
Optimal Extended Formulations from
Optimal Dynamic Programming Algorithms

Mateus de Oliveira Oliveira1,2 , Wim Van den Broeck2

1Department of Computer and Systems Sciences, Stockholm University, Sweden
2Department of Informatics, University of Bergen, Norway

oliveira@dsv.su.se, wim.broeck@uib.no

Abstract

Vertex Subset Problems (VSPs) are a class of com-
binatorial optimization problems on graphs where
the goal is to find a subset of vertices satisfying a
predefined condition. Two prominent approaches
for solving VSPs are dynamic programming over
tree-like structures, such as tree decompositions or
clique decompositions, and linear programming. In
this work, we establish a sharp connection between
both approaches by showing that if a vertex-subset
problem Π admits a solution-preserving dynamic
programming algorithm that produces tables of size
at most α(k, n) when processing a tree decompo-
sition of width at most k of an n-vertex graph G,
then the polytope PΠ(G) defined as the convex-hull
of solutions of Π in G has extension complexity at
most O(α(k, n)·n). Additionally, this upper bound
is optimal under the exponential time hypothesis
(ETH).
On the one hand, our results imply that ETH-
optimal solution-preserving dynamic program-
ming algorithms for combinatorial problems yield
optimal-size parameterized extended formulations
for the solution polytopes associated with instances
of these problems. On the other hand, uncon-
ditional lower bounds obtained in the realm of
the theory of extended formulations yield uncon-
ditional lower bounds on the table complexity of
solution-preserving dynamic programming algo-
rithms.

1 Introduction
Computational problems arising in a wide variety of sub-
fields of artificial intelligence can be formalized as vertex-
subset problems, such as INDEPENDENT SET, DOMINAT-
ING SET, VERTEX COVER, etc. Two prominent algorith-
mic approaches to attack these problems are dynamic pro-
gramming over tree-like structures, and linear programming.
While the former approach is suitable to solve vertex sub-
set problems on graphs of small width, such as treewidth
[Marx, 2007] and cliquewidth [Courcelle et al., 2000], the lat-
ter approach yields practical algorithms whenever the space

of feasible solutions can be defined using a system of lin-
ear inequalities of moderate size [Hu and Laurent, 2019;
Aprile et al., 2017].

Vertex subset problems that are NP-hard do not admit effi-
cient linear programming formulations assuming P ̸= NP ,
and in some cases it can be even shown unconditionally that
formulations for certain problems require exponential size
[Yannakakis, 1988; Fiorini et al., 2015; De Simone, 1990;
Göös et al., 2018a]. Nevertheless, recently there has been
growing interest in the study of linear formulations of com-
binatorial polytopes parameterized by structural parameters
of the input graph, such as treewidth and cliquewidth [Seif,
2019; Aboulker et al., 2019; Buchanan and Butenko, 2015;
Kolman et al., 2020]. In this work, we contribute with this
line of research by establishing a sharp connection between
dynamic programming algorithms operating on tree decom-
positions and linear programming theory.

On the one hand, our results allow us to show that effi-
cient solution-preserving dynamic programming algorithms
parameterized by treewidth can be used to define small lin-
ear programming formulations. On the other hand, uncon-
ditional lower bounds obtained in the realm of the theory of
extended formulations can be used to provide unconditional
lower bounds on the table-complexity of solution-preserving
dynamic programming algorithms expressible in the dynamic
programming core model (DP-core model)[Baste et al., 2022;
de Oliveira Oliveira and Vadiee, 2023].

1.1 Our Results
Our main result (Theorem 14) states that if a vertex subset
problem Π can be solved by a solution-preserving DP-core
of table complexity α(k, n) when processing a width-k tree
decomposition of an n-vertex graph G, then the solution poly-
tope of Π on G has extension complexity O(α(k, n) · n). In-
tuitively, problems that can be solved by solution-preserving
DP-cores with small table complexity yield solution poly-
topes of small extension complexity. Conversely, lower
bounds on the extension complexity of solution polytopes of a
given problem Π yield lower bounds on the table complexity
of solution-preserving DP-algorithms solving Π.

1.2 Proof Techniques
We formalize the notion of a dynamic programming algo-
rithm parameterized by treewidth using an extension of the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1881

DP-core model introduced in [Baste et al., 2022] and further
developed in [de Oliveira Oliveira and Vadiee, 2023]. The
main conceptual addition to these models is an axiomatic
definition of the notion of a solution-preserving dynamic
programming algorithm. Intuitively, this notion formalizes
dynamic programming algorithms satisfying two properties:
first, any subset of vertices obtained by backtracking is a so-
lution for the problem in question. Second, every solution
should be retrievable by backtracking. It is worth noting that
in general, dynamic programming algorithms may not be so-
lution preserving. For instance, if one is simply interested
in determining whether a solution exists then some solutions
may be discarded during the dynamic programming process.

The bridge between dynamic programming and linear pro-
gramming is made within the context of tree automata the-
ory. More specifically, we define the notion of a T -shaped
tree automaton, where T is a tree. Intuitively, these are au-
tomata accepting sets of terms over a given alphabet Σ, all
of which have the same underlying tree-structure. The state
set of such an automaton A is partitioned into a collection of
cells, one cell Qu per node u of T , and we define the width
of A as the size of the largest cell. We then show that if A
is a T -shaped tree automaton of width w(A), the polytope
P(A) whose vertices correspond to terms accepted by A has
extension complexity O(|T | · (w(A) + |Σ|)) (Corollary 6).
Finally, we show that if D is a solution-preserving DP-core
of table complexity α(k, n) solving a problem Π, then given
an n-vertex graph G together with a tree decomposition T
of width at most k and underlying tree structure T , one can
construct a T -shaped tree automaton of width α(k, n) whose
accepted terms encode solutions for Π in G (Theorem 13).
By combining Theorem 13 with Corollary 6, we infer that
the extension complexity of the solution polytope of Π on G
is upper bounded by O(α(k, n) · n).

