‘correction’, that is, the set of constraints of the problem that
make the example negative. Such a scenario requires the user
to be able to articulate and express the constraints rejecting
the example, which can be too hard for a non-CP expert. In
this paper, we consider the scenario in which, when the user
classifies an example as negative, she provides a sentence in
natural language that describes a reason why the example is
not satisfactory. Allowing natural language communication
should make the task much easier to the user, and the impres-
sive success of Large Language Models (LLMs) tells us that it
is the right time to do this. We then propose LLMACQ, a con-
straint acquisition system based on ACQNOGOODS that em-
beds natural language understanding capabilities. The goal
is to showcase how natural language processing techniques
can be used in active constraint acquisition algorithms. We
show that by fine-tuning BERT [Devlin et al., 2019] with a
pre-defined language of relations, we provide LLMACQ with
capabilities for extracting a constraint from the user’s feed-
back as long as the constraint is defined by a relation in
our pre-defined language. Our experiments demonstrate that
LLMACQ significantly outperforms QUACQ2, requiring far
fewer queries while successfully learning constraints of any
arity. This is not the first time natural language processing
is used to help expressing problems in CP. In [Kiziltan et al.,
2016], a complete textual description of a problem is used to
detect constraints. However, to our knowledge, this is the first
time that natural language understanding techniques are used
to extract constraints from user’s feedback in the context of
active constraint acquisition.

The rest of the paper is organized as follows. Section 2
gives the necessary background. Section 3 describes the AC-
QNOGOODS algorithm. In Section 4, we show how we can
fine-tune BERT to handle user’s feedback. LLMACQ is de-
scribed in Section 5. Section 6 presents the experimental re-
sults. Section 7 concludes the paper.

2 Background
In the following we assume that the user and the learner share
a common vocabulary to communicate. The vocabulary is a
finite set of variables X and a domain D for these variables.
A constraint c is defined by a pair (var(c), rel(c)), where
rel(c) is the relation specifying which combinations of val-
ues (or tuples) are allowed for the variables var(c). var(c)
is called the scope of c and |var(c)| the arity of rel(c). A
constraint network is a set C of constraints on the vocabulary
(X,D). The projection C[S] of a constraint network C on a
subset S of variables is the set {c ∈ C | var(c) ⊆ S}. An
example e is a (partial/complete) assignment on a set of vari-

ables var(e) ⊆ X . e is rejected by a constraint c if and only
if var(c) ⊆ var(e) and the projection evar(c) of e on var(c)
is not in rel(c). The constraint with scope var(c) that rejects
only the tuple evar(c) is called a nogood and is denoted by
(var(c),¬evar(c)). A complete assignment e of X is a solu-
tion of C if none of the constraints in C reject e. The set of
solutions of C is denoted by sol(C). In addition to the vo-
cabulary, the learner may own a language Γ of relations from
which it can build constraints on specified sets of variables.
A constraint bias is a set of constraints built from a language
Γ on the vocabulary (X,D). Formally speaking, the bias is
the set {c | (var(c) ⊆ X) ∧ (rel(c) ∈ Γ)}.

The target network is a constraint network T on (X,D)
such that sol(T ) is equal to the set of solutions of the problem
that the user has in mind. A query Ask(e), with var(e) ⊆ X
and e ∈ Dvar(e), asks the user whether e satisfies all the
constraints in T [var(e)] or not. Depending on whether the
answer is ”yes” or ”no”, the example is called positive or neg-
ative, respectively.

3 Learning Nogoods
In this section, we present the ACQNOGOODS constraint ac-
quisition schema. Like QUACQ-based algorithms, ACQNO-
GOODS uses partial queries to learn the target network. But,
as opposed to QUACQ-based algorithms, ACQNOGOODS
does not need any predefined language or bias. ACQNO-
GOODS does not learn constraints whose relation belongs to
a pre-defined language. ACQNOGOODS learns nogoods.

3.1 Technical Description
ACQNOGOODS is presented in Algorithm 1. ACQNOGOODS
takes a vocabulary (X,D) as input and returns a learned net-
work L composed of a set of nogoods such that L has the
same solutions as the target network T . ACQNOGOODS ini-
tializes L to the empty set (line 1). The set solutions,
used to store the complete examples classified as positive
by the user, is also initialized to the empty set (line 2). At
each iteration of the while loop in line 3, ACQNOGOODS
tries to generate a complete example e that is not already in
solutions and that is not rejected by any of the nogoods
learned so far (line 4). If it fails to generate such an exam-
ple, ACQNOGOODS has converged and returns the network
L, which has the same solutions as T (line 5). Otherwise, AC-
QNOGOODS asks the user to classify e. If the user’s answer is
positive, e is added to solutions (line 7). If not, ACQNO-
GOODS calls function OneNogood that returns a minimal
scope S such that eS is forbidden by a constraint of T (line
9). (S,¬eS) is added to L (line 10).

