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Abstract
The quantified Boolean formula (QBF) problem is
an important decision problem generally viewed as
the archetype for PSPACE-completeness. Many
problems of central interest in AI are in general
not included in NP, e.g., planning, model check-
ing, and non-monotonic reasoning, and for such
problems QBF has successfully been used as a
modelling tool. However, solvers for QBF are
not as advanced as state of the art SAT solvers,
which has prevented QBF from becoming a uni-
versal modelling language for PSPACE-complete
problems. A theoretical explanation is that QBF
(as well as many other PSPACE-complete prob-
lems) lacks natural parameters guaranteeing fixed-
parameter tractability (FPT).
In this paper we tackle this problem and consider
a simple but overlooked parameter: the number
of existentially quantified variables. This natural
parameter is virtually unexplored in the literature
which one might find surprising given the general
scarcity of FPT algorithms for QBF. Via this pa-
rameterization we then develop a novel FPT al-
gorithm applicable to QBF instances in conjunc-
tive normal form (CNF) of bounded clause length.
We complement this by a W[1]-hardness result for
QBF in CNF of unbounded clause length as well
as sharper lower bounds for the bounded arity case
under the (strong) exponential-time hypothesis.

1 Introduction
The quantified Boolean formula (QBF) problem
is the decision problem of verifying a formula
Q1x1 . . . Qnxn.φ(x1, . . . , xn), where φ(x1, . . . , xn) is
a propositional formula and Qi ∈ {∀, ∃} for each i.
Throughout, we write QBFSAT (respectively QBF-DNF)
for the subproblem restricted to formulas in conjunctive
normal form (respectively disjunctive normal form), and
d-QBFSAT for the problem where clauses have maximum
size d ≥ 1. From a theoretical angle, the QBF problem
serves as a foundational example of PSPACE-completeness,
and by restricting the quantifier alternations, we get exam-
ples of complete problems for any class in the polynomial

hierarchy. From a more practical point of view, the field
of applied QBF solving has developed on the shoulders of
SAT solving, which has seen tremendous advances in the last
decade [Fichte et al., 2023a]. Arguably, the raison d’etre be-
hind SAT solving is not only to solve a specific NP-complete
problem faster than exhaustive search, but to provide a
combinatorial framework applicable to any problem which
can be reduced to SAT. This naturally includes any problem
in NP but if one considers stronger reductions than Karp
reductions (e.g., by allowing a superpolynomial running time
or by viewing the SAT solver as an oracle) more problems
fall under the umbrella of SAT. However, this approach is
not always optimal, and for many problems of importance
in artificial intelligence, e.g., planning, model checking, and
non-monotonic reasoning [Shukla et al., 2019], this approach
is not ideal since the best reductions in the literature incur
an exponential overhead. These problems are instead more
naturally formulated via QBF. However, this comes with
the downside that QBF solvers, despite steady advances,
are not nearly as advanced as their SAT brethren. For more
information about applied QBF solving we refer the reader
to the handbook by Biere et al. [2021].

To bridge the gap between SAT and QBF solving we need
algorithmic breakthroughs for the latter. In this paper we
analyze QBF from a theoretical perspective and are there-
fore interested in obtaining unconditionally improved algo-
rithms. To analyze the complexity of QBF we use the influ-
ential paradigm of parameterized complexity where the goal
is to identify structural properties of instances, represented
by natural numbers called parameters, such that one can ef-
fectively solve instances with bounded parameter size. More
formally, for every instance I of a computational problem we
associate a parameter k ∈ N with it and then we are primar-
ily interested in algorithms with a running time bounded by
f(k) · poly(|I|) for a computable function f : N → N de-
pends on k and a polynomial function poly depends on the
length |I| of the input I . Such algorithms are said to be fixed-
parameter tractable (FPT). Thus, while f is generally going
to be superpolynomial, an FPT algorithm may still be very
competitive in practice if the parameter is sufficiently small.
For problems in NP there exists a wealth of results [Cygan et
al., 2015], but for PSPACE-complete problems the landscape
is rather scarce in comparison since there are fewer natural
parameters to choose from. For example, the go-to parameter
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for NP problems is tree-width, which measures how close a
graph is to being a tree, and which is typically sufficient to
produce an FPT algorithm. But this fails for QBF where it is
even known that QBF is PSPACE-complete for constant pri-
mal tree-width [Atserias and Oliva, 2014]. Here, the situation
becomes more manageable if one simultaneously bounds e.g.
the number of quantifier alternations [Chen, 2004] but for the
general QBF problem the few FPT results that exists are pri-
marily with respect to more exotic parameters such as prefix
pathwidth [Eiben et al., 2020] and respectful treewidth [At-
serias and Oliva, 2014] which takes the ordering of the quan-
tifiers into account. Two interesting counter examples are
(1) the FPT algorithm parameterized by primal vertex cover
number by [Eiben et al., 2020], further optimized and sim-
plified by [Lampis and Mitsou, 2018], and (2) the back-
door approach in [Samer and Szeider, 2009] which general-
izes the classical tractable fragments of QBF in an FPT set-
ting. Moreover, very recently, tractability has been shown
for two parameters that fall between vertex cover number and
treewidth [Fichte et al., 2023b]. Thus, while FPT results for
QBF and related problems exist, they are comparably few in
number and generally defined with respect to more compli-
cated structural properties. Do simple parameters not exist,
or have we been investigating the wrong ones?