1.3 Generalizations
Although for simplicity of exposition our main results will be
stated in terms of vertex subset problems, it is worth noting
that these results also generalize to edge subset problems,
where the goal is to find a subset of edges satisfying a given
condition (for instance, CUTℓ, HAMILTONIANCYCLE), and
to problems where feasible solutions are tuples of subsets
of vertices, edges, or both. For instance for each fixed d,
the d-COLORING problem is a problem where the goal is
to partition the vertex set of the graph into d subsets, each
of which is an independent set. Extensions for the cases
mentioned above are dealt with in the full version of this
paper.

2 Preliminaries
2.1 Basic Definitions
We denote by N the set of natural numbers and by N+ the set
of positive natural numbers. For each n ∈ N, we let [n] =
{1, . . . , n}. In particular, [0] = ∅. Given a set S, the set of
subsets of S is denoted by P(S), and the set of finite subsets
of S is denoted by Pfin(S). Given a function f : S → R,

and S′ ⊆ S, we let f(S′) = {f(s) | s ∈ S′} be the image of
S′ under f .

We define a graph as a triple G = (V,E, ρ), where V ⊂ N
is a finite set of vertices, E ⊂ N is a finite set of edges and
ρ ⊂ E×V is an incidence relation. For an edge e ∈ E, we let
endpts(e) = {v ∈ V |(e, v) ∈ ρ} denote the set of vertices
incident to e. We may write VG, EG and ρG to denote sets
V , E and ρ. We define the empty graph as the graph (∅, ∅, ∅)
with neither vertices, nor edges. We let GRAPHS denote the
set of all graphs.

An isomorphism from a graph G to a graph H is a pair of
functions ϕ = (ϕ1, ϕ2) where ϕ1 : VG → VH is a bijection
from the vertex set of G to the vertex set of H and ϕ2 : EG →
EH is a bijection from the edge set of G to the edge set of H
such that for each vertex v ∈ VG and each edge e ∈ EG, we
have that (e, v) ∈ ρG if and only if (ϕ2(e), ϕ1(v)) ∈ ρH . If
there exists such a bijection, we say that graphs G and H are
isomorphic and denote this by G ∼ H .

2.2 Vertex Subset Problems
Definition 1 (Vertex Subset Problem). A vertex subset prob-
lem is a subset Π ⊂ GRAPHS ×Pfin(N) where the following
conditions are satisfied for each pair (G,X) ∈ Π:

1. X ⊆ VG, and
2. for each graph H isomorphic to G, and each isomor-

phism ϕ = (ϕ1, ϕ2) from G to H , (H,ϕ1(X)) ∈ Π.
Given a graph G, we say that a subset X ⊆ VG is a solution

for Π in G if (G,X) ∈ Π. The set of solutions for Π in G is
denoted by

SolΠ(G) = {X : (G,X) ∈ Π}. (1)

For example, for each ℓ ∈ N+, INDEPENDENTSETℓ de-
notes the vertex subset problem consisting of all pairs (G,X)
where G is a graph and X is an independent set of size at least
ℓ in G, that is, a subset of vertices where no pair of vertices
is connected by an edge. Other prominent examples of vertex
subset problems are VERTEXCOVERℓ, DOMINATINGSETℓ

and CLIQUEℓ.

2.3 Solution Polytopes
Let X = {x1, x2, . . . , xn} be a set of variables. A vector
over X is a function v : X → R. We say that a vector
v : X → R satisfies an inequality

∑
i αixi ≤ b if the in-

equality holds whenever each variable xi is replaced by the
value v(xi). That is to say, if

∑
i αiv(xi) ≤ b. A vector v is

a convex combination of a set of vectors U = {v1, . . . , vm}
if v = α1v1+α2v2+ · · ·+αmvm for some non-negative real
numbers αi such that

∑
i αi = 1. The convex hull of U is the

set conv(U) of all convex combinations of vectors in U . We
note that conv(U) is a polytope, and as such can be defined
as the set of solutions of a system of linear inequalities.

Let G be an n-vertex graph, and let X ⊆ VG. We let
X̂ : X → R denote the vector over variables X = {xv :

v ∈ VG} where for each v ∈ VG, X̂(xv) = 1 if and only if
v ∈ X . Given a vertex subset problem Π and a graph G, we
let PΠ(G) be the polytope defined as the convex hull of vec-
tors associated with solutions of Π in G. More specifically,
PΠ(G) = conv({X̂ : X ∈ SolΠ(G)}).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1882

2.4 Addressed Trees
An addressed tree is a four-tuple T = (N,F , r, γ) denoting
a rooted tree with nodes N , root r ∈ N , arcs F ⊆ N × N
directed from the leaves towards the root, and arc-labeling
function γ : F → N that labels the arcs of T with numbers in
such a way that for each u ∈ N , the arcs in the set In(u) =
{(v, u) | (v, u) ∈ F} are injectively labeled with numbers
from {1, . . . , |In(u)|}. For each arc (v, u) ∈ In(u), we say
that v is the i-th child of u if γ(v, u) = i. We may write
N(T) to denote the set of nodes of T , and r(T) to denote the
root of T .

