
Efficient Cost-Minimization Schemes for Electrical Energy Demand Satisfaction
by Prosumers in Microgrids with Battery Storage Capabilities

Laura Codazzi1 , Gergely Csáji2 and Matthias Mnich1

1Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany
2HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary
{laura.codazzi, matthias.mnich}@tuhh.de, csaji.gergely@krtk.hun-ren.hu

Abstract
We introduce and study various models of how pro-
sumers in a microgrid can satisfy their demands
of electrical energy while minimizing their costs
over fixed time horizon. Prosumers have indi-
vidual demands, which can vary day-by-day, and
which they can satisfy by either consuming self-
generating electrical energy locally (e.g., from op-
erating PV panels) or from acquiring energy from
other prosumers in the same microgrid.

Our models take into account two key aspects
motivated by real-life scenarios: first, we consider
a daily volatility of prices for buying and selling
energy, and second, the possibility to store the self-
generated energy in a battery of finite capacity to
be either self-consumed or sold to other prosumers
in the future. We provide a thorough complexity
analysis, as well as efficient algorithms, so that pro-
sumers can minimize their overall cost over the en-
tire time horizon. As a byproduct, we also solve
a new temporal version of the classical KNAPSACK
problem, which may be of independent interest. We
complement our theoretical findings by extensive
experimental evaluations on realistic data sets.

1 Introduction
In the current transition of many national electrical en-
ergy markets towards more sustainable sources of energy,
household-operated photovoltaic (PV) panels can offer an ef-
fective means of individual contribution towards this tran-
sition [Hockenos, 2019]. PV panels of several house-
holds within close geographical proximity can be connected
through a microgrid; in such a grid, the households—or pro-
sumers—can trade electrical energy with each other. Thus,
any such prosumer of a fixed microgrid can satisfy their daily
demand of electrical energy through a combination of self-
generated electrical energy from their own PV panel, or from
buying electrical energy from other prosumers connected to
them in the microgrid. Several such models have been studied
in the literature ([Hönen et al., 2023]).

We introduce and analyze a model where prosumers have
an additional source of energy to satisfy their energy de-

mands: namely, the energy stored in their own private bat-
tery of capacity C. On each day t, each prosumer can store
their self-generated energy up to the capacity C in their bat-
tery, and either consume it in the future, or sell some or all
of the stored energy to other microgrid prosumers at price st′
per unit at a later day t′ > t. Therefore, any prosumer can
satisfy their demand dt on day t by consuming energy from
their own battery (for free), or from buying energy from other
prosumers in the microgrid at a buying price ct. The objective
of any prosumer is to minimize their overall cost for acquir-
ing energy to satisfy their daily demands, over a fixed time
horizon. We assume that on each day the full demand of each
prosumer can always be satisfied; this assumption can be jus-
tified by letting one of the prosumers to be a (large) company
which operates the main grid to which each prosumer is in-
dividually connected, and whose own demand is zero on all
days. We call this problem the Prosumer Energy Acquisa-
tion Cost Minimization (PEAC-min) problem, and this is the
central problem of this paper.

The main innovation of our model is the possibility to trade
energy which is stored in the battery with other microgrid
prosumers; earlier studies focus on, e.g., operational strate-
gies for increased battery lifetime with fixed feed-in tariffs
under variable energy demands and variable amounts of PV-
generated energy [Angenendt et al., 2018]. The key motiva-
tion for storing energy in the battery and either consuming it
or selling it later is that we assume not only variability of daily
demand and daily amounts of PV-generated energy, but also
daily fluctuation of both buying price ct and selling price st.
The battery offers prosumers the possibility to act strategi-
cally, compensating their own expenses for buying energy on
some days by selling energy on other days. PEAC-min is
a very natural scheduling problem: any prosumer, for each
day, schedules (i) the amount of energy to consume from their
self-generated energy through the PV panel, (ii) the amount
to store in their battery for self-using or selling in the future,
(iii) the amount to consume from their battery, and (iv) the
amount to buy from other prosumers.

A strategic usage of the battery can indeed lead to a signifi-
cant cut on the energy bill as well as more conscious usage of
energy. Typically, each one of these households is equipped
with a Home Energy Management System (HEMS), which is
responsible for coordinating the different demands of energy
(e.g., domestic appliances, EVs) with the PVs and the battery

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1873

[Beaudin and Zareipour, 2015]. The ownership of a HEMS,
or equivalently a smart meter ([Tushar et al., 2021]), is gen-
erally assumed in most of the local energy markets (LEM)
among prosumers, as it is a powerful tool to submit bids. One
of the key aspects of the problem is that decisions taken at
a given period impact the future by changing the state of the
system itself, namely the amount of energy stored.

The PEAC-min problem tackled in this work lies in be-
tween the LEM and the HEMS. We zoom out from the HEMS
and consider it as a sort of black box, which gives a bal-
ance of energy for each period (e.g., one day) and optimize
the decision to be taken at the given period for a single pro-
sumer. Though we analyze the strategic actions of a single
prosumer, note that their optimal strategic actions is influ-
enced by, but also influences itself, the strategic actions of
other prosumers in the same microgrid. Not only do they in-
fluence the available amounts of energy for trading, but also
influence the buying and selling prices depening on their de-
mand and decisions of how much energy to store in the bat-
tery, to buy and to sell. The relevance of studying and under-
standing these local energy markets, and designing efficient
actions of a single prosumer, is underlined by the realistic as-
sumption that a prosumer may not be willing or be able to
coordinate their actions with other prosumers, and thus needs
to know their own (selfish) optimal decision plan provided by
our algorithms. With some natural assumptions on the prices
for buying and selling, arranging these action plans of several
prosumers which are connected by a microgrid can lead to
efficient local energy markets [Capper et al., 2022].