In this paper we demonstrate that a natural (and previously
overlooked) parameter does exist: the number of existentially
quantified variables. Thus, we bound the number of exis-
tentially quantified variables but otherwise make no restric-
tions on the prefix. While quantifier elimination techniques
have been an important tool ever since the early days of QBF
solving [Ayari and Basin, 2002; Biere, 2004] (see also Janota
& Marques-Silva [2015] for a more recent discussion and a
comparison to Q-resolution) the predominant focus has been
to expand universal quantifiers since the removal of universal
quantifiers produces instances that can be solved with classi-
cal SAT techniques (however, methods for expanding existen-
tial quantifiers have also been tried in practice [Bloem et al.,
2021]). This is, for example, made explicit by Szeider & de
Haan [2014] who prove that QBF-DNF parameterized by the
number of universally quantified variables is FPT-reducible
to SAT (parameterized by the number of all variables). How-
ever, they only prove para-NP-completeness of the problem
which in the world of parameterized complexity is a far cry
away from FPT. Conversely, we show that concentrating on
existential variable elimination is much more lucrative since
in this case one can construct an FPT algorithm once all ex-
istential variables have been removed. Let us also remark
that if a QBFSAT instance contains k existential variables and
n− k universal variables, then the combination n is not a rel-
evant parameter: it makes the problem technically FPT but
there are very few applications where one would expect the
total number of variables to be bounded. Moreover, while
QBFSAT for arbitrary but constant quantifier depth admits a
moderately improved algorithm with a running time of the
form 2n−nΩ(1) [Santhanam and Williams, 2013], not even 3-
QBFSAT restricted to universal followed by existential quan-
tifiers admits an exponentially improved 2εn ·poly(|ϕ|) algo-
rithm for ε < 1 under the so-called strong exponential-time

hypothesis [Calabro et al., 2013].
After having defined the basic notions (Section 2), we ob-

tain our major results in Section 3 as follows. First, given
an instance Q1x1 . . . ∃xi . . . Qnxnϕ(x1, . . . , xn) we can re-
move the existential quantifier for xi by creating a disjunction
of the two subinstances (with fresh variables) obtained by fix-
ing xi to 0 or 1. This extends to a quantifier elimination pre-
processing scheme which reduces to the problem of checking
whether a disjunction of k formulas in d-CNF is a tautology
or not. We call this problem OR-CNF TAUTOLOGY and then
construct an FPT algorithm by converting it to the problem of
finding an independent set in a certain well-structured graph
(CLAUSE-GRAPH INDEPENDENT SET). The latter problem
has a strong combinatorial flair and we manage to construct a
kernel with at most kd!((k − 1)d + 1)d vertices via the sun-
flower lemma of Erdös & Rado [1960]. Put together, this re-
sults in an FPT algorithm with a running time of 2O(k2k) · |ϕ|
for QBFSAT with constant clause size when parameterized
by the number of existentially quantified variables. At a first
glance, this might not look terribly impressive compared to
the naive 2n · |ϕ| algorithm obtained by branching on n − k
universal and k existential quantifiers, but we stress that the
FPT algorithm is suitable for applications where the total
number of existentially quantified variables is kept relatively
small. Under this constraint our algorithm shows that one can
effectively ignore the cost of universally quantified variables
and solve the instance in polynomial time. Via an FPT reduc-
tion we also demonstrate (in Section 4) that our FPT result
straightforwardly can be extended to the more general prob-
lem quantified constraint satisfaction where variables take
values in arbitrary finite domains.

In Section 5 we show that the clause size dependency in
our FPT algorithm is necessary under the conjecture that FPT
̸= W[1], which is widely believed conjecture in parameter-
ized complexity. Specifically we show that QBFSAT, when
parameterized by the number of existentially quantified vari-
ables (but not the arity), is W[1]-hard by reducing from the
MULTIPARTITE INDEPENDENT SET problem. Moreover, un-
der the Exponential Time Hypothesis (ETH), the same reduc-
tion rules out algorithms with running time f(k) · 2o(2k) for
every computable function f : N → N. We then proceed to
establish a sharper lower bound under the (Strong) ETH for
the specific case of clause size 3. First, we have an easy 2o(k)

lower bound for 3-QBFSAT (under the exponential-time hy-
pothesis) since 3-SAT can be viewed as a special case of
3-QBFSAT. However, under the strong exponential-time hy-
pothesis we prove a markedly stronger bound: there is no
constant c such that 3-QBFSAT (even for only two quantifier
blocks) is solvable in ck time, i.e. the problem is not solvable
in 2O(k) time. Thus, while our 2O(k2k) algorithm likely can
be improved to some extent, we should not hope to obtain a
2O(k) algorithm. This proof is based on an interesting ob-
servation: any instance with comparably few number of uni-
versally quantified variables can be solved by enumerating all
possible assignments to the universal variables and then solv-
ing the remaining part with a 3-SAT algorithm. Thus, as also
remarked by Calabro et al. [2013], instances with few exis-
tential variables are in a certain sense harder, which makes
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our FPT algorithm in Section 3 all the more surprising.
We close the paper with a discussion in Section 6. Most

importantly, our FPT algorithm shows tractability of new
classes of previously hard QBFs, and it would be interest-
ing to investigate whether similar parameters could be used
to study other hard problems outside NP. A promising can-
didate is the NEXPTIME-complete problem obtained by ex-
tending Boolean formulas with Henkin quantifiers, resulting
in the depedency QBF (DQBF) formalism.
Statements whose full proofs are omitted due to space con-
straints are marked with ⋆.