3 Dynamic Programming Cores for Tree
Decompositions

The formalism we use to express dynamic programming al-
gorithms operates on edge-introducing tree decompositions.
For a matter of consistency with the notation in the remain-
der of the paper, our definition of tree decompositions uses
a slightly distinct notation than the one typically used in the
literature.

We define an edge-introducing tree decomposition of a
graph G as a triple T = (T,B, ξ) where T is an addressed
tree, ξ : E(G) → N(T) is an injective function, and
B : N(T) → P(VG) is a function satisfying the following
conditions:

1. For each vertex v ∈ V (G), there is a node u ∈ N(T)
such that v ∈ B(u);

2. for each edge e ∈ E(G), endpts(e) ⊆ B(ξ(e));

3. for each v ∈ V (G), the set {u ∈ N(T) | v ∈ B(u)}
induces a connected sub-tree of T .

The width of T is defined as maxu |B(u)| − 1. The
treewidth of a graph G, denoted by tw(G), is defined as the
minimum width of an edge-introducing tree decomposition
of G.

An edge-introducing tree decomposition T is said to be
nice if each node u ∈ N(T) has at most two children and
the following conditions are satisfied: If u has two children
u′ and u′′, then B(u) = B(u′) = B(u′′). In this case, u is
called a join node. If u has a single child u′, then it either
introduces a vertex v (meaning that B(u)\B(u′) = {v}),
or it forgets a vertex v (meaning that B(u′)\B(u) = {v}),
or it introduces an edge e (meaning that B(u) = B(u′)
and ξ(e) = u). If u is a leaf node, or the root node, then
B(u) = ∅. In this work, we assume that edge-introducing
tree decompositions are nice. This assumption is without loss
of generality, since any tree decomposition of width k of a
graph G can be transformed into a nice edge-introducing tree
decomposition of G of width at most k in time O(k · |N(T)|)
[Kloks, 1994].

We formalize the notion of a dynamic programming algo-
rithm operating on tree decompositions using the notion of
a dynamic programming core. Our formalism is essentially
equivalent in expressiveness as the notion of a DP-core intro-
duced in [Baste et al., 2022] in the sense that dynamic pro-
gramming algorithms developed in either model can be easily
converted to each other with minor adaptations.

Definition 2. A DP-core is a 6-tuple D whose components
are specified as follows.

1. Leaf is a finite non-empty subset of {0, 1}∗.

2. IntroVertex : N× {0, 1}∗ → Pfin({0, 1}∗)
3. IntroEdge : N× N× {0, 1}∗ → Pfin({0, 1}∗).
4. ForgetVertex : N× {0, 1}∗ → Pfin({0, 1}∗).
5. Join : {0, 1}∗ × {0, 1}∗ → Pfin({0, 1}∗).
6. Final : {0, 1}∗ → {0, 1}.

For each S ⊆ {0, 1}∗, we define IntroVertex(v, S) =⋃
w∈S IntroVertex(v,w). The extension of the remaining

components of D to subsets of strings is defined analogously.
Intuitively, a DP-core D is a specification of a dynamic pro-

gramming algorithm that operates on edge-introducing tree
decompositions of graphs. The algorithm processes such a
tree decomposition T = (T,B, ξ) from the leaves towards
the root, assigning to each node u ∈ N(T) a finite subset of
strings Γ(u) according to the following inductive process.

1. If u is a leaf node of T , Γ(u) = Leaf

2. If u is an internal node of T with a unique child u′, then

(a) Γ(u) = IntroVertex(v,Γ(u′)) if vertex v is intro-
duced at u.

(b) Γ(u) = ForgetVertex(v,Γ(u′)) if vertex v is for-
gotten at u.

(c) Γ(u) = IntroEdge(v, v′,Γ(u′)) if an edge con-
necting v and v′ is introduced at u.

3. If u is a join node of T with children u′ and u′′ then
Γ(u) = Join(Γ(u′),Γ(u′′)).

We say that D accepts the tree decomposition T if the set
Γ(r(T)) associated with the root node of T has a final string.
That is to say, w ∈ Γ(r(T)) with Final(w) = 1.

Definition 3. We say that D solves a vertex subset problem Π
if for each graph G, and each tree decomposition T of G, D
accepts T if and only if SolΠ(G) ̸= ∅.

We say that D has table complexity α(k, n) if for each
n-vertex graph G, each tree decomposition T = (T,B, ξ) of
G of width at most k, and each node u ∈ N(T), the set Γ(u)
has at most α(k, n) elements.

A DP-core for Independent Set. As an illustration, we de-
fine below a DP-core D for the problem INDEPENDENTSETℓ.
It is enough to specify the action of each component of the
core on strings that encode pairs of the form (S, c) where
S ⊆ N and c ∈ N. The particular encoding itself is not
relevant, as long as it is fixed. We let D be the DP-core whose
components are defined as follows.

• Leaf = {(∅, 0)}.

• IntroVertex(v, (S, c)) = {(S, c), (S ∪ {v}, c+ 1)}.

• IntroEdge(v, v′, (S, c)) =

{
∅ if {v, v′} ⊆ S
{(S, c)} otherwise.

• ForgetVertex(v, (S, c)) = {(S\{v}, c)}.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1883

• Join((S1, c1), (S2, c2)) =

{
∅ if S1 ̸= S2

{(S1, c1 + c2 − |S1|)} otw.

• Final((S, c)) = 1 if and only if c ≥ ℓ.

The next proposition implies that the DP-core D specified
above solves INDEPENDENTSETℓ. Below, Gu means the sub-
graph of G induced by the set

⋃
t∈N(Tu)

B(t), where Tu is the
sub-tree of T rooted at u.