One key aspect of these types of scheduling problems is the
intrinsic uncertainty of the parameters. A popular method to
deal with this stochasticity is to use a simulation approach.
Closely related to the models in our paper is the work of
[Hafiz et al., 2019], which extends to a energy community the
stochastic dual dynamic programming approach, already ex-
tremely popular in hydrothermal scheduling problems [Mor-
ton, 1996]. For sake of the aforementioned generality, we de-
cided to introduce variability also on the prices for buying and
selling energy. In this new setting, the use of a Monte Carlo
scheme becomes very difficult as the scenario tree grows ex-
ponentially in several parameters. Thus, the decision relies on
predictions about the expected amount of PV-generated en-
ergy in future time periods. Motivated by the rapid advance of
HEMS and predictor technologies, we study the offline ver-
sion relying on a good predictor. Even though in practice,
the decisions regarding how much to buy and sell in a given
period are made in an online fashion, a good offline strategy
can lead to good decisions, if in each period, we base the on-
line decision on solving an offline version for the next period
according to some predicted prices, especially if these predic-
tions are highly accurate.

In the full version, we show that if predictions have small
multiplicative errors, then a solution for the offline problem
remains near-optimal even in the worst case. To conclude, we
mention that our setting relates to KNAPSACK, which is one
of the 21 NP-complete problems studied by [Karp, 1972].
Namely, we introduce a new temporal KNAPSACK variant
which generalizes earlier models studied by [Bartlett et al.,
2005; Clautiaux et al., 2021; Thielen et al., 2016].

To support our theoretical findings, in Section 7 we pro-
vide an experimental analysis of the performance of our algo-
rithms, whose full code we provide in a public GitHub repos-
itory [Codazzi et al., 2024].

2 Preliminaries
We consider the following model. We have a finite time hori-
zon which is split into n periods (e.g., days). During each
period t ∈ [n] := {1, . . . , n}, a prosumer has a given demand
of dt ∈ N units of electrical energy. Similarly, they have an
amount of et ∈ N units of electrical energy available as being
generated from the PV panels in period t. In period t, they can
buy energy at a current price ct ∈ N≥0 from other prosumers
in the microgrid. Depending on the characteristics of the grid
and the technology of the HEMS, the prosumer could also be
allowed to sell energy back to the grid at a price st ∈ N per
unit of energy. A natural assumption about electricity prices,
which can be observed in real markets, is that typically buy-
ing is more expensive than the revenue obtained from selling
to the grid1; thus, throughout we assume that ct ≥ st for all
t ∈ [n]. This does not mean that selling is in general not con-
venient; instead, degenerated behavior of a prosumer buying
infinite amounts of energy and selling them in the same pe-
riod is avoided.

Finally, a battery is available to each prosumer with a ca-
pacity C ∈ N. At the beginning of the time horizon, the
battery is charged with soc0 ∈ N units of energy.

We observe that each period t in the time horizon falls into
one of two classes. On one hand, we have periods where the
amount of PV-generated energy supply is at most the demand
from that period (et ≤ dt); on the other hand, we have excess
periods where this supply exceeds the demand (dt < et). We
define two quantities d′t := (dt−et)

+, and ext := (et−dt)
+.

Hence, for each period t, we have that d′t ≥ 0 and ext ≥ 0
(at most one of which is positive), and dt − et = d′t − ext.

3 Integer Linear Programming Formulations
and Solutions

We now model the different problem variants of PEAC
as integer linear programs (ILP), for which we use:
n number of periods
ct price per unit for buying energy in period t
st price per unit for selling energy in period t
dt demand in period t
et amount of PV-generated energy in period t
C capacity of the battery
soc0 initial state of charge of the battery

xt units of energy bought from other pros. in per. t
yt units of energy sold to other prosumers in per. t
zt units of energy exchanged with battery in per. t
SOCt state of charge of battery in period t
qt binary variable: qt = 1 if we buy in period t

1Germany’s Federal Network Agency (Bundesnetzagentur) re-
ports for 1 April 2023 an average household price of 45.19
ct/kWh [Bun, 2024a] for electrical energy, whereas the feed-in tariff
for PV-generated energy was at most 13.40 ct/kWh [Bun, 2024b].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1874

For each time period t ∈ {1, . . . , n}, let xt ≥ 0 be the
amount of energy bought, let yt ≥ 0 be the amount of energy
sold, and let zt be the amount of energy stored or discharged
from the battery (so zt can be either positive or negative or
zero). Furthermore, we keep track daily of the state of the
system by means of the variables SOCt.

In the first problem we describe, the prosumer can fill up
the battery by buying energy and can buy or sell an arbitrary
amount of energy on each day. Therefore, we refer it to as the
UNBOUNDED version and call it PEAC-BS-U. It is modeled
by the following ILP:

min
∑
t

(ctxt − styt) (1)

s.t. xt − yt − zt = dt − et (2)
SOCt = SOCt−1 + zt (3)
SOC0 = soc0 (4)
SOCt ≤ C (5)
xt, yt, SOCt ∈ N (6)
zt ∈ Z (7)

PEAC-BS-U
In: I = (ct, st, dt, et, C, soc0 | t ∈ [n]).

Out: An optimal solution to the ILP defined by (1)–(7).