2 Preliminaries
In this section we briefly cover the necessary background on
parameterized complexity and quantified Boolean formulas.
We assume familiarity with the basics of graph theory, cf. [Di-
estel, 2016]. We use the notation [n] for the set {1, . . . , n} for
every n ∈ N.
Computational Complexity. We follow [Downey et al.,
2013] and [Fomin et al., 2019] in our presentation. Let Σ
be a finite alphabet. A parameterized problem L is a subset
of Σ∗ × N. The problem L is fixed-parameter tractable (or,
in FPT) if there is an algorithm deciding whether an instance
(I, k) ∈ Σ∗ × N is in L in time f(k) · |I|c, where f is some
computable function and c is a constant independent of (I, k).

Let L,L′ ⊆ Σ∗ × N be two parameterized problems. A
mapping P : Σ∗ × N → Σ∗ × N is a fixed-parameter (FPT)
reduction from L to L′ if there exist computable functions
f, p : N → N and a constant c such that the following condi-
tions hold:

• (I, k) ∈ L if and only if P (I, k) = (I ′, k′) ∈ L′,
• k′ ≤ p(k), and
• P (I, k) can be computed in f(k) · |I|c time.

Let L ⊆ Σ∗×N be a parameterized problem. A kernelization
(algorithm) for L is an algorithm that takes (I, k) ∈ Σ∗ × N
as input and in time polynomial in |(I, k)|, outputs (I ′, k′) ∈
Σ∗ × N such that: (I, k) ∈ L if and only if (I ′, k′) ∈ L, and
|I ′|, k′ ≤ h(k) for some computable function h. The out-
put (I ′, k′) of the kernelization algorithm is called a kernel.
Clearly, if L is decidable and admits a kernel, L is in FPT, and
the converse also holds (see e.g. [Fomin et al., 2019, Theo-
rem 4]).

The class W [1] contains all problems that admit FPT re-
ductions from INDEPENDENT SET parameterized by the so-
lution size, i.e. the number of vertices in the independent
set. Under the standard assumption that FPT ̸= W[1], we can
show that a problem is not fixed-parameter tractable by prov-
ing its W[1]-hardness, i.e. by providing an FPT reduction
from INDEPENDENT SET to the problem. The class XP con-
tains all parameterized problems that can be solved in time
nf(k) for instances with input size n, parameter k and some
computable function f .

For sharper lower bounds, stronger assumptions are some-
times necessary. Here, we will primarily consider the
exponential-time hypothesis which states that the 3-SAT
problem is not solvable in subexponential time when parame-
terized by the number of variables n or the number of clauses

m. To make this more precise, for d ≥ 3 let cd denote the infi-
mum of all constants c such that d-SAT is solvable in 2cn time
by a deterministic algorithm; then the ETH states that c3 > 0.
The strong exponential-time hypothesis (SETH) additionally
conjectures that the limit of the sequence c3, c4, . . . tends to
1, which in particular is known to imply that the satisfiabil-
ity problem for clauses of arbitrary length (CNF-SAT) is not
solvable in 2cn time for any c < 1 [Calabro et al., 2009].

Quantified Boolean Formulas. Boolean expressions, for-
mulas, variables, literals, conjunctive normal form (CNF)
and clauses are defined in the standard way (cf. [Biere et
al., 2021]). We treat 1 and 0 as the truth-values “true” and
“false”, respectively, and clauses in CNF as sets of literals.
We will assume that no clause contains a literal twice or a lit-
eral and its negation, and no clause is repeated in any formula.
A quantified Boolean formula is of the form Q.ϕ, where
Q = Q1x1 . . . Qnxn with Qi ∈ {∀, ∃} for all 1 ≤ i ≤ n
is the (quantifier) prefix, x1, . . . , xn are variables, and ϕ is a
propositional Boolean formula ϕ on these variables called the
matrix. If Qi = ∀, we say that xi is a universal variable, and
if Qi = ∃, we say that xi is an existential variable.

For a Boolean formula ϕ, a variable x and value b ∈ {0, 1},
define ϕ[x = b] to be the formulas obtained from ϕ by re-
placing every occurrence of x with b. The truth value of a
formula Q.ϕ is defined recursively. Let Q = Q1x1 . . . Qnxn

and Q′ = Q2x2 . . . Qnxn. Then Q.ϕ is true if

• n = 0 and ϕ is a true Boolean expression, or

• Q1 = ∃ and Q′.ϕ[x1 = 0] or Q′.ϕ[x1 = 1] is true, or

• Q1 = ∀ and Q′.ϕ[x1 = 0] and Q′.ϕ[x1 = 1] are true.

Otherwise, Q.ϕ is false.
A formula Q.ϕ is a QCNF if ϕ is in CNF, and a Qd-CNF if

ϕ is in d-CNF, i.e. a CNF where every clause has size at most
d. For a clause C in a QCNF, we use C∃ and C∀ to denote
the restriction of C to existential and universal variables, re-
spectively. If ϕ is in CNF, then ϕ[x = 0] can be simplified
by removing every clause containing literal x, and removing
literal x from the remaining clauses. Analogously, ϕ[x = 1]
is simplified by removing every clause containing the literal
x, and removing the literal x from the remaining clauses.

Let Q.ϕ be a formula such that Q1 = · · · = Qi = ∀ and
Qi+1 = · · · = Qn = ∃ for some 1 ≤ i ≤ n. Then we write
that Q.ϕ is a ∀∃BF, and replace BF by CNF and d-CNF if ϕ
is in CNF and d-CNF, respectively.