Algorithm 2 describes function OneNogood. Its behavior
is very similar to that of function FindScope [Bessiere et
al., 2013]. OneNogood inherits the logarithmic complexity
in number of queries of FindScope.

The inputs of OneNogood are an example e, two sets of
variables R and Y , and a Boolean ask query. An invari-
ant of OneNogood is that e violates at least one constraint
of the target network T , whose scope is a subset of R ∪ Y .
Any recursive call of OneNogood returns a subset of Y that
is a subset of the scope of a constraint in T that is violated
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Algorithm 1: ACQNOGOODS

Input: X,D
Output: a learned network L equivalent to T

1 L← ∅ ;
2 solutions← ∅ ;
3 while true do
4 e← generate e ∈ sol(L) \ solutions ;
5 if e = ⊥ then return “convergence on L” ;
6 else
7 if Ask(e) = yes then add e to solutions ;
8 else
9 S ← OneNogood(e, ∅, X, false) ;

10 add (S,¬eS) to L ;

Algorithm 2: Function OneNogood
Input: an example e, two scopes R, Y , and a Boolean

ask query
Output: a scope S such that eS is a nogood

1 if ask query then if Ask(eR) = no then return ∅ ;
2 if (|Y |) = 1 then return Y ;
3 split Y into ⟨Y1, Y2⟩ such that |Y1| = ⌈|Y |/2⌉ ;
4 S1 ← OneNogood(e,R ∪ Y1, Y2, true) ;
5 S2 ← OneNogood(e,R ∪ S1, Y1, (S1 ̸= ∅)) ;
6 return S1 ∪ S2 ;

by e. The Boolean ask query, when false, tells us that we
already know that the answer to Ask(eR) will be ”yes” (be-
cause R cannot contain the scope of a constraint rejecting
e). If ask query is true, we ask the user to classify eR. If
the answer is ”no”, R contains the scope of a constraint in T
that rejects e. Thus, Y is not needed to cover that scope, and
an empty set is returned (line 1). Line 2 is only reached if eR
does not violate any constraint. Knowing that eR∪Y violates a
constraint, if Y is a singleton, it must be part of the scope of a
violated constraint in eR∪Y and line 2 returns Y . If no return
conditions are met, Y is divided into two balanced segments,
Y1 and Y2 (line 3), and OneNogood is called recursively to
elucidate the variables involved in a constraint violated by
eR∪Y (lines 4 and 5). The whole process is logarithmic in the
number of variables.

3.2 Correctness of ACQNOGOODS
Proposition 1 (Partial correctness). Given a target network
T , the network L returned by ACQNOGOODS is such that
sol(L) = sol(T ).

Proof. Completeness. Assume that sol(L) ⊈ sol(T ). Let e
be a solution of L that is not solution of T . e cannot be in
the set solutions because the only way for an example to
enter solutions is to have been classified as positive by
the user (Algorithm 1, line 7), which is impossible because e
is not solution of T . Hence, when e was generated in line 4
of Algorithm 1 (because e ∈ sol(L)), it has been classified as
negative by the user. As a result, OneNogoodwas called and
a nogood rejecting e has been added to L (Algorithm 1, lines
9 and 10). This contradicts the assumption that e ∈ sol(L).

Soundness. Assume now that sol(T ) ⊈ sol(L). This
means that there exists a nogood (S,¬eS) in L that rejects
a solution e of T . For (S,¬eS) to be in L, S must have been
extracted by OneNogood from an example e′ that was clas-

sified as negative by the user. Following the proof of cor-
rectness of FindScope in [Tsouros and Stergiou, 2020], we
know that OneNogood extracts a minimal subset S of X
such that e′S violates a constraint in T . Therefore, every su-
perset of e′S , including e, will violate a constraint from T .
This contradicts the assumption that e belongs to sol(T ).

Proposition 2 (Termination). ACQNOGOODS terminates.

Proof. The nogoods learned by ACQNOGOODS are not re-
dundant because every new learned nogood is extracted from
an example that satisfies all the nogoods learned so far (Al-
gorithm 1, line 4). Thus, the number of nogoods learned by
ACQNOGOODS is finite. In addition, at each iteration of the
main loop of ACQNOGOODS (Algorithm 1, line 3), either we
learn a new solution e of T , or a new nogood (Algorithm 1,
lines 7 and 10). Hence, ACQNOGOODS terminates because
both the number of solutions of T and the number of non-
redundant nogoods are finite.