The problem variant where selling is not allowed is
called PEAC-B-U we define it by adding the constraints
yt = 0, t ∈ [n], to PEAC-BS-U.

Equation (2) ensures that the amount we buy together with
the amount we get from the PVs minus the amount we sell
or store must be exactly the daily demand. Equation (3) en-
sures that the amount stored (which can be negative in case
we use energy from the battery) is added to the previous state
of charge of the battery. Equation (5) ensures that the state of
the battery never exceeds the capacity.

Depending on the characteristics of the grid, prosumers
may face restrictions on the feasible amounts of energy to
buy. For instance, it could be that—for fairness reasons—
prosumers are not allowed to buy more than the amount they
need on that day. As a consequence, the battery can only
be charged only with self-generated energy from PVs (see
[Hafiz et al., 2019]). To express this restriction, we bound the
amount of energy which can be bought by adding the follow-
ing constraint to PEAC-BS-U:

xt ≤ (dt − et)
+ (8)

This allows us to formally define our next problem variant:

PEAC-BS
In: An instance I = (ct, st, dt, et, C, soc0 | t ∈ [n]).

Out: An optimal solution to the IP defined by con-
straints (1)–(8).

Analogously, we define the variant PEAC-B, where selling is
not allowed, by adding the constraints yt = 0 to PEAC-BS.

We proceed to define a common generalization of PEAC-
BS-U and PEAC-BS called PEAC-BS-GENERAL. Here,

instead of (8) we add inequalities of the type
xt ≤ αt (9)
yt ≤ βt, (10)

where α = (α1, . . . , αn) and β = (β1, . . . , βn) are given in
the input.

PEAC-BS-GENERAL

In: An instance I = (ct, st, dt, et, αt, βt, C, soc0 |
t ∈ [n]).

Out: An optimal solution to the ILP defined by con-
straints (1)–(7) and (9)–(10).

Clearly, PEAC-BS-U corresponds to the case when we set
each αt and βt to be sufficiently large, e.g., αt = C+d′t−ext

and βt = C + ext − d′t, and PEAC-BS corresponds to the
case when we set αt = (dt − et)

+ and βt = C + ext − d′t.
The variant PEAC-B-GENERAL is defined similarly, by

adding constraints yt = 0; equivalently, we can set βt = 0.
Hence, it is trivial that PEAC-B-GENERAL is a spe-

cial case of PEAC-BS-GENERAL, and so are PEAC-B-U
and PEAC-BS-U. However, we will show that PEAC-BS-
GENERAL also reduces to PEAC-B-GENERAL in O(|I|)
time for a given instance I , and hence it is enough to give
an algorithm for PEAC-B-GENERAL to solve all the above
problem variants.

Finally, we consider a scenario in which if the prosumer
buys energy from the grid, they are then forced to buy the
whole amount needed. This implies that at every time period,
the prosumer can either buy or satisfy the whole demand by
means of the energy stored in the battery. To model these last
two cases, we introduce the binary variable qt which takes
value 1 in case the prosumer decides to buy. To emphasize
that the choices of the prosumers are mutually exclusive, we
call this variant PEAC-BS-EX. PEAC-BS-EX can be ob-
tained from PEAC-BS-U by adding the constraints

xt = (dt − et)
+qt (11)

qt ∈ {0, 1} (12)

PEAC-BS-EX

In: An instance I = (ct, st, dt, et, C, soc0 | t ∈ [n]).
Out: An optimal solution to the IP defined by con-

straints (1)–(7) and (11)–(12).

The variant PEAC-B-EX, where selling is not allowed, is
defined by adding the constraints yt = 0 to PEAC-BS-EX.

A common generalization for these two problem variants
can be defined similarly as before, by adding the following
inequalities to PEAC-BS-U:

xt = αtqt (13)
yt ≤ βt (14)

qt ∈ {0, 1} (15)

PEAC-BS-EX-GEN

In: An instance I = (ct, st, dt, et, αt, βt, C, soc0 |
t ∈ [n]).

Out: An optimal solution to the ILP defined by con-
straints (1)–(7) and (13)–(15).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1875

PEAC-BS-GENERAL PEAC-BS-EX-GEN

complexity polynomial-time solvable NP-hard
algorithm Buying Backwards Dynamic programming

selling
forbidden

PEAC-B-U
αt = C + d′t − ext, βt = 0

PEAC-B
αt = d′t, βt = 0

PEAC-B-EX

αt = d′t, βt = 0

selling
allowed

PEAC-BS-U
αt = C + d′t − ext, βt = C + ext − d′t

PEAC-BS
αt = d′t, βt = C + ext − d′t

PEAC-BS-EX

αt = d′t, βt = C + ext − d′t

Table 1: An overview of our results.

It is easy to see that the values to variables zt and SOCt

are uniquely determined by the values of variables xt and yt
for t ∈ [n] in all cases. Hence, we usually refer only to
(x1, y1, . . . , xn, yn) as the solution.

4 Structural Insights of the ILPs
In this section we analyze the structure of the ILPs. Recall
that a matrix A ∈ Rm×n is totally unimodular (TU) if each
subdeterminant of A is from {0,±1}. It is well-known (cf.
[Schrijver, 1998, Theorem 19.1]) that any Linear Program
(LP) whose constraint matrix A is TU admits an integer opti-
mum solution.

Theorem 1. The constraint matrix of the ILP (1)–(7) with
(9)–(10) is totally unimodular.

Theorem 1 has the following corollary.