Following the convention in the literature, we write QBF-
SAT for the problem of deciding whether a QCNF is true, and
by d-QBFSAT, ∀∃QBFSAT and ∀∃d-QBFSAT we denote the
same problem restricted to Qd-CNF, ∀∃CNF and ∀∃d-CNF
formulas, respectively.

3 Algorithms for QBFSAT
We show that QBFSAT parameterized by the number of exis-
tential variables and the maximum size of any clause is linear-
time fixed-parameter tractable, i.e., with a running time linear
in the size of formula. The algorithm is based on a chain of re-
ductions involving two novel natural problems and for which
we provide corresponding fixed-parameter algorithms along
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the way. We begin by defining the OR-CNF TAUTOLOGY
problem.

OR-CNF TAUTOLOGY

INSTANCE: A set of variables X and d-CNF formulas
ϕ1, . . . , ϕk on X .

QUESTION: Is ϕ1 ∨ · · · ∨ ϕk a tautology?

The following lemma follows via an application of quanti-
fier elimination.

Lemma 1 (⋆). There is an algorithm that takes a Qd-CNF
Q.ϕ with k existentially quantified variables, and in time
O(2k|ϕ|) constructs an instance I of OR-CNF TAUTOLOGY
with 2k d-CNF formulas of size at most |ϕ| such that Q.ϕ
holds if and only if I is a yes-instance.

As the next step, we provide a polynomial-time reduction
from OR-CNF TAUTOLOGY to the problem of finding an in-
dependent set of size k in a well-structured graph. For a set of
variables X and integer d, let Cd

X be the set of all clauses with
exactly d distinct literals over variables in X . A pair (G,λ)
is a k-partite d-clause graph over X if G is an undirected k-
partite graph with V (G) = V1⊎· · ·⊎Vk, and λ : V (G) → Cd

X
is a function, injective on Vi for every i ∈ [k]. Moreover, two
vertices u ∈ Vi and v ∈ Vj in G are connected by an edge if
and only if i ̸= j and λ(u) and λ(v) clash, i.e. they contain a
pair of opposite literals. The problem of finding an indepen-
dent set in such a graph can be formally defined as follows.

CLAUSE-GRAPH INDEPENDENT SET

INSTANCE: A k-partite d-clause graph (G,λ) over X .
QUESTION: Is there an independent set S ⊆ V (G)

such that |S ∩ Vi| = 1 for all 1 ≤ i ≤ k?

In the following we will use λ−1 as the inverse of λ, which is
well-defined if the part Vi is clear from the context since λ is
injective on every part Vi. We also use λ(S) to denote the set
{λ(v) : v ∈ S} for every set S ⊆ V .

Lemma 2. There is a linear-time reduction that takes an in-
stance I = (X, {ϕ1, . . . , ϕk}) of OR-CNF TAUTOLOGY,
where each ϕi is a d-CNF, and produces an instance I ′ =
(G,X, λ) of CLAUSE-GRAPH INDEPENDENT SET where
(G,λ) is a k-partite d-clause graph over X with the i-th part
having at most |ϕi| vertices such that I is a no-instance if and
only if I ′ is a yes-instance.

Proof. Given an instance I of OR-CNF TAUTOLOGY, con-
struct the k-partite d-clause graph (G,λ) over X by letting
V (G) = V1⊎· · ·⊎Vk, where Vi contains one vertex v for ev-
ery clause C in ϕi, and setting λ(v) = C; by the assumption
that all clauses in ϕi are distinct, this definition ensures that
λ is injective on every part Vi. For every 1 ≤ i < j ≤ n and
every u ∈ Vi and v ∈ Vj , add an edge {u, v} to G if clauses
λ(u) and λ(v) clash. To ensure that every clause λ(v) con-
tains exactly d literals, we add d− 1 new variables to X and
add d−|λ(v)| of those positively to the clause λ(v). Note that
this does not modify the edge set of the graph because all new

u1

u2

u3

u4

v1

v2

v3

w1

w2

w3

z1

z2

z3

z4

Figure 1: Let X = {x1, x2, . . . , x6} be a set of variables. Let
ϕ1 = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x5∨x6)∧(x3∨x2∨x5),
ϕ2 = (x2 ∨ x3 ∨ x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x6), ϕ3 =
(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) ∧ (x3 ∨ x4 ∨ x5), and ϕ4 =
(x1∨x2∨x5)∧(x3∨x4∨x6)∧(x3∨x4∨x6)∧(x4∨x5∨x6). The
vertices u1, . . . , u4 corresponds to the first, second, third, and fourth
clauses of ϕ1, respectively. Analogously, we have drawn vertices for
clauses in ϕ2, ϕ3 and ϕ4. All the edges incident on u1 are drawn in
the figure. The set {u3, v3, w1, z3} is an independent set the graph
and the assignment α(x1) = α(x2) = α(x6) = 1 and α(x3) =

α(x4) = α(x5) = 0 implies that
∨4

i=1 ϕi is not a tautology.

variables only occur positively. The ideas behind the reduc-
tion is illustrated in Figure 1. Clearly, this reduction requires
polynomial time.

For correctness, first assume that I is a no-instance, i.e.
ϕ1 ∨ · · · ∨ ϕk is not a tautology. Then there exists an assign-
ment α : X → {0, 1} that falsifies every formula ϕi. For
each 1 ≤ i ≤ k, let Ci be a clause in ϕi falsified by α, and
let vi ∈ Vi be the vertex of G such that λ(vi) = Ci. Observe
that α satisfies

∧k
i=1 ¬Ci =

∧
ℓ∈C1∪...Ck

ℓ, hence no pair of
clauses Ci and Cj clash. By construction of G, this implies
that there is no edge between vi and vj for any i and j, i.e.
{vi : 1 ≤ i ≤ k} is an independent set in G.