Theorem 1 (Correctness). Given a target network T , Algo-
rithm 1 converges on a network L such that sol(L) = sol(T ).

Proof. Direct from propositions 1 and 2.

4 Using an LLM for Constraint Extraction
In ACQNOGOODS and in all QUACQ-based algorithms, the
user only provides ”yes/no” answers to the queries of the sys-
tem. That is, the user only confirms whether an example
meets her requirements or not. In this section, we consider
the scenario in which, when the answer is ”no”, the user pro-
vides a sentence in natural language describing a reason why
the example is negative. For instance, the user may answer
that “we must get 40 when we add up the variables x4 and
x5” or “make sure 80 is the exact distance between x76 and
x59”. To capture this scenario, we extend the definition of
Ask(e) queries:

An extended query E-Ask(e), with var(e) ⊆ X
and e ∈ Dvar(e), asks the user whether e satisfies
all the constraints in T [var(e)] or not. If the an-
swer is not ”yes”, the user provides a sentence of
feedback describing one constraint rejecting e.

When receiving such a sentence, our constraint acquisition
system will use the power of large language models to inter-
pret the text and identify the constraint outlined by the user.

As a state-of-the-art pre-trained language model, BERT
(Bidirectional Encoder Representations from Transformers
[Devlin et al., 2019]) has achieved significant results in many
language understanding tasks, particularly in tasks involving
token and sequence classification. To adapt BERT to natural
language processing tasks in a specific domain, an appropri-
ate fine-tuning strategy is required.

In our context, the identification of a constraint from a
user’s sentence can be divided in two subtasks: Relation
identification and Parameters identification. Relation iden-
tification is the task of identifying the relation the user has
in mind. For instance, if the answer of the user is “make
sure 80 reflects the exact distance between x76 and x59”, it
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should understand that the relation is ∥val, which character-
izes the fact that the absolute value of the difference between
two variables is equal to a numerical constant. Relation iden-
tification involves performing sequence classification, each
class corresponding to a relation in the given language Γ of
possible relations. Parameters identification can be seen as
a token classification task where the classes associated with
the tokens (i.e., words) are used to identify the parameters
of the constraint. For instance, if the answer of the user is
again “make sure 80 reflects the exact distance between x76

and x59”, the result of the token classification should be the
sequence [0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2], which means that the
ninth word in the user’s answer is the first parameter of the
constraint, the eleventh word is the second parameter, and the
third word is the third parameter. Words that correspond to
zeros do not count as parameters of the constraint. Instead of
processing relation identification and parameters identifica-
tion as two separate subtasks, we chose to apply a multi-task
learning strategy, where we simultaneously fine-tune BERT
on both relation and parameters identification tasks. The goal
is to boost efficiency by learning shared representations be-
tween these two related tasks.

Fine-tuning BERT begins with a step of data preprocess-
ing, involving tokenization and dealing with variations in se-
quence length. In tokenization, input sentences are split into
smaller units, or tokens, which can be either words or sub-
words. This process is essential for adapting the text to the
input format of BERT, which is based on a fixed vocabulary.
After tokenization, each sequence is prefixed with a [CLS]
token. This special token plays a key role in sequence clas-
sification tasks. It is designed to capture the context of the
entire input sequence. A [SEP] token is used to mark the end
of the sentence, followed by padding to ensure a uniform in-
put structure for the neural network. Thus, the format for a
sentence is [CLS] sentence [SEP], plus as many [PAD] tokens
as needed to meet the fixed length requirement.

Once the data has been preprocessed, we use a dual-headed
approach to handle both relation and parameters classifica-
tion (see Figure 1). The relation classification head, which is
a linear classification layer shown in blue in Figure 1, uses
the [CLS] token representation, which after passing through
BERT’s layers, contains aggregated information from the en-
tire input sequence. On the other hand, the parameters clas-
sification head, the other linear classification layer shown in
green in Figure 1, works with the representations of individ-
ual tokens. Each token representation, obtained from BERT’s
final layer, is used for token-level classification.

During training, minibatches are processed separately for
each task. 50% of the minibatches focus on relation clas-
sification while the other 50% focus on parameters classifi-
cation. This separate processing ensures that the model is
evenly trained on both types of tasks. After each minibatch
is processed, the model computes the categorical loss for the
task at hand and uses it to perform backpropagation, where
the gradients are calculated, and the weights of the neural
network are adjusted accordingly. By doing so, the neural
network gradually improves its ability to accurately classify
both relations and parameters.