Corollary 2. PEAC-BS-GENERAL can be solved in polyno-
mial time.

Even if it is possible to solve the problem by means of an
LP solver in polynomial time, we provide a combinatorial
algorithm that can solve these problems O(n2) steps. Not
only is this a fast theoretical run time, we will later show that
it is also fast in experiments. It also helps to better understand
the structure of the problem.

5 A Polynomial-Time Algorithm for
PEAC-B-GENERAL

In this section we provide a polynomial-time algorithm to
solve problem PEAC-B-GENERAL and show that this also
allows to solve PEAC-B-U, PEAC-BS-U, PEAC-B and
PEAC-BS efficiently. For this, we first show that an instance
of PEAC-BS-GENERAL can be reduced to an instance of
PEAC-B-GENERAL in linear time. When analyzing runtime,
each addition and multiplication is assumed to have unit cost.

Theorem 3. Any instance I of PEAC-BS-GENERAL can be
reduced to PEAC-B-GENERAL in O(|I|) time.

We proceed to informally describe our algorithm for
PEAC-B-GENERAL. Due to space constraints, we defer its
formal description and proof of correctness to the full version.

The algorithm iterates through periods 1 to n and at each
point has a feasible solution for the first couple of periods,
which it maintains by updating the amounts it bought on the
previous periods. It keeps track of the latest period f , where

the battery is full in the current solution, initialized to 0. It
also keeps track, for each period t′ < t, in a variable Rt′

the largest possible amount we can add to xt′ in our current
solution, without creating a period t′′ ≥ t′ where the state
of charge would exceed C. We initialize this to something
sufficiently large (e.g., C + d′t) for each period to handle the
possibility of buying even C + d′t on period t, if it is feasible
(buying more can never be feasible). After period t is over, Rt

gets updated to C − SOCt.
In a given iteration corresponding to a period t, the algo-

rithm does the following. If ext > 0 or SOCt−1 ≥ d′t, then
we do not need to buy anything to maintain a feasible solution
for the first t periods, we just update the variables Ri, f and
SOCt according to this. Otherwise, we have to satisfy the ad-
ditional demand d′t − SOCt−1. For this, we always compute
the (latest) period i∗ with minimum buying price among pe-
riods where we can still buy on (i.e. the ones with f < i and
xi < αi). Then, we look at the maximum amount we can add
to xi∗ in a feasible solution, and if it is at least the remain-
ing demand, then we set it to that, update the variables and
proceed to the next period. Otherwise, we increase xi∗ by as
much as we can by maintaining feasibility, update the Ri, f
and SOCi variables, and then finally update i∗ and iterate
with that until the demand is fully satisfied. The algorithm’s
pseudocode is given as Algorithm 1.
Theorem 4. Algorithm 1 outputs an optimal solution for
PEAC-B-GENERAL in O(n2) time.

Proof. First of all, if the algorithm outputs a solution, then
it is feasible. This is because we do not proceed to the next
period until the demand is fully satisfied, and if we increase xi

on some day, then because we store Ri, and only increase
with at most Ri, we never exceed the capacity of the battery.
Finally, we also ensure that xi ≤ αi when computing incr.

If the algorithm returns that there is no feasible solution,
then there cannot be one, as the algorithm only buys energy
from other prosumers if no more energy is left in the battery
to satisfy a demand. Hence, if the battery becomes overfull,
then there is an interval [t1, t2] such that

∑t2
t=t1

(et−dt) > C,
so there cannot be a feasible solution.

We prove optimality of the computed solution by induction
on

∑
t αt. In case that

∑
t αt = 0, then the only possible

feasible solution is (0, . . . , 0) and the algorithm’s output is
clearly optimal, if it is feasible.

Suppose that
∑

t αt > 0 and the instance has a feasible so-
lution. If the algorithm never buys energy, then the output is

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1876

Algorithm 1: Buying backwards
Input: An instance I = (ct, dt, et, αt, C, soc0 |
t ∈ [n]) of PEAC-B-GENERAL
cost := 0, SOC0 = soc0, f = 0 ▷ f is the latest full
period
xt := 0, d′t = (dt − et)

+, ext = (et − dt)
+ for

t = 0, . . . , n
Rt = C + d′t for t = 1, . . . , n ▷ smallest remaining
capacity on periods t, . . . , n - monotone decreasing,
after Rt becomes 0, we never update it or any
previous one

for t = 1, . . . , n do
Rt := C + d′t − SOCt−1

i∗ := (latest) argmin{ci | f < i ≤ t, xi < αi} ▷
i∗ is latest cheapest period when we can still buy

if ext > 0 then
Rt := Rt−1 − ext, SOCt := SOCt−1 + ext

for j = f + 1, . . . , t− 1 do
Rj := min{Rj , Rt} ▷ update remaining
capacities considering ext

end
end
else if SOCt−1 ≥ d′t then

Rt := Rt−1 + d′t, SOCt := SOCt−1 − d′t ▷
We can satisfy d′t without buying

end
else

d′t := d′t − SOCt−1 ▷ The amount we need
while d′t > 0 do

incr := min{Ri∗ , αi∗ − xi∗ , d
′
t} ▷ The

amount of d′t we can satisfy on i∗

xi∗ = xi∗ + incr
cost := cost+ ci∗incr
for j = t− 1, . . . , i∗ do

SOCj := SOCj + incr
Rj := Rj − incr
if Rj = 0 then

f := j
break ▷ update f

end
end
for j = f + 1, . . . , i∗ − 1 do

Rj := min{Rj , Ri∗}
end
d′t := d′t − incr ▷ amount still needed
i∗ := (latest) argmin{ci | f < i ≤
t, xi < αi}

end
SOCt := 0, Rt := C

end
if SOCt > C then

No feasible solution!
end
else if SOCt = C then

f := t
end

end
return cost;x1, . . . , xn

clearly optimal. Otherwise, let j be the coordinate of the out-
put that is first increased during the algorithm and let t ≥ j be
the last iteration where it is increased. Then, until that point,
the algorithm only increased xj , and none of the other xi’s.