Now suppose I ′ is a yes-instance, i.e. G contains an in-
dependent set S = {v1, . . . , vk}, where vi ∈ Vi for all
1 ≤ i ≤ k. By construction of (G,λ), no two clauses λ(vi)
and λ(vj) clash. Observe that ϕ′ =

∧k
i=1 ¬λ(vi) is a con-

junction of literals, and it contains no two opposite literals,
hence ϕ′ is satisfiable. Any assignment α′ : X → {0, 1} that
satisfies ϕ′ falsifies at least one clause in every formula ϕi,
namely λ(vi). Thus, α′ falsifies ϕ1 ∨ · · · ∨ ϕk, proving that it
is not a tautology.

The following theorem shows that CLAUSE-GRAPH INDE-
PENDENT SET is in XP parameterized by k only.
Theorem 3 (⋆). CLAUSE-GRAPH INDEPENDENT SET can
be solved in time O((maxki=1 |Vi|)kd

(
k
2

)
) and is therefore in

XP parameterized by k.
Now we will show that CLAUSE-GRAPH INDEPENDENT

SET is in FPT parameterized by k and d. To this end, we will
use the sunflower lemma. For a family F of sets over some
universe U , we say that a subset S ⊆ F is a sunflower if there
is a subset C ⊆ U such that F∩F ′ = C for every two distinct
F, F ′ ∈ S , i.e. all pairs of distinct sets in S have a common
intersection C, which we also call the core of the sunflower.
If S is a sunflower with core C and F ∈ S , then we call F \C
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the petal of F . Observe that the petals {F \ C | F ∈ S} of a
sunflower are pairwise disjoint.

Lemma 4 ([Erdös and Rado, 1960]). Let F be a family of
subsets of a universe U , each of size exactly b, and let a ∈ N.
If |F| ≥ b!(a− 1)b, then F contains a sunflower S of size at
least a. Moreover, S can be computed in time O(|F|d).

For a graph G and a vertex v, we write G − v to denote
the graph obtained from G by deleting the vertex v with all
incident edges.

Lemma 5. Let (G,λ) be a k-partite d-clause graph, and
Vi be one of the parts. If the family λ(Vi) contains a sun-
flower S of size at least s = (k − 1)d + 2, then, for every
v with λ(v) ∈ S , instances (G,λ,X) and (G − v, λ,X) of
CLAUSE-GRAPH INDEPENDENT SET are equivalent.

Proof. Let S be the sunflower in λ(Vi) of size at least s, let
F ∈ S be an arbitrary clause in S , and v = λ−1(F ) be
the corresponding vertex in G. We claim that v satisfies the
statement of the lemma, i.e. (G,λ) has an independent set S
with |S∩Vi| = 1 if and only if so does (G−v, λ). The reverse
direction of the claim is clear since G− v is a subgraph of G.

Towards showing the forward direction, let S be a solu-
tion to (G,λ,X). If v /∈ S, then S is also a solution to
(G − v, λ,X). Now suppose that v ∈ S. We claim that
there exists a clause F ′ ∈ S such that F ′ does not clash
with any clause λ(u) for u ∈ S \ {v}, so we can replace v
with v′ = λ−1(F ′) in the independent set S. To this end, let
S′ = S \ v and let C be the core of S . Note that every clause
contains exactly d literals, therefore it can share variables
with the petals of at most d clauses in S . Thus, the clauses in
λ(S′) share variables with at most |S′|d = (k− 1)d petals of
S in total. Since |S \ {F}| ≥ s− 1 = (k− 1)d+1, there is a
clause F ′ ∈ S \ {F} whose petal F ′ \ C shares no variables
with any clause in λ(S′). Moreover, the core C ⊆ F does
not clash with any clause in λ(S′) since v = λ−1(F ) is not
adjacent to any vertex in S′. Therefore, v′ = λ−1(F ′) is not
adjacent to any vertex in S′ and S′ ∪ {v′} is an independent
set in G− v.

Theorem 6. CLAUSE-GRAPH INDEPENDENT SET has a
kernel with at most d!(s − 1)d − 1 vertices in every part
Vi, where s = (k − 1)d + 2. Note that this implies that
CLAUSE-GRAPH INDEPENDENT SET has a kernel of size
at most dkd!(s − 1)d. The kernel can be computed in time
O(min{d!(s− 1)dd|V (G)|, d|V (G)|2}).

Proof. Let (G,λ) be a k-partite d-clause graph with parts
V1, . . . , Vk over some variables X . If |Vi| < d!(s − 1)d for
every i ∈ [k], where s = (k − 1)d + 2, then the instance
is already kernelized. So suppose that |Vi| ≥ d!(s − 1)d.
By Lemma 4, λ(Vi) has a sunflower S of size at least s,
and S can be found in polynomial time. Note that by tak-
ing any subset V ′ ⊆ λ(Vi) of size at least d!(s − 1)d, S
can be found in time O(min{d!(s − 1)dd, d|V (G)|}). Then,
by Lemma 5, we can remove any vertex in λ−1(S) from
Vi and obtain an equivalent but smaller instance. There-
fore, applying this procedure exhaustively, we obtain in poly-
nomial time an equivalent instance of CLAUSE-GRAPH IN-
DEPENDENT SET such that |Vi| < d!(s − 1)d for every

1 ≤ i ≤ k. Notice that we need to apply the above proce-
dure O(|V (G)|) times and hence the running time is at most
O(min{d!(s− 1)dd|V (G)|, d|V (G)|2}).