BERTBASE

Make sure 80 reflects the exact distance between X76 and X59Input
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[PAD]
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Figure 1: Illustration of the fine-tuned BERT model used on the
sentence “Make sure 80 reflects the exact distance between X76
and X59”. After tokenization, and with the addition of the spe-
cial tokens [CLS], [SEP] and [PAD], the input sentence becomes:
“[CLS] Make sure 80 reflects the exact distance between X ##76
and X ##59 [SEP][PAD]...[PAD]”. This tokenized sentence is
then passed through the fine-tuned BERT. The sequence classifi-
cation head, in blue, uses the [CLS] token representation for relation
classification. Simultaneously, the parameters classification head, in
green, focuses on the representations of individual tokens. The re-
lation identification head predicts ||val as the most likely relation.
This relation refers to the absolute value of the difference between
two parameters, param1 and param2, being equal to a third pa-
rameter, param3: |param1 − param2| = param3. The param-
eter identification head, in green, classifies the token 80 as class 3,
the tokens X and ##76 as class 1, X and ##59 as class 2, and
all other tokens as class 0. This means that X76, X59, and 80 are
identified respectively as the first, the second and third parameters of
the relation ||val. The other tokens do not count as parameters of the
constraint. The fine-tuned BERT successfully identifies the relation
and its parameters.

5 Constraint Acquisition with an LLM
Now that we have a way to exploit the user’s feedback given
in natural language, we are ready to present a revised ver-
sion of ACQNOGOODS that will use this feedback to improve
constraint acquisition. In addition to the extended queries
E-Ask(e) defined in Section 4, we also need another type
of query, already used in [Beldiceanu and Simonis, 2012;
Daoudi et al., 2016], to validate the understanding of the
BERT component:

A validation query V-Ask(c) asks the user
whether the constraint c belongs to the target net-
work T or not. The answer is ”yes” or ”no”.

Our new constraint acquisition algorithm, called LLMACQ,
is described in Algorithms 3 and 4. The general structure
of LLMACQ is similar to that of ACQNOGOODS. The first
difference is that LLMACQ uses E-Ask(e) queries instead
of Ask(e) queries. When the answer to a E-Ask(e) query
is not ”yes”, the feedback provided by the user is given to

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1919



Algorithm 3: LLMACQ

Input: X,D,maxPos
Output: a learned network L equivalent to T

1 L← ∅;
2 solutions← ∅ ; #pos← 0 ;
3 while #pos < maxPos do
4 e← generate e ∈ sol(L) \ solutions ;
5 if e = ⊥ then return “convergence on L” ;
6 else
7 Answer ← E-Ask(e);
8 if Answer = yes then
9 add e to solutions ; #pos← #pos+ 1 ;

10 else
11 #pos← 0 ;
12 c← BERT (Answer) ;
13 if V-Ask(c) = yes then add c to L ;
14 else
15 S ← OneConstraint(e, ∅, X, false) ;
16 if S ̸= “exit” then add (S,¬eS) to L ;

17 return “pseudo-convergence on L” ;

the fine-tuned BERT component. BERT analyzes the feed-
back to identify a violated constraint (Algorithm 3, line 12).
The constraint c inferred from this feedback is only added to
the network L if the user confirms that it belongs to the tar-
get network T (Algorithm 3, line 13). If the user does not
confirm, LLMACQ defaults to running OneConstraint,
which is a modified version of OneNogood (Algorithm 3,
line 15). During the execution of OneConstraint, when-
ever a partial example is classified as negative by the user,
OneConstraint calls BERT to infer a constraint from
the user’s feedback (Algorithm 4, line 4). If BERT suc-
ceeds in identifying a new constraint that is validated by
the user in line 5, this constraint is added to L (line 6) and
OneConstraint returns ”exit” (lines 6, 11, and 13). Oth-
erwise, OneConstraint continues running until it returns
a nogood.

We applied another change to LLMACQ compared to AC-
QNOGOODS to avoid being trapped in long series of positive
queries when target networks have a large number of solu-
tions. ACQNOGOODS needs to find all the solutions of T to
prove convergence (Algorithm 1, lines 3-5). However, the
target network may have been found far before all solutions
have been generated in a query. We thus force LLMACQ to
stop when it reaches a long sequence of complete positive
examples. Such a sequence probably means that all the con-
straints of the target network have already been learned. LL-
MACQ uses a counter #pos to track the number of consecu-
tive complete positive examples (Algorithm 3, lines 2 and 9).
#pos is reset to zero at each negative answer (line 11). LL-
MACQ stops as soon as #pos reaches a given cutoff maxPos
(line 3). This new termination condition for LLMACQ out-
puts a network L that has not been proved to have the same
solutions as the target network T (line 17). This state is called
pseudo-convergence in [Addi et al., 2018].

Theorem 2 (Correctness). Given a target network T and a
sufficiently large cutoff maxPos, LLMACQ terminates and
converges on a network L such that sol(L) = sol(T ).