Denote the output by Sol = (x1, . . . , xn). By the previous
argument we have that xj ≥ 1, because the algorithm never
decreases any coordinate.

Let O∗ = (x∗
1, . . . , x

∗
n) be an optimal solution for which

|x∗
j − xj | is minimum. We claim that x∗

j = xj .
Suppose first for the contrary that x∗

j < xj . The fact that
the algorithm needed to increase buying on j to xj in iter-
ation t implies that in order to satisfy all the demands of the
first t periods, O∗ must also buy on some periods (j ̸=)j′ ≤ t,
and choose j′ to be the first such period. Further, by choice
of the algorithm, we had that j = i∗, so αj > 0, αj′ > 0,
and cj ≤ cj′ , because cj was minimum among those with
αi > 0 and f < i (f < j′ too, because the only way that
f = ℓ > 0 at the start of iteration t in the algorithm is if∑ℓ

i=1(di − ei) + soc0 = C, so no feasible solution can buy
in period i ≤ ℓ).

Create a solution S = (x′
1, . . . , x

′
n) from O∗ by decreas-

ing x∗
j′ by 1 and increasing x∗

j by 1. Then we still have
xj′ ∈ [0, αj] and x∗

j ∈ [0, αj], as Sol and O∗ are feasible.
Suppose that j < j′ ≤ t. Then, SOCS

i ≥ SOCO∗

i ≥ 0
for any period i. Further, as j′ ≤ t was the first period other
than j that O∗ bought energy on, and as Sol is feasible, buy-
ing 1 more unit of energy on period j cannot make the battery
go above capacity until day j′, so SOCS

i ≤ SOCSol
i ≤ C for

i < j′. From period j′, SOCS
i = SOCO∗

i ≤ C for i ≥ j′.
Hence, we conclude that S is feasible, but either S has smaller
cost than O∗, or S is optimal but |xS

j − xj | < |x∗
j − xj |, a

contradiction.
Suppose now that j′ < j. Then SOCS

i ≤ SOCO∗

i ≤ C
for any period i. Furthermore, SOCS

i ≥ 0 for i < j (as
Sol did not buy anything before j up until iteration j, but still
all demands up to period j − 1 could be satisfied). Finally,
SOCS

i = SOCO∗

i ≥ 0 for i ≥ j. Hence, S is feasible in this
case too, but either S has smaller cost, or the same cost but
|xS

j − xj | is strictly smaller, contradiction.
For the other direction, suppose that xj < x∗

j (≤ αj).
Then, there must be some some other period j′, where the
algorithm buys more than x∗

j′ (otherwise O∗ is not optimal
or not the closest optimal solution by cj ≥ 0). Let j′ ̸= j
be the coordinate of the output that is first increased strictly
above x∗

j′ in the algorithm and suppose it happened in itera-
tion t′ ≥ t. This implies that i∗ has changed by that point.
However, it was still true that f < j and xj < αj (before this
increase in xj′ , we had that xi ≤ x∗

i for all i and xj < x∗
j ,

so if f ≥ j or xj ≥ αj , then this would mean that O∗ is
infeasible). Hence, cj′ ≤ cj and j′ > j (if cj′ = cj , then by
the definition of i∗, otherwise if cj′ < cj and j′ < j, then j′

would have been chosen as i∗ before j, contradiction).
Create a solution S from O∗ by increasing x∗

j′ by 1 and
decreasing x∗

j by 1. Then 0 ≤ x∗
j′ + 1 ≤ xj′ ≤ αj′ and

0 ≤ xj ≤ x∗
j − 1 ≤ C. As j < j′, we also have SOCS

i ≤
SOCO∗

i ≤ C for all i ∈ [n]. Also, SOCS
i ≥ 0 for j ≤

i < j′, as by the end of iteration j′ − 1, the algorithm bought

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1877

at most as much as S on each period and still satisfied all
demands up until period j′−1. For i < j and i ≥ j′, we have
that SOCS

i = SOCO∗

i ≥ 0 too. So S is feasible, and either S
has smaller cost than O∗, or the same cost but |xS

j − xj | <
|x∗

j − xj |, a contradiction. We conclude that xj = x∗
j .

Now create a new instance I ′ from I by increasing ej by 1
and decreasing αj to xj − 1. Then (x∗

1, . . . , x
∗
j − 1, . . . , x∗

n)
is feasible for I ′. Also, one sees that the algorithm outputs
(x1, . . . , xj − 1, . . . , xn) for this new instance (until itera-
tion t, if it buys, then it still only buys on period j and
in iteration t, it increases this amount only to xj − 1, but
since ej is increased by 1, from this point every Ri, SOCi

and xi(i ̸= j) is the same, so it runs the same way from
this point as for I). By induction, this is optimal for I ′, so∑

t ctxt − cj ≤
∑

t ctx
∗
t − cj , hence

∑
t ctxt ≤

∑
t ctx

∗
t , so

the output is optimal for I , too.
To analyze the runtime, note that the outer for loop has n

iterations. In the first two cases (ext > 0 or SOCt−1 ≥ d′t),
we make O(n) steps per iteration. In the third case (d′t >
SOCt−1 ≥ 0), in each step, either the demand of period t
gets satisfied and we move on to the next period, or period i∗

gets saturated (xi∗ = αi∗), or f gets updated to a later period.
Hence, the number of all such updates over all iterations of
the outer for loop is at most 3n, which together with the in-
ner for loops to update SOCj , Rj and f gives O(n2) steps.
Thus, the runtime is bounded by O(n2).