Corollary 7. CLAUSE-GRAPH INDEPENDENT SET is fixed-
parameter tractable parameterized by k + d. In particular, it
can be solved in time (dk)O(dk)|V (G)|.

Proof. The statement that CLAUSE-GRAPH INDEPENDENT
SET is fixed-parameter tractable parameterized by k + d fol-
lows immediately from Theorem 6. Let (G,λ) be a k-partite
d-clause graph with parts V1, . . . , Vk over some variables
X . First we can employ Theorem 6 to obtain the kernel
(G′, λ′) with parts V ′

1 , . . . , V
′
k in time d!(s − 1)dd|V (G)|,

where s = (k−1)d+2, that is equivalent to (G,λ) and satis-
fies |V ′

i | ≤ d!(s−1)d. We can then use Theorem 3 to solve the
instance (G′, λ′) of CLAUSE-GRAPH INDEPENDENT SET

in time O((maxki=1 |V ′
i |)kd

(
k
2

)
) = O((d!)k(s − 1)dkd

(
k
2

)
),

which is bounded from above by (dk)O(dk). Altogether, we
therefore obtain (dk)O(dk) + O(d!(s − 1)dd|V (G)|), which
is bounded by (dk)O(dk)|V (G)| as the running time of our
algorithm.

Combining Lemma 2 and Lemma 1, we obtain:
Corollary 8. There is a reduction that takes a Qd-CNF Q.ϕ
with k existentially quantified variables, and in time O(2k|ϕ|)
produces an instance I ′ = (G,λ,X) of CLAUSE-GRAPH
INDEPENDENT SET where (G,λ) is a 2k-partite d-clause
graph over X with each part having at most |ϕ| vertices such
that I is a no-instance if and only if I ′ is a yes-instance.

We now show that QBFSAT with k existential variables
and clauses of size d is in FPT parameterized by k + d.
Theorem 9. QBFSAT is fixed-parameter tractable parame-
terized by the number k of existential variables plus the max-
imum size d of any clause. In particular, there is an algorithm
solving this problem in time (2kd)O(2kd)|ϕ| for a QCNF for-
mula Q.ϕ.

Proof. Let Φ = Q.ϕ be the given QBFSAT formula with
k existential variables having clauses of size at most d. We
first use Corollary 8 to obtain in time O(2k|ϕ|) the 2k-partite
d-clause graph (G,λ) with parts V1, . . . , V2k such that Φ is
false if and only if (G,λ) has an independent set S with
|S ∩ Vi| = 1. We then use Corollary 7 to decide in time
(d2k)O(d2k)|V (G)| = (d2k)O(d2k)2k|ϕ| = (d2k)O(d2k)|ϕ|
whether (G,λ) has an independent set S with |S ∩ Vi| = 1.
If so, we return that Φ is false, otherwise we return that Φ is
true. Altogether the total runtime of the algorithm is at most
(d2k)O(d2k)|ϕ|.

Last, via a straightforward algorithm we remark that QBF-
SAT is in XP parameterized by the number of existential vari-
ables. As we will see in Section 5 this problem is unlikely to
admit an FPT algorithm unless FPT=W[1].
Theorem 10 (⋆). QBFSAT is in XP parameterized by the
number k of existential variables. In particular, QBFSAT can
be solved in time O(m2kd

(
k
2

)
+ 2k|ϕ|) for a QCNF-formula

Q.ϕ with m clauses.
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4 The QCSP Problem
We now consider the finite-domain generalization of QBF-
SAT known as the quantified constraint satisfaction prob-
lem (QCSP). An instance of the constraint satisfaction prob-
lem (CSP) (without quantifiers) is (X,D,C), where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn}
is a set of domains (of values) for each variable, and
C = {C1, . . . , Cm} is a set of constraints, where Cj =
Rj(xj1 , . . . , xjar(Rj)

), Rj ⊆ Dj1 ×· · ·×Djar(Rj)
is a relation

of arity ar(Rj), and 1 ≤ j1, . . . , jar(Rj) ≤ n. The instance is
satisfiable if there exists an assignment α : X →

⋃n
i=1 Di of

values to the variables such that α(xi) ∈ Di for all i ∈ [n],
and (α(xj1), . . . , α(xjar(Rj)

)) ∈ Rj for all constraints in
j ∈ [m]. Let d = maxni=1 |Di| be the largest domain size and
r = maxmj=1 ar(Rj) be the maximum arity of a constraint in
C. For example, 3-SAT can be cast as CSP with d = 2 (every
variable is assigned a Boolean value) and r = 3 (every clause
is a ternary constraint).

Parameterized complexity of the CSP with respect to n,
d and r is well-understood [Samer and Szeider, 2010]: the
problem is in FPT parameterized by n+d, W[1]-hard param-
eterized by n+r, in XP parameterized by n, and paraNP-hard
parameterized by d+ r.

QCSP is a generalization where the input additionally
comes with a set of quantifiers Q = (Q1, . . . , Qn). The basic
notions in Section 2 easily extends to the CSP setting and we
write QCSP for the (PSPACE-complete) decision problem of
verifying whether an instance Q.ϕ is true or false, where ϕ is
a CSP instance over the variables occurring in the quantifier
prefix Q. Naturally, if a variable xi has domain Di then we
in the context of a universal quantifier require that the sub-
sequent formula is true for all values in Di, and for at least
one value in Di if the quantifier is existential. We manage to
generalize Theorem 9 to QCSP.