Proposition 4. Let G be a graph, T = (T,B, ξ) be a tree
decomposition of G. Then, for each u ∈ N(T), and each
pair (S, c) ∈ P(N)× N, (S, c) belongs to Γ(u) if and only if
the graph Gu has an independent set I of size at least c such
that S = I ∩B(u).

In particular, G has an independent set of size at least ℓ if
and only for some ℓ′ ≥ ℓ, the pair (∅, ℓ′) belongs to Γ(r(T)),
and this happens if and only if T is accepted by D. We also
note that by Proposition 4, we have that if T has width k and
G has n vertices, then |Γ(u)| ≤ 2k · |VG|. Therefore, the table
complexity of D is upper bounded by 2k · n. Although very
simple, this the DP-core defined above is essentially optimal
under SETH [Lokshtanov et al., 2018].

4 The Polytope of a T -Shaped Language
Let Σ be a set of symbols. A term over Σ is a pair τ = (T, λ)
where T is an addressed tree, and λ : N(T) → Σ is a function
that labels each node of T with a symbol from Σ. We say that
a term τ is T -shaped if τ = (T, λ) for some λ. Whenever
clear from the context, we may write τ(u) to denote the label
λ(u). We let Terms(Σ) denote the set of all terms over Σ.

4.1 T -Shaped Tree Automata
Let T be an addressed tree. A T -shaped tree automaton is
a tuple A = (Σ, Q, F,∆) where Q =

⋃
u Qu is a set of

states, partitioned into a collection of subsets {Qu}u∈N(T),
F ⊆ Qr(T) is a set of final states, and ∆ =

⋃
u ∆u is

a set of transitions, partitioned into a collection of subsets
{∆u}u∈N(T) such that the following condition is satisfied:
for each node u ∈ N(T) with children u1, . . . , us,

∆u ⊆ Qu1 × · · · ×Qus × Σ×Qu.

Let τ = (T, λ) be a term over Σ. A trace for τ
in A is a function ρ : N(T) → Q such that for
each node u ∈ N(T) with children u1, . . . , us, the tuple
(ρ(u1), . . . , ρ(us), τ(u), ρ(u)) is a transition in ∆u. We say
that ρ is an accepting trace if ρ(r(T)) ∈ F . We say that τ is
accepted by A if there is an accepting trace ρ for τ in A. The
language of A is the set L(A) of all terms accepted by A.

4.2 The Polytope P (A)

Let T be an addressed tree and Σ be a set of symbols. We let

X (T,Σ) = {xu,a | u ∈ N(T), a ∈ Σ}

denote the set of variables associated with T and Σ. Given a
T -shaped term τ ∈ Terms(Σ), we let τ̂ : X (T,Σ) → {0, 1}
be the 0/1 vector defined by setting, for each u ∈ N(T)
and each symbol a ∈ Σ, τ̂(xu,a) = 1 if τ(u) = a and
τ̂(xu,a) = 0 otherwise. Given a T -shaped tree automaton A,

we define the polytope associated with A, denoted by P(A),
as the convex hull of all vectors encoding terms accepted by
A:

P(A) = conv({τ̂ |τ ∈ L(A)}).

4.3 An Extended Formulation for P (A)

A polytope P ′ is an extended formulation of a polytope P if
P is a projection of P ′. The next theorem, which is the main
result of this section, states that polytopes associated with T -
shaped tree automata have extended formulations that can be
defined by systems of linear inequalities whose size is linear
on the number of states plus the number of transitions of the
automata.

Theorem 5. Let A = (Σ, Q, F,∆) be a T -shaped tree au-
tomaton. The polytope P(A) has an extended formulation
with O(|Q|+ |∆|) extension variables and O(|Q|+ |T | · |Σ|)
inequalities.

We define the width of a T -shaped tree automaton A, de-
noted by w(A), as the maximum size of a state cell:

w(A) = max
u∈N(T)

|Qu|.

Since a T -shaped tree automaton of width w can have at most
w · |T | states, Theorem 5 immediately implies the following
corollary:

Corollary 6. Let A = (Σ, Q, F,∆) be a T -shaped tree au-
tomaton of width w(A). The polytope P(A) has extension
complexity O(|T | · (w(A) + |Σ|)).

In the remainder of this section we define an extended for-
mulation for the polytope P (A) satisfying the conditions of
Theorem 5. We start by specifying the extension variables,
which we split into two sets. The first set,

Y(A) = {yu,q|u ∈ N(T), q ∈ Qu},

has one variable yu,q for each node u in N(T) and each state
q in Qu. We call the elements of Y(A) state variables. The
second set,

Z(A) = {zu,δ|u ∈ N(T), δ ∈ ∆u},

has one variable zu,δ for each node u in N(T) and each tran-
sition δ in ∆u. We call the elements of Z(A) transition vari-
ables. We let var(A) = X (T,Σ) ∪ Y(A) ∪ Z(A) be the set
of variables associated with A. In what follows, we will refer
to the sets X (T,Σ), Y(A) and Z(A) simply as X , Y and Z
respectively.

Given a transition δ = (q1, . . . , qs, a, q) in ∆, we say that
q is the consequent state of δ, while for each i ∈ [s], qi is
an antecedent state of δ. We denote the consequent state q
by cnq(δ) and the set of antecedent states {q1, . . . , qs} by
ant(δ). We denote by symb(δ) the symbol a of δ.

Let zu,δ be a transition variable in Z for some u ∈ N(T)
and transition δ ∈ ∆u. If q = cnq(δ), we say that zu,δ is
an incoming transition variable of yu,q . If u′ is a child of u
and q′ ∈ ant(δ), we say that zu,δ is an outgoing transition
variable of yu′,q′ .