Proof. Assume maxPos is equal to |DX |, which is obviously

Algorithm 4: Function OneConstraint
Input: an example e; two scopes R, Y , and a Boolean

ask query
Output: a scope S such that eS is a nogood or ”exit” if a

constraint from T has been added to L
1 if ask query then
2 Answer ← E-Ask(eR);
3 if Answer ̸= yes then
4 c← BERT (Answer) ;
5 if V-Ask(c) = yes then
6 add c to L ; return “exit” ;
7 else return ∅ ;
8 if |Y | = 1 then return Y ;
9 split Y into < Y1, Y2 > such that |Y1| = ⌈|Y |/2⌉;

10 S1 ← OneConstraint(e,R ∪ Y1, Y2, true) ;
11 if S1 = “exit” then return “exit” ;
12 S2 ← OneConstraint(e,R ∪ S1, Y1, (S1 ̸= ∅)) ;
13 if S2 = “exit” then return “exit” ;
14 return S1 ∪ S2 ;

greater than |sol(T )|. Hence, the condition #pos < maxPos
in line 3 of Algorithm 3 is always satisfied and has no effect
on the correctness of LLMACQ. If BERT always fails to ex-
tract a constraint from the user’s feedback, Algorithms 3 and
4 behave respectively like Algorithms 1 and 2. If we learn a
new constraint thanks to the user’s feedback, this constraint is
added to L only if the user confirms its membership to T (Al-
gorithm 3, line 13 and Algorithm 4, line 5). In addition, this
constraint cannot be redundant with regard to the current con-
straints in L because it was inferred from a negative example
that satisfies all the constraints learned so far (Algorithm 3,
line 4). As a result, learning a constraint thanks to BERT is
equivalent to learning multiple nogoods (all the tuples forbid-
den by c) in one shot. This can only reduce the number of
queries needed to learn the target network.

6 Experiments
In this section, we first describe how our BERT component is
fine-tuned. We then introduce the benchmark problems used
to evaluate LLMACQ and to compare it to QUACQ2. Finally,
we report the results of acquiring problems with LLMACQ
and QUACQ2 and we analyze these results.

Fine-tuning BERT was done on Google Colab GPU-
accelerated environment. QUACQ2 was parameterized with
exactly the same setting as in [Bessiere et al., 2023a], no-
tably a time out of 1 hour. In LLMACQ, the solver used in
line 4 is Google OR-Tools CP-SAT. The value of the cut-
off maxPos was set to 10. The source code used to ob-
tained the results reported in this paper is available at https:
//github.com/mechqrane/LLmAcq.

6.1 Fine-Tuning and Evaluation of BERT

For our experiments we trained BERT on a vocabulary
X = {x1, . . . , x100}, D = {1, . . . , 10}, and a lan-
guage Γ = {Alldifferent,

∑val
= ,

∑val
̸= , ̸=,=, <,>,≤

,≥, ∥val, ∦val, ̸=val,=val}, where val is a numeric value
in {1, 2, . . . , 100},

∑val
= is

∑k≤10
j=1 xij = val,

∑val
̸= is∑k≤10

j=1 xij ̸= val, ∥val, ∦val, ̸=val and =val are |xi − xj | =
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{"text": "we need distinct values within X92 X10 X28 and X45", "labels": "[0, 0, 0, 

0, 0, 1, 2, 3, 0, 4]", "task_name": "token_classification"}

{"text": "we need distinct values within X92 X10 X28 and X45", "labels": "[0]", 

"task_name": "sequence_classification"}

{"text": "82 is required to match the total of X22 X20 and X39", "labels": "[10, 0, 

0, 0, 0, 0, 0, 0, 1, 2, 0, 3]", "task_name": "token_classification"}

{"text": "82 is required to match the total of X22 X20 and X39", "labels": "[1]", 

"task_name": "sequence_classification"}

{"text": "67 should be the length spanning between X10 and X9", "labels": "[3, 

0, 0, 0, 0, 0, 0, 1, 0, 2]", "task_name": "token_classification"}

{"text": "67 should be the length spanning between X10 and X9", "labels": "[9]", 

"task_name": "sequence_classification"}

Figure 2: A sample of data generated for fine-tuning BERT

val, |xi − xj | ̸= val, xi ̸= val and xi = val, respectively. It
is worth noticing that the bias that corresponds to this Γ and
that is required by QUACQ-based algorithms, would have a
size growing tremendously fast with |X|.