6 A Dynamic Programming Approach to
PEAC-BS-EX-GEN

In this section we consider the problems PEAC-B-EX and
PEAC-BS-EX. Due to space constraints, the proofs of this
section are deferred to the full version. Instead, we provide
the intuition behind all algorithms given here.

Our first result is an NP-hardness reduction.
Theorem 5. PEAC-B-EX and PEAC-BS-EX are NP-hard,
even if dt ≥ et for all periods t ∈ [n].

By Theorem 5, PEAC-B-EX and PEAC-BS-EX are NP-
hard even when there are no excess periods. However, it is
exactly the excess periods which differentiate our problem
from earlier studied temporal versions of KNAPSACK where
the knapsack capacity changes over time. Later, we intro-
duce a new variant of KNAPSACK that captures the features of
our problem, and we explain the connections between them.
But first we provide a dynamic programming algorithm for
PEAC-BS-EX-GEN, which also solves problems PEAC-B-
EX and PEAC-BS-EX as a corollary.

The intuition of the algorithm is that we iteratively solve
the subproblems SP (t, C − k) for k ∈ [0, C] and t ∈ [0, n].
Subproblem SP (t, C−k) consists of finding the maximum of∑t

i=1(yisi−xici) restricted to the first t periods for a solution
(x1, y1, . . . , xt, yt) such that SOCt = C − k holds exactly.
At the end of each iteration t, we store the optimum values of
subproblems SP (t, C − k) for k ∈ [0, C] in a vector R.

The algorithm’s pseudocode is given in Algorithm 2. In the
algorithm, the maximum over the empty set is set to −∞.

We suppose that ext ≤ C for any t ∈ [n]. Otherwise,
we must sell at least ext − C units in period t, so then we

Algorithm 2: PEAC-BS-EX-GEN

Input: An instance I = (ct, st, dt, et, αt, βt,
C, soc0 | t ∈ [n]) of PEAC-BS-EX-GEN
ext := (et − dt)

+ for t ∈ [n]

R[C − k] :=

{
0 if C − k = soc0
−∞ otherwise

▷ We have

no choice but to leave soc0 for the first period
Set Q := [0, . . . , 0] ▷ we store the optima for the new
subproblems in Q before updating R

for t = 1, . . . , n do
for k = 0, . . . , C do

ak1 = min{βt, k + ext − d′t} ▷ Max amount
possible to sell in case we choose xt = 0
ak0 = max{0, k + ext − d′t − C} ▷ Min
possible
A(C − k) :=
maxak

0≤y≤ak
1
{R[C−k+y−ext+d′t]+y ·st}

bk1 = min{βt, k + αt + ext − d′t} ▷ Max
amount possible to sell in case we choose
xt = αt

bk0 = max{0, k + αt + ext − d′t − C} ▷ Min
possible
B(C − k) := maxbk0≤y≤bk1

{R[C − k + y −
ext − αt + d′t] + y · st − αt · ct}
Q[C − k] = max{A(C − k), B(C − k)}

end
Set R := Q and Q := [0, . . . , 0].

end
return maxk{R[k]}.

can reduce our instance by setting βt := βt − (ext − C)
and ext := C and solve the new instance. To align with the
maximization goal of the corresponding KNAPSACK instance
defined later, we equivalently change our objective function
to max

∑n
t=1(styt − ctdt).

We remark that we can compute the maxima in the algo-
rithm in a clever iterative way (details in the full version) that
leads to a significant speedup. Thereby, we obtain that:
Theorem 6. Algorithm 2 outputs an optimal solution for
PEAC-B-GENERAL in O(nC logC) time. For PEAC-B-
EX and PEAC-BS-EX, the time is O(nC).

A New Temporal Knapsack Variant. We now introduce a
new variant of the KNAPSACK problem that closely relates to
PEAC-BS-EX-GEN. It is formally defined as follows:

TEMPORAL KNAPSACK WITH ITEM COPIES AND
LOWER AND UPPER BOUNDS (TKICLUB)

In: A time horizon τ = [n], a set of m items with
weights wi ∈ N, profits pi ∈ N, a number of
copies Ni and an arrival time ti ∈ τ for i ∈ [m],
and time-dependent monotone increasing lower
and upper bounds Lt ≤ Ut for t ∈ [n].