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1884

Definition 7. Let A = (Σ, Q, F,∆) be a T -shaped tree au-
tomaton, τ = (T, λ) be a term in L(A), and ρ : N(T) → Q
be a trace for τ in A. We let ρ̂ be the 0/1 vector over var(A)
satisfying the following conditions:

1. For each xu,a ∈ X , ρ̂(xu,a) = 1 iff λ(u) = a.

2. For each yu,q ∈ Y , ρ̂(yu,q) = 1 iff ρ(u) = q.

3. For each zu,δ in Z , ρ̂(zu,δ) = 1 iff δ =
(ρ(u1), . . . , ρ(us), λ(u), ρ(u)), where u1, . . . , us are
the children of u.

Let τ be a term in L(A), and ρ be a trace for τ in A. Then
by restricting the vector ρ̂ to the variables in X , we obtain the
vector τ̂ associated with τ . This implies that the polytope

Pex(A) = conv({ρ̂|ρ is an accepting trace in A}) (2)

defined as the convex-hull of vectors corresponding to accept-
ing traces in A is an extended formulation of the polytope
P (A). Note that Y has |Q| variables, while the set Z has |∆|
variables. Therefore, besides the main variables in X , we are
using |Q|+ |∆| extension variables to define Pex(A).

Next, we will show that Pex(A) can be defined as the set
of solutions of a system of linear inequalities LA containing
O(|Q|+|T |·|Σ|) linear constraints. The first set of constraints
ensure that all variables in a solution should assume values
between 0 and 1. More specifically, for each main variable
xu,a ∈ X , each state variable yu,q ∈ Y , and each transition
variable zu,δ ∈ Z ,

0 ≤ xu,a ≤ 1 0 ≤ yu,q ≤ 1 0 ≤ zu,δ ≤ 1 (3)

Let r = r(T) be the root of T . The following constraints
ensure that in an integral solution, there is exactly one final
state q ∈ F for which variable yr,q is set to 1. Additionally,
in such a solution, for each state q ∈ Qr\F the variable yr,q
is set to 0. ∑

q∈F

yr,q = 1 (4)

∀q ∈ Qr\F : yr,q = 0 (5)

The next set of constraints ensure that for each node u ∈
N(T), and each state q ∈ Qu, for any integral solution that
sets variable yu,q to 1 there is some transition δ ∈ ∆u with
consequent q such that zu,δ is set to 1.

∀u ∈ N(T), ∀q ∈ Qu :
∑

δ,cnq(δ)=q

zu,δ = yu,q (6)

The next set of constraints ensure that for each node u ∈
N(T) distinct from the root r, and each state q ∈ Q, for
any integral solution that sets variable yu,q to 1 there is some
transition z ∈ ∆par(u) having q as an antecedent such that
zu,δ is set to 1. Here, par(u) denotes the parent of u.

∀u ∈ N(T)\{r}, ∀q ∈ Qu :
∑

δ,q∈ant(δ)

zpar(u),δ = yu,q

(7)

Finally, the next set of equations ensure that if an integral
solution sets a main variable xu,a ∈ X to 1, then there is some
transition δ ∈ ∆u with symb(δ) = a such that the transition
variable zu,δ is also set to 1.

∀u ∈ N(T), ∀a ∈ Σ:
∑

δ,symb(δ)=a

zu,δ = xu,a (8)

Theorem 5 is a direct consequence of the following theo-
rem, stating that the set of inequalities LA defines the poly-
tope Pex(A).

Theorem 8. Let A = (Σ, Q, F,∆) be a T -shaped tree au-
tomaton. A vector µ belongs to Pex(A) if and only if µ satisfy
all inequalities in LA.

The proof of Theorem 8 is carried out in detail in the full
version of this work. The proof is split into three parts. In the
first part, we show that for each trace ρ in A, the 0/1- vector
ρ̂ satisfies the system of linear inequalities LA. This implies
that the polytope Pex(A) is contained in the polytope P (LA)
defined by LA. In the second part, we show that if µ is an
integral vector satisfying all inequalities of LA, then there is
some trace ρ of A such that ρ̂ = µ. This shows that at least the
integral solutions of LA are contained in Pex(A). Finally, in
the third part, we show that any vertex of the polytope defined
by LA is a 0/1-vector. Therefore, since 0/1-vectors cannot
be convex combinations of other 0/1 vectors, we have that the
vertices of P (LA) are precisely the 0/1-vectors satisfying all
constraints in LA. This shows that P (LA) = Pex(A), and
concludes the proof of Theorem 8.

5 Witness Trees and Solution Polytopes
In this section, we let Π be a vertex subset problem, D be a
DP-core solving Π, G be a graph and T be a tree decomposi-
tion of G.

Definition 9. A D-witness-tree for T is a function W :
N(T) → {0, 1}∗ satisfying the following properties:

1. Final(W (r(T))) = 1,

2. W (u) ∈ Leaf if u is a leaf node,

3. If u is a node with a single child u′,

(a) W (u) ∈ IntroVertex(v,W (u′)) if vertex v is in-
troduced at node u,

(b) W (u) ∈ ForgetVertex(v,W (u′)) if vertex v is for-
gotten at node u,

(c) W (u) ∈ IntroEdge(v, v′,W (u′)) if an edge an
edge e with endpts(e) = {v, v′} is introduced
at node u.

4. If u is a node with children u′ and u′′, then W (u) ∈
Join(W (u′),W (u′′)).

Intuitively, a D-witness-tree is a certificate that the tree de-
composition T is accepted by D. One pertinent question is
whether one can devise a way of extracting a solution for Π
in G from a witness tree.