Theorem 11 (⋆). QCSP is FPT when parameterized by the
number of existentially quantified variables, the domain, and
the maximum arity of any relation.

It is worth remarking that by Samer & Szeider [Samer and
Szeider, 2010] and the forthcoming Theorem 15 each of the
above three conditions are necessary in the sense that we ob-
tain a W[1]-hard problem if any condition is dropped.

5 Lower Bounds
We proceed by complementing our positive FPT result by
two strong lower bounds. We begin by ruling out an FPT
algorithm for ∀∃QBFSAT parameterized by the number of
existential variables for unbounded clause size via a reduc-
tion from the W[1]-complete problem MULTIPARTITE IN-
DEPENDENT SET. Using the following auxiliary result, we
strengthen this result even further under the ETH.

Theorem 12 ([Chen et al., 2006], cf. Theorem 14.21 in [Cy-
gan et al., 2015]). Assuming the ETH, there is no algorithm
that decides if a graph on n vertices has an independent set
of size k in f(k) · no(k) time for any computable function f .

For our purposes, it is more convenient to work with the
following variant of the INDEPENDENT SET problem. In

MULTIPARTITE INDEPENDENT SET, an instance is a graph
with the vertex set partitioned into k parts, and the question is
whether the graph contains an independent set with one ver-
tex from each part. Using a well-known reduction (cf. Sec-
tion 13.2 in [Cygan et al., 2015]) that takes an instance (G, k)
of INDEPENDENT SET and constructs in polynomial time an
equivalent instance of MULTIPARTITE INDEPENDENT SET
with |V (G)|k vertices and the same parameter k, we obtain
the following corollary.

Corollary 13 (⋆). Assuming the ETH, there is no algorithm
that solves MULTIPARTITE INDEPENDENT SET in f(k) ·
no(k) time for any computable function f .

Lemma 14. There is a polynomial-time reduction that takes
an instance (G, k) of MULTIPARTITE INDEPENDENT SET
and produces in polynomial time a ∀∃CNF formula with
⌈log2(k)⌉ existential variables such that (G, k) is a yes-
instance if and only if the formula is false.

Proof. Let G be a graph with vertex set V1 ⊎ · · · ⊎ Vk. It will
be convenient to assume that k is a power of two. To this end,
let κ = ⌈log2(k)⌉, and add 2κ − k new parts to V (G), each
consisting of one isolated vertex. Clearly, the new instance
is equivalent to the original one, so we assume from now on
that k = 2κ. Enumerate vertices in each part of the graph.
For convenience, we refer to vertex j in part Vi as (i, j).

We will construct a formula ∀Y ∃X.ϕ on variables Y =
{yv : v ∈ V (G)} and X = {x1, . . . , xκ} that is false if
and only if (G, k) has an independent set with exactly one
vertex from every part. To this end, enumerate all functions
α1, . . . , αk from X to {0, 1}. For every vertex v = (i, j) ∈
V (G′), add a clause Cv to ϕ with the following literals:

• yv and yu for all u ∈ V (G) \ Vi such that {u, v} ∈
E(G),

• xℓ if αi(xℓ) = 0 and xℓ if αi(xℓ) = 1 for all ℓ ∈ [k].

This completes the construction.
Towards correctness, first assume that S is an independent

set in G with one vertex from each Vi. Consider the set of
clauses CS = {C∀

v : v ∈ S}; recall that C∃ and C∀ for a
clause C denotes the restriction of C to existential and uni-
versal variables, respectively. We claim that there is an as-
signment that falsifies every clause in CS . It suffices to show
that no pair of clauses in CS clashes, i.e. contain opposite
literals. Consider two clauses C∀

u , C
∀
v ∈ CS . Since S is an

independent set, u and v are not adjacent, so C∀
u does not

contain yv and C∀
v does not contain yu. Furthermore, both

C∀
u\{yu} and C∀

v \{yv} only contain negative literals, so they
do not clash either. Now, let τ : Y → {0, 1} be an assign-
ment that falsifies all clauses in CS . We claim that ∃X.ϕ[τ ] is
false, i.e. ϕ[τ ] is not satisfiable. Indeed, for every assignment
αi : X → {0, 1}, there is a vertex v = (i, j) ∈ S in G, and
hence a clause C∃

v remains in ϕ[τ ], which excludes αi as the
satisfying assignment. Thus, all assignments are excluded,
and ∃X.ϕ[τ ] is false.

For the other direction, suppose ∀Y ∃X.ϕ is false. Then
there exists an assignment τ ′ : Y → {0, 1} such that
∃X.ϕ[τ ′] is false, i.e. ϕ[τ ′] is not satisfiable. By construction,
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every clause of ϕ[τ ′] is a κ-clause with literals over all vari-
ables x1, . . . , xκ. Each such clause excludes exactly one sat-
isfying assignment, so ϕ[τ ′] contains exactly 2κ = k clauses.
Thus, for every assignment αi : X → {0, 1}, there exists a
clause Cv where v ∈ Vi and τ ′ falsifies C∀

v . Pick one such
clause Cv for every i, and let vertices v form a set S. We
claim that S is an independent set in G. Suppose towards
contradiction that u, v ∈ S and {u, v} ∈ E(G). By construc-
tion, yu ∈ C∀

u and yu ∈ C∀
v , so τ ′ cannot falsify both of them,

which contradicts our choice of u, v.

Theorem 15. ∀∃QBFSAT is W[1]-hard parameterized by
the number of existential variables. Moreover, assuming the
ETH, this problem cannot be solved in f(k) · |ϕ|o(2k) time
for any computable function f : N → N, where Q.ϕ is the
∀∃CNF with k existential variables.