We used CHATGPT-4 to generate templates for the rela-
tions in Γ. A template is a sentence without its parame-
ters (i.e., variables and numerical constants). For instance,
“param1 differs from param2” is a template for the rela-
tion ̸=. The use of templates is crucial for enabling sentence
annotation via a script. Manual annotation would be highly
time-consuming because the process of annotation entails as-
signing a class to each word within the sentence. For each
relation, we asked CHATGPT-4 to generate 100 distinct tem-
plates to ensure a variety of formulations. Based on these
templates, we produced 200 sentences for each relation in Γ.
To produce a sentence for a relation, we randomly select one
of the templates of that relation. We fill that template with
randomly generated parameters. These generated parameters
are used to fill in the corresponding placeholders in the se-
lected template. The maximum number of variables allowed
in a single relation is restricted to 10. We allocated 80% of
this generated data for training purposes and the remaining
20% for validation. Figure 2 provides a sample of the an-
notated generated data. Observe that each sentence is used
both for relation identification and for parameters identifica-
tion tasks. In relation identification, the sentence is labeled
with a vector containing a single value to denote the specific
relation the sentence implies. In parameters identification, the
sentence is labeled with a vector pinpointing the parameters.
An element of the vector with value k ̸= 0 indicates that the
word at that position in the sentence represents the kth pa-
rameter of the constraint. Elements equal to zero represent
words that are not parameters.

We used the PyTorch implementation of BERT BASE and
AdamW optimizer [Loshchilov and Hutter, 2019] with a
learning rate of 10−5 and a batch size of 128. The maxi-
mum number of epochs was set to 40. All the sentences were
tokenized with the default tokenizer of BERT. The learning
curves of the combined losses and accuracy rates are shown
in Figure 3. The BERT model achieves an accuracy of 91%
on the validation data.

To be able to mimic as much as possible an interaction
with a human user, we had to use LLMACQ with data un-
seen by the fine-tuned BERT during its training phase. We
asked CHATGPT-4 to generate 20 additional templates per
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Figure 3: Training and Validation Losses and accuracies

relation that are thus distinct from those used for training
BERT. These are the templates used to generate user’s feed-
back.

6.2 Benchmark Problems
We used the following benchmark problems to evaluate the
performance of LLMACQ.

Purdey. Four families stopped by Purdey’s general store,
each to buy a different item. They all paid with different
means. The problem is to match each family with the item
they bought and how they paid for it. The target network con-
tains three Alldifferent constraints and some additional
binary constraints given in the description of the puzzle.

Zebra. The target network of the well-known Lewis Car-
roll’s zebra problem contains five Alldifferent constraints
and 14 unary and binary constraints given in the description
of the problem.

Sudoku. The Sudoku puzzle involves filling cells with
numbers from 1 to 9 in a 9× 9 grid so that each row, column,
and square does not contain twice the same number. The tar-
get network contains 27 Alldifferent constraints on rows,
columns, and squares.

Kakuro. The Kakuro puzzle is played on a grid with white
and black cells (see Figure 4). The goal is to fill the blank
cells with numbers from 1 to 9 so that the sum of the num-
bers in each horizontal (resp. vertical) block matches the clue
given in the black cell at the left (resp. top) of the block,
and no number is repeated within a block. The target net-
work contains sixteen Alldifferent constraints and six-
teen

∑val
= constraints, where val corresponds to the clue of

the given block. We used two instances of Kakuro with the
same grid and different clues. Kakuro1 has a single solution.
Kakuro93 has 93 solutions.

Regarding the evaluation of QUACQ2, the presence of
global constraints in the target networks would require the
addition of these global constraints to the language Γ. How-
ever, global constraints lead to a bias of exponential size,
which significantly hurts the performance of QUACQ2. For
the experiments with QUACQ2, we replaced all occurrences
of Alldifferent constraints by cliques of disequalities in
all target networks. Hence, Purdey, Zebra, and Sudoku can
be learned by QUACQ2 with exactly the same language and
bias as in [Bessiere et al., 2023a], the bias containing respec-
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Figure 4: Two Kakuro puzzles with same shape but different clues

tively 396, 2, 700, and 19, 440 unary and binary arithmetic
constraints. For Kakuro it is more tricky because the tar-
get network also contains

∑val
= global constraints, which, as

opposed to Alldifferent, cannot be decomposed. To be
able to capture the Kakuro problem, we add all the possi-
ble occurrences of

∑val
= with the required arity and value of

val to Γ. The two instances in Figure 4 contain blocks of
size 2 with possible sums 4, 7, 8, 9, 13, 15, blocks of size 5
with possible sums 15, 19, 34, 35, and blocks of size 6 with
possible sums 21, 28, 30, 33, 35, 39. It gives us 16 possible∑val

= constraints to add to Γ, leading to a bias containing
6
(
30
2

)
+ 4

(
30
5

)
+ 6

(
30
6

)
= 4, 135, 284

∑val
= constraints.