Definition 10. An abstract membership function is any func-
tion of type µ : N×{0, 1}∗ → {0, 1}. We say that v ∈ N is a
µ-member of w if µ(v,w) = 1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1885

Let ν[G, T] : VG → N(T) be the function that assigns to
each vertex v ∈ VG, the child of the node where v is forgot-
ten. We denote this node by ν[G, T](v). This function is well
defined, since in a nice edge-introducing tree decomposition,
for each vertex v there is exactly one node u where v is for-
gotten. We can extract a subset of vertices from a witness tree
as follows.

X(G, T ,W, µ) = {v ∈ VG : µ(v,W (ν[G, T](v))) = 1}.

Intuitively, X(G, T ,W, µ) is the set of all vertices v of G
that are µ-members of the string assigned by W to the child
of the node of T where v is forgotten.

Definition 11. We say that D is solution-preserving if there is
an abstract membership function µ such that for each graph
G and each nice edge-introducing tree decomposition T ac-
cepted by D, the following conditions are satisfied:

1. For each witness tree W of T , the set X(G, T ,W, µ)
belongs to SolΠ(G).

2. For each solution X ∈ SolΠ(G), there is a witness tree
W such that X = X(G, T ,W, µ).

Intuitively, the first condition implies that if a solution for
Π in G exists, then such a solution can be retrieved by back-
tracking: after inductively constructing the set Γ(u) for each
u ∈ N(T), and determining that Γ(r(T)) is non-empty, we
may construct a witness-tree W by backtracking and then ap-
ply the membership function to the string associated with the
child of each forget node to extract a solution. On the other
hand, Condition 2 ensures that each solution in SolΠ(G) can
be retrieved from some suitable witness-tree.

Definition 12. Let G be a graph, T = (T,B, ξ) be a tree
decomposition of G, and X ⊆ VG. The characteristic
tree of X is the T -shaped term χ[G, T , X] where for each
u ∈ N(T), χ[G, T , X](u) = 1 if there is some v ∈ X with
ν[G, T](v) = u, and χ[G, T , X](u) = 0, otherwise.

Given a problem Π, and a graph G, we let

ΦΠ(G, T) = {χ[G, T , X] : X ∈ SolΠ(G)}

be the set of characteristic trees associated with solutions of
G. The next theorem establishes a connection between DP-
cores deciding a problem Π and T -shaped tree automata ac-
cepting the set of characteristic trees of solutions of a graph
G.

Theorem 13. Let Π be a vertex subset problem and D be
a solution-preserving DP-core of table-complexity α(k, n)
solving Π. Let G be a graph and T = (T,B, ξ) be a tree de-
composition of G of width k. Then, there is a T -shaped tree
automaton A of width α(k, n) accepting the tree language
ΦΠ(G, T).

As a direct consequence of Corollary 6 and Theorem 13 we
have our main result establishing an upper bound extension
complexity in terms of the complexity of a DP-core.

Theorem 14. Let Π be a vertex subset problem and D be
a solution-preserving DP-core of table-complexity α(k, n)
solving Π. For each n-vertex graph G of treewidth k, the
extension complexity of PΠ(G) is at most O(α(k, n) · n).

6 Upper Bounds for Extended Formulations
A wide variety of vertex subset problems can be solved dy-
namic programming algorithms operating on tree decomposi-
tions. In many cases, such algorithms can be formalized using
solution-preserving dynamic programming cores. In this sec-
tion we show how upper bounds on the table-complexity of
classical dynamic programming algorithms parameterized by
treewidth can be translated into parameterized upper bounds
on the extension complexity of polytopes associated with sev-
eral well studied combinatorial problems on graphs. It turns
out that for several of these problems [Lokshtanov et al.,
2011] the upper bounds are asymptotically optimal under the
exponential time hypothesis (ETH) [Impagliazzo and Paturi,
2001] the strong exponential time hypothesis (SETH) [Im-
pagliazzo and Paturi, 2001], or related conjectures [Calabro
et al., 2009; Carmosino et al., 2016].

6.1 Vertex Problems
We say that a vertex subset problem Π has extension com-
plexity f(k, n) on n-vertex graphs of treewidth at most k if
for each n-vertex graph G of treewidth at most k, the poly-
tope PΠ(G) has extension complexity at most f(k, n). On the
other hand, we say that Π has no extended formulation with
g(k, n) inequalities if no polytope P ′ that is an extended for-
mulation of PΠ(G) can be defined with g(k, n) inequalities
or less.

Theorem 15. The problem INDEPENDENTSETℓ has exten-
sion complexity 2knO(1) on n-vertex graphs of treewidth at
most k. Under ETH, this problem has no extended formula-
tion with 2o(k)nO(1) inequalities.

Let DOMINATINGSETℓ be the problem consisting of all
pairs of the form (G,X) where G is a graph and X is a dom-
inating set in G of size at most ℓ. That is, each vertex of G is
either in X or connected to some vertex in X .

Theorem 16. The problem DOMINATINGSETℓ has extension
complexity 3knO(1) on n-vertex graphs of treewidth at most
k. Under ETH, this problem has no extended formulation
with 2o(k)nO(1) inequalities.

Interestingly, the two results above show that our general
conversion from solution-preserving DP-cores to extended
formulations is optimal in general when it comes to the de-
pendency on the table-complexity of the DP-algorithm.

Theorem 17. Under ETH, the complexity O(α(k, n) · n) in
Theorem 14 cannot be improved to α(k, n)o(1) · nO(1).

6.2 Edge Problems
Although we have stated our main theorems in terms of vertex
subset problems, analogous results also hold for edge subset
problems.