Proof. W[1]-hardness is immediate from Lemma 14 and the
fact that MULTIPARTITE INDEPENDENT SET is W[1]-hard.
Moreover, if there is an algorithm deciding whether a ∀∃CNF
with matrix ϕ and κ existential variables is true or false in
f(κ) · |ϕ|o(2κ) time for any computable function f , then it can
be combined with the reduction of Lemma 13 to solve MUL-
TIPARTITE INDEPENDENT SET in f(⌈log2 k⌉) · 2o(k) time,
contradicting the ETH.

For lower bounds for ∀∃3-QBFSAT, we first observe that
this problem cannot be solved in 2o(k) · |ϕ|O(1) time under the
ETH (since we have a trivial reduction from 3-SAT). How-
ever, we can significantly sharpen this under the SETH and in
fact rule out every 2O(k) time algorithm, i.e. the problem is
not solvable in ck · |ϕ|O(1) time for any constant c ≥ 1. We
rely on the following result.

Theorem 16 ([Calabro et al., 2013]). Assuming the SETH,
∀∃3-QBFSAT is not solvable is O∗(cn) time1 for any c < 2.

Theorem 17. Assuming the SETH, ∀∃3-QBFSAT parameter-
ized by the number of existentially quantified variables k is
not solvable in ck · |ϕ|O(1) time for any constant c.

Proof. Let k and ℓ denote the number of existential and uni-
versal variables in an input formula, respectively, and let
n = k + ℓ. We consider two algorithms for ∀∃3-QBFSAT.
The first one is the hypothetical FPT algorithm that solves
∀∃3-QBFSAT in O∗(ck) time for constant c. The second al-
gorithm enumerates assignments to universal variables, and
solves the resulting 3-SAT formulas. The latter requires
O(2ℓc3

k) time, where c3 the infimum of all b such that 3-SAT
is solvable in O∗(bn) time. Observe that c3 < 2. Now, let δ =
k/n be the proportion of existential variables in the input for-
mula. We claim that, depending on the value of δ, we can use
either the first or the second algorithm to solve ∀∃3-QBFSAT
in O∗(dn) time for some d < 2, contradicting SETH by The-
orem 16. To this end, define T = 1+ log2(c)− log2(c3), and
observe that T ≥ 1 since ∀∃3-QBFSAT is more general than
3-SAT and c ≥ c3.

First, suppose δ > 1/T , i.e. k > n/T . Then use the
first algorithm, which runs in O∗(cn/T ) = O∗(2(log2(c)/T )n)

1The notation O∗ hides factors polynomial in n.

time. Now suppose δ ≤ 1/T , i.e. k ≤ n/T . Then use the sec-
ond algorithm, which runs in O∗(2(1−δ)nc3

δn) time. Observe
that (1−δ)+log2(c3)δ ≤ 1−(1−log2(c3))/T ≤ log2(c)/T .
In both cases, our algorithm runs in O∗(2(log2(c)/T )n) time.
Since c3 < 2, we have log2(c3) < 1 and log2(c) < T , which
completes the proof.

6 Discussion
In this paper we investigated a simple and overlooked param-
eter for QBFSAT and proved FPT with respect to the number
of existentially quantified variables and the maximum arity of
any clause. This parameterization is particularly noteworthy
since applied QBF solving is frequently based on the idea of
expanding universally quantified variables in order to get an
instance that can be solved with SAT techniques. This strat-
egy comes with the downside that (1) after removing univer-
sally quantified variables one still needs to solve an NP-hard
problem, and (2) the strategy is inefficient for instances with
many universally quantified variables. Our result is comple-
mentary in the sense that instances with many universal but
few existential variables can now be handled efficiently with
our novel FPT algorithm. While we in this paper concen-
trate on the theory it is natural to speculate whether these two
approaches can be merged in actual QBF solvers to solve pre-
viously intractable instances faster.

For improvements, there is a gap between our 2O(k2k) FPT
algorithm and our lower bound (under the SETH) which rules
out any single-exponential 2O(k) algorithm. It is not immedi-
ately which direction could be strengthened and new algorith-
mic ideas would likely be needed to bring down the running
time to 2O(kc) for some fixed c. It would also be interesting
to generalize our FPT algorithm to even broader classes of
problems. A promising candidate is the depedency quantified
Boolean formula (DQBF) formalism, i.e. Boolean formulas
equipped with Henkin quantifiers. This problem is generally
NEXPTIME-complete and has comparably few FPT results.
Naturally, Lemma 1 would need to be modified to the DQBF
setting, but besides that the main ideas should carry over.

From a purely theoretical perspective rather little is known
about the logical fragment where we allow unrestricted uni-
versal quantification but only limited existential quantifica-
tion. As a starting point one could define a closure opera-
tor on sets of Boolean relations induced by logical formu-
las allowing universal but no existential quantification over
conjunctions of atoms from a predetermined structure. Such
formulas would generalize quantifier-free primitive positive
definitions (qfpp-definitions) which has been used to study
fine-grained complexity aspects of CSPs [Lagerkvist and
Wahlström, 2022], but be more restrictive than the formulas
considered by Börner et al. [2003] developed to study classi-
cal complexity of QCSPs. Could it, for example, be possible
to give a classification akin to Post’s classification of Boolean
clones, or find a reasonable notion of algebraic invariance?
A reasonable guess extending Börner et al. [2003] would be
to consider algebras consisting of partial, surjective polymor-
phisms.
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