6.3 Results
All the results reported in Table 1 are the averages of ten runs.
We report the total number #E-Ask of extended queries
asked by LLMACQ or OneConstraint, the number
#V-Ask.M of validation queries asked within the main loop
of LLMACQ, the number #no(V-Ask.M) of such queries that
received a negative answer, and the number #V-Ask.OC of
validation queries asked by OneConstraint. #Nogoods
counts the number of nogoods learned by LLMACQ. The to-
tal #TotQ of all kind of queries is thus equal to #E-Ask +
#V-Ask.M + #V-Ask.OC. The columns ”Learned?” and
”Converged?” respectively tell us whether the network L re-
turned by LLMACQ has the same solutions as the target net-
work and whether LLMACQ has proved convergence. For
QUACQ2, we report the number #QA of queries required
to learn the target network and the number #QC required to
converge.

Let us first concentrate on the internal behavior of LL-
MACQ. We first observe that the number of extended queries
#E-Ask is higher than the number of validation queries
#V-Ask.M + #V-Ask.OC because #E-Ask contains posi-
tive answers, which do not lead to validation queries. We
also observe that the number #no(V-Ask.M) of validation
queries asked in the main loop that received a negative an-
swer is low but not null. This indicates that BERT occasion-
ally struggles to understand what the user had in mind. How-
ever, these occasional failures are generally compensated by
the call to OneConstraint before being forced to learn
a nogood. During the execution of OneConstraint, the
user’s answer may be rephrased, focused on a subset of vari-
ables, helping BERT to identify the constraint. The number
#Nogoods of times OneConstraint eventually learns a

nogood because it failed to figure out the constraint the user
had in mind is less than 1 on all the problems. In most cases
these learned nogoods are subsumed by a constraint learned
later. But we found a case in which a nogood is not sub-
sumed by any constraint. On the first two cells of the third
row of Kakuro, we observed that when the nogood (2, 2) and
the constraint

∑4
= are learned first, then the Alldifferent

constraint becomes redundant and is not learned. The nogood
(2, 2) is thus non-redundant. If the Alldifferent constraint
is learned before the nogood, then the nogood is not learned.

Regarding convergence, we observe that LLMACQ fails
to prove convergence on Sudoku and Kakuro93. The lack
of convergence on these problems is due to the pseudo-
convergence mechanism that forces LLMACQ to stop after
maxPos =10 consecutive complete examples classified posi-
tively (Algorithm 3, line 9). This mechanism prevents LL-
MACQ from entering an exhaustive enumeration of all the
solutions of the problem. For Kakuro93, which has 93 solu-
tions, removing the cutoff (or equivalently setting it to +∞)
allows LLMACQ to converge in 166.7 queries. The addi-
tional queries compared to the 83.7 in Table 1 are positive
extended queries due to the enumeration of solutions. For
Sudoku, convergence would simply be impossible as Sudoku
has more than 6 · 1021 solutions.1 Regardless of the con-
vergence condition, column ”Learned?” in Table 1 shows us
that for all problems, LLMACQ is able to learn a network
that has the same solutions as the target network. For Purdey,
Zebra, and Kakuro1, it is guaranteed by convergence. For
Kakuro93, checking equivalence between the target network
and the learned network was trivial because of the small num-
ber of solutions. For Sudoku, LLMACQ consistently learned
21 Alldifferent constraints in each of the ten runs. Fol-
lowing the results in [Demoen and de la Banda, 2014], we
were able to check that on each run, the 6 missing constraints
were redundant. Hence, the learned network is equivalent to
the target network.

Let us now compare the performance of LLMACQ and
QUACQ2. In Table 1 we see a huge difference between the to-
tal number of queries #TotQ asked by LLMACQ compared
to the number of queries #QC asked by QUACQ2. On all
problems except Purdey, LLMACQ requires orders of mag-
nitude less queries than QUACQ2. Relaxing the convergence
condition does not help QUACQ2 to improve its performance.
We see that for QUACQ2, learning the target network (#QA)
is almost as hard as proving convergence (#QC). QUACQ2
is not able to learn Kakuro1 and Kakuro93 before reaching
the 1-hour time limit whereas LLMACQ learns Kakuro1 and
Kakuro93 in less than 90 seconds (with less than 90 queries).
The failure of QUACQ2 on these two instances is due to the
huge size of the bias handled by QUACQ2. LLMACQ does
not need the construction of the bias. It only requires a lan-
guage on which BERT has been trained.