Out: An integral vector x = (x1, . . . , xm) such that
Lt ≤

∑
i|ti≤t wixi ≤ Ut for all t ∈ τ , xi ∈

[0, Ni] for all i ∈ [m] and
∑n

i=1 pixi is maximum.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1878

Intuitively, the connection between PEAC-BS-EX-GEN
and TKICLUB is that we can view PEAC-BS-EX-GEN as
a problem, where we start from (a not necessarily feasible)
solution, where we buy the demand each period, and then we
want to maximize our savings from there. That is, we choose
the periods where we use the battery instead of buying d′t and
the periods and amounts that we sell. As our battery usage
is limited by the excess energy up to that point on any given
day, we have a time dependent upper bound on the corre-
sponding KNAPSACK instance, but also because of the bat-
tery constraint, we have time dependent lower bounds on at
least how much item weight must be in the knapsack. Also, as
the amount we sell is not a binary choice, the KNAPSACK in-
stance has items that we can put inside the knapsack multiple
times (given by Ni = βt), which we emphasize is fundamen-
tally different from having βt copies of the item, since in the
former case, βt may not be polynomial in the input size. In
particular, we show:
Lemma 7. Any instance I of PEAC-BS-EX-GEN can be
reduced to an instance I ′ of TKICLUB in O(|I|) time such
that an optimal solution to I can be constructed from an op-
timal solution to I ′ in polynomial time.

In the remainder of this section, we extend our dynamic
programming algorithm to TKICLUB. First, we order the
items i ∈ [m] such that their arrival times are monotone in-
creasing, that is tj ≥ tl if j > l. Then we have subproblems
SP (i, Uti−k) for each i ∈ [m] and 0 ≤ k ≤ Uti−Lti , which
correspond to the restriction of the instance to the first ti pe-
riods and the first i items, such that in the end exactly Uti −k
weight is in the knapsack. We store these optima in R[k] for
each iteration i. Beyond this, the idea of the algorithm re-
mains as before.
Algorithm 3: TKICLUB

Input: A TKICLUB instance
I = (n,m,wi, pi, Ni, ti, Li, Ui | i ∈ [m])

R[k] :=

{
0 if k = 0

−∞ otherwise
for

k = 0, 1, . . . ,maxj{Uj − Lj | j ∈ [n]}. ▷
initialization for the empty subproblem
L0 := 0, U0 := 0
Q := [0, . . . , 0] ▷ we store the optima for the new
subproblems in Q before updating R

for i = 1, . . . ,m do
for k = 0, . . . , Uti − Lti do

a0 = max{0, ⌈Uti
−Uti−1

−k

wi
⌉}

a1 = min{Ni, ⌊
Uti

−Lti−1
−k

wi
⌋} ▷ these

bounds force that the below max only queries
R-values from the range [0, Uti−1 − Lti−1]
Q[k] = maxa0≤xi≤a1

{R[Uti−1
− Uti + k +

wixi] + pixi}
end
Set R := Q and Q := [0, . . . , 0].

end
return maxk{R[k]}

Theorem 8. Algorithm 3 solves TKICLUB optimally in time
O(mW logW), where W = maxt{Ut − Lt}.

7 Experimental Analysis
We implemented all combinatorial algorithms in Python. To
measure their experimental efficiency, we also implemented
the ILP formulations of Section 3 and solved them with
Gurobi 10.0.2 on simulated instances. We ran all experiments
on an Intel iCore5 CPU at 2.3 GHz with 4 GB of memory.

We took a systematic approach to simulate instances. To
ensure variability in the instances ([Johnson, 1999]), we gen-
erated them randomly from different distributions. Firstly,
the battery capacity C is simulated from a uniform distri-
bution with support [0, 1000]. Then C is taken as upper
bound for generating the initial state of battery soc0. The
values d′t, ext were generated by first sampling Xt from a
normal distribution with mean C/4 and then adding another
uniform random variable Yt with support [−C/6, C/2] and
setting ext = max{Xt − Yt, 0} and d′t = max{Yt −Xt, 0}.
The prices for buying and selling are simulated by means of
two Gaussian distributions tuned such that their probability
density functions overlap. Such a choice is an effort to sim-
ulate real market conditions. Indeed, even if on average the
prices for buying energy are higher than those for selling, if
we consider prices on different periods, it could be that the
price for selling is higher.

We start by comparing the performance of Algorithm 2 and
Gurobi for the corresponding ILP. We simulated 20 different
instances with the number of periods ranging from 100 to 600
and with a capacity of at most 1000. Figure 1 shows the av-
erage runtimes for each time horizon selected. As expected,
the times for solving instances with Algorithm 2 were signifi-
cantly shorter and remained consistently within seconds even
for the largest simulated values of C and n, whereas Gurobi
often exceeded the time limit of 180 seconds to solve them.

1
2
0

0
15

0

PEAC−B−Ex PEAC−BS−Ex

100 575 100100 575

R
un

tim
e

[s
]

Length n of time horizon

Our algorithm
ILP

0

Figure 1: Runtimes for PEAC-B-Ex and PEAC-BS-EX-GEN.

We also conducted simulations regarding PEAC-B-U,
PEAC-BS-U, PEAC-B and PEAC-BS with 50 different
lengths n of time horizons, ranging from 100 to 10000. For
each time horizon considered, we simulated 100 instances
and computed the average runtime. As expected from Theo-
rem 4, the battery size had little impact on the algorithm per-
formance. Our experiments showed that the runtime grows
linearly in n in the simulated instances both for Algorithm 1
and the IP. We observe that the ILP solver performs better
when there are many periods with high demands and few pe-
riods with excess energy, otherwise Algorithm 1 performed
better. In both cases, the runtimes were similar to each other.
We defer full results for these experiments to the full version.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1879

Acknowledgements
Laura Codazzi was supported by the Graduate School “shar-
ing.city.college” of ahoi.digital. Gergely Csáji was supported
by the Hungarian Scientific Research Fund, OTKA, Grant
No. K143858, by the Momentum Grant of the Hungar-
ian Academy of Sciences, grant number 2021-1/2021 and
by the Ministry of Culture and Innovation of Hungary from
the National Research, Development and Innovation fund, fi-
nanced under the KDP-2023 funding scheme (grant number
C2258525).