Definition 18 (Edge Subset Problem). An edge subset prob-
lem is a subset Π ⊂ GRAPHS × Pfin(N) satisfying the fol-
lowing conditions:

1. X ⊆ EG, and

2. for each graph H isomorphic to G, and each isomor-
phism ϕ = (ϕ1, ϕ2) from G to H , (H,ϕ2(X)) ∈ Π.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1886

Given an edge subset problem Π, and instance (G,X) of
Π, the set of SolΠ(G) of all solutions of G is defined as in
Equation 1.

Let HAMILTONIANCYCLE be the edge subset problem
consisting of all pairs of the form (G,X) where G is a graph
and X is the subset of edges of some Hamiltonian cycle.
This problem can be solved by a solution-preserving DP-core
of table-complexity 2O(k log k) · nO(1) on n-vertex graphs of
treewidth at most k.
Theorem 19. The problem HAMILTONIANCYCLE has ex-
tension complexity 2O(k log k) · nO(1) on n-vertex graphs of
treewidth at most k. Under ETH, this problem has no ex-
tended formulation with 2o(k)nO(1) inequalities.

Interestingly, HAMILTONIANCYCLE has a (non-solution-
preserving) DP-core whose table-complexity, 2O(k) · nO(1),
matches the conditional lower bound. Although we can still
extract a linear system of inequalities of size 2O(k) · nO(1)

from the specification of this DP-core, not all Hamiltonian
cycles in the corresponding graph are guaranteed to occur ex-
tremal solutions of this system of inequalities.

Let G be a graph and (A,B) be a partition of the vertex set
of G. The cut-set of this partition is the set of all edges with
one endpoint in A and another endpoint in B. We let CUTℓ be
the edge problem consisting of all pairs of the form (G,X)
where G is a graph and X is a cut-set in G of size at least ℓ.
Theorem 20. The problem CUTℓ has extension complexity
2knO(1). Under ETH, this problem has no extended formula-
tion with 2o(k)nO(1) inequalities.

6.3 Tuple Problems
Vertex and edge problems may be generalized straightfor-
wardly to the setting where solutions are tuples containing
sets of vertices, sets of edges, or both. For example, if a so-
lution is a d-tuple X = (X1, X2, . . . , Xd) of subsets of ver-
tices, then the vector corresponding to X is the 0/1-matrix
X̂ with d rows and |VG| columns where for each i ∈ [d] and
v ∈ VG, X̂iv = 1 if and only if vertex v belongs to the set Xi.
The solution polytope of such a problem is the convex hull of
all such matrices. One prominent example of tuple of vertex-
subsets problem is the d-COLORING problem, consisting of
all pairs of the form (G, (X1, . . . , Xd)) where G is a graph
and (X1, . . . , Xd) is a partition of the vertex set of G such
that each Xi is an independent set in G.
Theorem 21. The problem d-COLORING has extension com-
plexity dknO(1) on n-vertex graphs of treewidth at most k.
Under ETH, this problem has no extended formulation with
do(k)nO(1) inequalities.

7 Lower Bounds from EC
Our main theorem states that solution-preserving dynamic
programming algorithms with small table-complexity can be
translated into extended formulations with a small number of
inequalities. Interestingly, this translation allows us to ob-
tain unconditional lower bounds on the table-complexity of
solution-preserving DP-cores for a given problem from un-
conditional lower bounds obtained in the context of the the-
ory of extended formulations. For instance, it has been shown

in [Göös et al., 2018b] that there is a suitable sequence of
graphs {Gn}n∈N and suitable ℓ(n) ∈ O(n) such that for each
n ∈ N, the graph Gn has n vertices and the solution polytope
of the problem INDEPENDENTSETℓ(n) has extension com-
plexity 2Ω(n/ logn) on Gn. This implies the following uncon-
ditional parameterized lower bound on the table-complexity
of solution-preserving DP-cores solving the independent set
problem.

Theorem 22. The problem INDEPENDENTSETℓ has no
solution-preserving DP-core of table-complexity 2o(k/logk) ·
nO(1) on n-vertex graphs of treewidth at most k.

8 Conclusion
In this work, we introduced a general framework to obtain pa-
rameterized upper bounds on the extension complexity of the
solution polytopes of a wide variety of combinatorial prob-
lems in terms of the table-complexity of solution-preserving
dynamic programming algorithms. In many cases, the exten-
sion complexity obtained using our method is the best one
can get (under ETH).

Nevertheless, for some combinatorial problems, such as
HAMILTONIANCYCLE and other connectivity problems, the
fastest known dynamic programming algorithm parameter-
ized by treewidth [Bodlaender et al., 2015] is not solution
preserving. In these cases, our result still yields a polytope
associated with the convex-hull of all solutions that can be re-
trieved by backtracking from the DP tables constructed by the
algorithm. The crucial difference is that this polytope does
not depend only on the graph, but also on the input tree de-
composition and on the particularities of the DP-core.

Another point that is worth mentioning is that our upper
bounds on the extension complexity of polytopes in terms
of the table-complexity of DP-cores does not depend on the
actual computational complexity of constructing the tables.
Only the table sizes matter. In this sense, it is not possible
to generalize our results to arbitrary non-solution preserving
DP-cores without making further assumptions. The reason
is that any vertex subset problem has a trivial (non-solution
preserving) DP-core of table-complexity 1. This DP-core
non-deterministically guesses a solution, and when process-
ing each node, keeps only the partial solution corresponding
to the restriction of the guessed solution to vertices belonging
to bags up to that node.

Acknowledgments
We acknowledge support from the Research Council of Nor-
way (grant numbers 326537 and 288761).