6.4 Discussion
Our experiments confirmed the assumption that when the an-
swers from the user contain more information than the sim-
ple ”yes/no” of most active constraint acquisition systems,

1https://en.wikipedia.org/wiki/Mathematics of Sudoku
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LLMACQ QUACQ2
#E-Ask #V-Ask.M #no(V-Ask.M) #V-Ask.OC #Nogoods #TotQ Converged? Learned? #QA #QC

Purdey 41.1 13.7 4.4 8.0 0.7 62.8 Yes Yes 173.2 179.6
Zebra 32.8 20.0 3.3 4.2 0 57.0 Yes Yes 565.9 572.1
Sudoku 68.9 21.4 7.5 11.1 0.4 101.4 No Yes 6945.5 6948.0
Kakuro1 52.2 24.0 5.1 10.1 0.4 86.3 Yes Yes time out time out
Kakuro93 53.1 24.0 3.7 6.6 0.3 83.7 No Yes time out time out

Table 1: LLMACQ vs QUACQ2 in terms of numbers of queries and convergence capabilities. Time out = 1 hour.

the number of queries required to learn the target network de-
creases significantly. We can object that despite the BERT
natural language interface between the user and the learner,
the user may not always be able to answer queries as infor-
mative as what we have used in our experiments. Interest-
ingly, LLMACQ has the ability to adapt to the user’s skills.
We have already seen that if the user is not able to articulate
any meaningful feedback for a negative example, LLMACQ
simply learns a nogood. There can be less extreme cases in
which the user can articulate a feedback, but not as informa-
tive as we would expect. Take for instance any problem con-
taining Alldifferent constraints. Alldifferent is one
of the few global constraints that has both the contractibility
property (i.e., if Alldifferent holds on a set S of variables,
then Alldifferent also holds on every subset of S [Ma-
her, 2009]) and the decomposability property (i.e., any de-
composition into a set of smaller Alldifferent constraints
is semantically equivalent to the original Alldifferent as
long as every pair of variables is involved in at least one of
these smaller Alldifferent constraints [Bessiere and Van
Hentenryck, 2003]). Because of these two properties, when a
negative example violates an Alldifferent constraint, the
user may be tempted to pinpoint an Alldifferent constraint
on a subset of the variables of the Alldifferent that is in
the target network.

Being uniquely composed of Alldifferent constraints,
Sudoku is the perfect benchmark to illustrate the impact of
the quality of the feedback provided by the user on the ac-
quisition process. We built the problem Sudoku-binary by
replacing the 27 Alldifferent constraints of the target net-
work of Sudoku by the equivalent 810 disequalities. The re-
sults of LLMACQ on Sudoku-binary will illustrate the case of
a user not familiar at all with constraint programming, who,
when asked to classify an example in which two cells cell i
and cell j in the same row are equal, always responds that
the example is negative because cell i and cell j have to be
different.

LLMACQ asks 1649.5 queries in average of the ten runs to
reach pseudo-convergence on Sudoku-binary. This is an order
of magnitude more than the 101.4 queries of LLMACQ on Su-
doku (see Table 1). The reason is simple: Each learned con-
straint requires at least one extended query and one validation
query, and the target network of Sudoku-binary contains 810
constraints whereas the target network of Sudoku has only
27. Over the ten runs, the network learned by LLMACQ when
pseudo-convergence is reached contains between 684 and 690
constraints. We do not know whether these networks are

equivalent to the target network of Sudoku-binary –checking
it would be extremely time-consuming– but their number of
constraints is consistent with the number of non-redundant
constraints conjectured in [Demoen and de la Banda, 2014].
A last information on the Sudoku-binary experiment is that
LLMACQ has learned zero nogoods. This is probably due to
the fact that the scope is so small that the BERT component
can more easily understand what constraint the user has in
mind.

When compared to the Sudoku experiment, the experi-
ment on Sudoku-binary confirms that the more informative
the feedback from the user (e.g., large arity Alldifferent
constraints), the better the performance of LLMACQ. By be-
ing able to handle both kinds of feedback, LLMACQ is able
to leverage the user’s skills.

7 Conclusion
We have introduced ACQNOGOODS, an active constraint ac-
quisition schema. By learning nogoods instead of constraints,
ACQNOGOODS eliminates the need to construct the bias. But
the main objective of this paper was to apply natural language
processing technology within the realm of constraint acquisi-
tion. We proposed LLMACQ, a system based on ACQNO-
GOODS that incorporates a large language model component.
LLMACQ is thus able to interpret natural language feedback
from the user. This more informative communication with
the user together with the absence of bias in extension allows
LLMACQ to learn constraints of any arity and to dramatically
decrease the number of queries required to learn the target
network. This novel active learning approach shows the po-
tential of LLMs in constraint acquisition and suggests greater
improvements by a more advanced use of LLMs.
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