References
[Angenendt et al., 2018] Georg Angenendt, Sebastian

Zurmühlen, Hendrik Axelsen, and Dirk Uwe Sauer.
Comparison of different operation strategies for pv battery
home storage systems including forecast-based operation
strategies. Applied Energy, 229:884–899, 2018.

[Bartlett et al., 2005] Mark Bartlett, Alan M Frisch, Youssef
Hamadi, Ian Miguel, S Armagan Tarim, and Chris
Unsworth. The temporal knapsack problem and its solu-
tion. In Proc. CPAIOR 2005, pages 34–48, 2005.

[Beaudin and Zareipour, 2015] Marc Beaudin and
Hamidreza Zareipour. Home energy management
systems: A review of modelling and complexity. Re-
newable and Sustainable Energy Reviews, 45:318–335,
2015.

[Bun, 2024a] Durchschnittlicher Preis Haushaltsstrom zum
1. April 2023, May 2024. https://www.bundesnetzagentur.
de/DE/Vportal/Energie/PreiseAbschlaege/Tarife-table.
html.

[Bun, 2024b] Einspeisvergütung Solarstrom 2023 nach
EEG, May 2024. https://www.bundesnetzagentur.de/DE/
Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/
EEG Foerderung/Archiv VergSaetze/start.html.

[Capper et al., 2022] Timothy Capper, Anna Gorbatcheva,
Mustafa A Mustafa, Mohamed Bahloul, Jan Marc Schwid-
tal, Ruzanna Chitchyan, Merlinda Andoni, Valentin Robu,
Mehdi Montakhabi, Ian J Scott, et al. Peer-to-peer, com-
munity self-consumption, and transactive energy: A sys-
tematic literature review of local energy market models.
Renewable and Sustainable Energy Reviews, 162:112403,
2022.

[Clautiaux et al., 2021] François Clautiaux, Boris Detienne,
and Gaël Guillot. An iterative dynamic programming ap-
proach for the temporal knapsack problem. European
Journal of Operational Research, 293(2):442–456, 2021.

[Codazzi et al., 2024] Laura Codazzi, Gergely Csáji,
and Matthias Mnich. Python code for all ex-
periments, 2024. https://github.com/lauracodazzi/
CostMinimizationElectricalEnergyMicrogrid.

[Hafiz et al., 2019] Faeza Hafiz, Anderson Rodrigo
de Queiroz, Poria Fajri, and Iqbal Husain. Energy
management and optimal storage sizing for a shared com-
munity: A multi-stage stochastic programming approach.
Applied Energy, 236:42–54, 2019.

[Hockenos, 2019] Paul Hockenos. Wired,
2019. https://www.wired.com/story/
in-germany-solar-powered-homes-are-catching-on/.

[Hönen et al., 2023] Jens Hönen, Johann L Hurink, and Bert
Zwart. A classification scheme for local energy trading.
OR Spectrum, 45(1):85–118, 2023.

[Johnson, 1999] David S Johnson. A theoretician’s guide to
the experimental analysis of algorithms. Data Structures,
Near Neighbor Searches, and Methodology, 5:215–250,
1999.

[Karp, 1972] Richard M. Karp. Reducibility among Combi-
natorial Problems, pages 85–103. Springer US, Boston,
MA, 1972.

[Morton, 1996] David P Morton. An enhanced decompo-
sition algorithm for multistage stochastic hydroelectric
scheduling. Annals of Operations Research, 64:211–235,
1996.

[Schrijver, 1998] Alexander Schrijver. Theory of linear and
integer programming. John Wiley & Sons, 1998.

[Thielen et al., 2016] Clemens Thielen, Morten Tiedemann,
and Stephan Westphal. The online knapsack problem with
incremental capacity. Mathematical Methods of Opera-
tions Research, 83:207–242, 2016.

[Tushar et al., 2021] Wayes Tushar, Chau Yuen, Tapan K
Saha, Thomas Morstyn, Archie C Chapman, M Jan E
Alam, Sarmad Hanif, and H Vincent Poor. Peer-to-peer
energy systems for connected communities: A review of
recent advances and emerging challenges. Applied Energy,
282:116131, 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1880

https://www.bundesnetzagentur.de/DE/Vportal/Energie/PreiseAbschlaege/Tarife-table.html
https://www.bundesnetzagentur.de/DE/Vportal/Energie/PreiseAbschlaege/Tarife-table.html
https://www.bundesnetzagentur.de/DE/Vportal/Energie/PreiseAbschlaege/Tarife-table.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/EEG_Foerderung/Archiv_VergSaetze/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/EEG_Foerderung/Archiv_VergSaetze/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/EEG_Foerderung/Archiv_VergSaetze/start.html
https://github.com/lauracodazzi/ CostMinimizationElectricalEnergyMicrogrid
https://github.com/lauracodazzi/ CostMinimizationElectricalEnergyMicrogrid
https://www.wired.com/story/in-germany-solar-powered-homes-are-catching-on/
https://www.wired.com/story/in-germany-solar-powered-homes-are-catching-on/

	Introduction
	Preliminaries
	Integer Linear Programming Formulations and Solutions
	Structural Insights of the ILPs
	A Polynomial-Time Algorithm for PEAC-B-General
	A Dynamic Programming Approach to PEAC-BS-Ex-Gen
	Experimental Analysis