References
[Aboulker et al., 2019] Pierre Aboulker, Samuel Fiorini,

Tony Huynh, Marco Macchia, and Johanna Seif. Exten-
sion complexity of the correlation polytope. Operations
Research Letters, 47(1):47–51, 2019.

[Aprile et al., 2017] Manuel Aprile, Yuri Faenza, Samuel
Fiorini, Tony Huynh, and Marco Macchia. Extension
complexity of stable set polytopes of bipartite graphs. In

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1887

Hans L. Bodlaender and Gerhard J. Woeginger, editors,
Graph-Theoretic Concepts in Computer Science, pages
75–87, Cham, 2017. Springer International Publishing.

[Baste et al., 2022] Julien Baste, Michael R. Fellows, Lars
Jaffke, Tomáš Masařı́k, Mateus de Oliveira Oliveira, Gee-
varghese Philip, and Frances A. Rosamond. Diver-
sity of solutions: An exploration through the lens of
fixed-parameter tractability theory. Artificial Intelligence,
303:103644, 2022.

[Bodlaender et al., 2015] Hans L Bodlaender, Marek Cygan,
Stefan Kratsch, and Jesper Nederlof. Deterministic single
exponential time algorithms for connectivity problems pa-
rameterized by treewidth. Information and Computation,
243:86–111, 2015.

[Buchanan and Butenko, 2015] Austin Buchanan and Sergiy
Butenko. Tight extended formulations for independent set.
Manuscript available at Optimization-Online, 2015.

[Calabro et al., 2009] Chris Calabro, Russell Impagliazzo,
and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Proc. of the 4th Interna-
tional Workshop on Parameterized and Exact Computa-
tion, pages 75–85. Springer, 2009.

[Carmosino et al., 2016] Marco L. Carmosino, Jiawei Gao,
Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the
strong exponential time hypothesis and consequences for
non-reducibility. In Proc. of the 7th ACM Conference
on Innovations in Theoretical Computer Science (ITCS
2016), pages 261–270. ACM, 2016.

[Courcelle et al., 2000] Bruno Courcelle, Johann A
Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-
width. Theory of Computing Systems, 33(2):125–150,
2000.

[de Oliveira Oliveira and Vadiee, 2023] Mateus
de Oliveira Oliveira and Farhad Vadiee. From width-
based model checking to width-based automated theorem
proving. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, pages 6297–6304. AAAI Press,
2023.

[De Simone, 1990] C. De Simone. The cut polytope and the
boolean quadric polytope. Discrete Math., 79(1):71–75,
jan 1990.

[Fiorini et al., 2015] Samuel Fiorini, Serge Massar, Sebas-
tian Pokutta, Hans Raj Tiwary, and Ronald De Wolf. Ex-
ponential lower bounds for polytopes in combinatorial op-
timization. Journal of the ACM (JACM), 62(2):17, 2015.

[Göös et al., 2018a] Mika Göös, Rahul Jain, and Thomas
Watson. Extension complexity of independent set poly-
topes. SIAM Journal on Computing, 47(1):241–269, 2018.

[Göös et al., 2018b] Mika Göös, Rahul Jain, and Thomas
Watson. Extension complexity of independent set poly-
topes. SIAM J. Comput., 47(1):241–269, 2018.

[Hu and Laurent, 2019] Hao Hu and Monique Laurent. On
the linear extension complexity of stable set polytopes

for perfect graphs. European Journal of Combinatorics,
80:247–260, 2019. Special Issue in Memory of Michel
Marie Deza.

[Impagliazzo and Paturi, 2001] Russell Impagliazzo and Ra-
mamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[Kloks, 1994] Ton Kloks. Treewidth: Computations and
Approximations. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1 edition, 1994. Springer
Book Archive.

[Kolman et al., 2020] Petr Kolman, Martin Koutecký, and
Hans Raj Tiwary. Extension complexity, mso logic, and
treewidth. Discrete Mathematics and Theoretical Com-
puter Science, 22(4), 2020. Distributed under a Creative
Commons Attribution 4.0 International License. A prelim-
inary version of this paper appeared at the 15th Scandi-
navian Symposium and Workshops on Algorithm Theory
(SWAT 2016).

[Lokshtanov et al., 2011] Daniel Lokshtanov, Dániel Marx,
and Saket Saurabh. Lower bounds based on the exponen-
tial time hypothesis. Bull. EATCS, 105:41–72, 2011.

[Lokshtanov et al., 2018] Daniel Lokshtanov, Dániel Marx,
and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Transac-
tions on Algorithms (TALG), 14(2):1–30, 2018.

[Marx, 2007] Dániel Marx. Can you beat treewidth? In 48th
Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS’07), pages 169–179. IEEE, 2007.

[Seif, 2019] Johanna Seif. Bounding techniques for exten-
sion complexity. Master’s thesis, École normale supérieure
de Lyon, 2019. Accessed: 2023-04-01.

[Yannakakis, 1988] Mihalis Yannakakis. Expressing com-
binatorial optimization problems by linear programs. In
Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 223–228, 1988.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1888

	Introduction
	Our Results
	Proof Techniques
	Generalizations

	Preliminaries
	Basic Definitions
	Vertex Subset Problems
	Solution Polytopes
	Addressed Trees

	Dynamic Programming Cores for Tree Decompositions
	The Polytope of a T-Shaped Language
	T-Shaped Tree Automata
	The Polytope P(A)
	An Extended Formulation for P(A)

	Witness Trees and Solution Polytopes
	Upper Bounds for Extended Formulations
	Vertex Problems
	Edge Problems
	Tuple Problems

	Lower Bounds from EC
	Conclusion

