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Abstract
Knowledge compilation has proven effective in
(weighted) model counting, uniquely supporting in-
crementality and checkability. For incrementality,
compiling an input formula once suffices to answer
multiple queries, thus reducing the total solving
effort. For checkability, the compiled formula is
amenable to producing machine-checkable proofs
for verification, thus strengthening the solver’s
reliability. In this work, we extend knowledge
compilation from model counting to stochastic
Boolean satisfiability (SSAT) solving by general-
izing the dec-DNNF representation to accommodate
the SSAT quantifier structure and integrate it into
SharpSSAT, a state-of-the-art SSAT solver. We
further study proof generation from the compiled
representation and extend CPOG, a certified model-
counting toolchain, to generate proofs for certifying
the results of SharpSSAT. Experimental results
show the benefits of the proposed knowledge com-
pilation approach for SSAT in sharing computation
efforts for multiple queries and producing checkable
dec-DNNF logs with negligible overhead.

1 Introduction
Stochastic Boolean satisfiability (SSAT) is a formalism that
generalizes quantified Boolean formula (QBF) by replacing
the universal quantifier with a randomized one. Its ability to
capture decision-making under uncertainty makes it suitable
for succinct encoding of a variety of problems, e.g., formal
verification of probabilistic design [Lee and Jiang, 2018], plan-
ning under uncertainty [Salmon and Poupart, 2020], statistical
inference [Hsieh and Jiang, 2022], and fairness analysis of ma-
chine learning models [Ghosh et al., 2021]. Efficient solving
of SSAT has also been an actively studied topic [Majercik and
Boots, 2005; Salmon and Poupart, 2020; Chen et al., 2021;
Wang et al., 2022; Fan and Jiang, 2023].

Another direction that has been long studied for proposi-
tional reasoning tasks is knowledge compilation. Through
compiling a propositional theory into a suitable target lan-
guage, many intractable tasks can be done in polynomial
time [Darwiche and Marquis, 2002]. The earliest and most
well-known target language is the binary decision diagram

(BDD), which is widely applied in circuit synthesis and verifi-
cation [Clarke et al., 2018].

Despite its support for a wide range of queries and transfor-
mations, BDD construction often suffers from memory explo-
sion and fails for large problem instances. Hence, the quest
for succinct formats is an important pursuit. Huang and Dar-
wiche [2005] observed that the trace of an exhaustive DPLL-
style search with different constraints imposed corresponds to
different target languages. Among them, the decision decom-
posable negation normal form (dec-DNNF) is the most suc-
cinct. Recent advances in model counting have led to the de-
velopment of several dec-DNNF compilers [Muise et al., 2012;
Lagniez and Marquis, 2017]. Recent work also studied cer-
tified knowledge compilation [Capelli, 2019; Capelli et al.,
2021; Bryant et al., 2023], and developed various approaches
to verify whether the compiled result is logically equivalent to
the compiler’s given input. Certified knowledge compilation
is crucial in verifying the results of model counters.

Previous studies concerning knowledge compilation and
quantified formulas focus mainly on the theoretical bounds
for QBF evaluation. In [Coste-Marquis et al., 2005], the
tractability of QBF solving on a variety of target languages,
including BDD and dec-DNNF, was studied. In [Fargier and
Marquis, 2006; Capelli and Mengel, 2019], new target lan-
guages were proposed to achieve quantifier elimination. In
[Lai et al., 2017], BDDs were generalized to provide more
flexibility with canonicity being maintained. Regarding SSAT,
Lee et al. [2018] exploited BDDs for weighted model count-
ing in solving the exist-random quantified subclass of SSAT.
Ojala [2022] evaluated SSAT by compiling the matrix formula
into a BDD or sentential decision diagram (SDD) with com-
patible ordering using off-the-shelf compilers. However, its
performance is inferior to the state-of-the-art SSAT solvers.

In this paper, we propose a new target language of knowl-
edge compilation, based on the trace of the state-of-the-art
SSAT solver SharpSSAT [Fan and Jiang, 2023], named
levelized dec-DNNF, that supports incremental and check-
able evaluations on an SSAT formula. It allows more re-
laxed constraints on the ordering compared to similar ones
proposed in previous methods [Fargier and Marquis, 2006;
Lai et al., 2017], thus allowing more flexible and efficient
compilation. In addition, we formalize the pruning techniques
implemented in SharpSSAT into our representation to allow
partial exploration, resulting in both faster compilation and
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more succinct representation.
In addition, to certify the correctness of SSAT solv-

ing, we develop a proof framework cert-SSAT based on
CPOG [Bryant et al., 2023], which generates and checks
clausal proof for logical equivalence between the input and
output of a dec-DNNF compiler. To accommodate partial ex-
ploration from the pruning techniques, two dec-DNNF graphs
need to be compiled, which are then passed to cert-SSAT
for detailed clausal proof generation and validation. More-
over, we relax the logical equivalence checking in CPOG into
two logical implication checks to separately certify lower and
upper bounds of SSAT satisfying probability.

Experiments on various benchmark instances show the per-
formance advantage of compilation over repeated solving.
When certification is of concern, little computational overhead
is required for SharpSSAT to generate the additional dec-
DNNF logs for further proof checking. SharpSSAT is able
to generate dec-DNNF proofs for all solvable instances, and
cert-SSAT successfully turns 80.5% of them into clausal
proofs and verifies the clausal proofs within a reasonable time.
For the remaining 19.5%, cert-SSAT can neither prove or
disprove their correctness.

In fact, our proof framework helps reveal and fix previously
undetected bugs in SharpSSAT. It is the first work to for-
mally verify the results of an SSAT solver, in contrast to [Fan
and Jiang, 2023] with only (lower bound) witnessing ability.
Our method enhances the reliability and trustworthiness of
SharpSSAT results.

The rest of this paper is organized as follows. Section 2
defines notations and introduces essential backgrounds. Sec-
tion 3 proposes a new knowledge compilation format for SSAT
and discusses its supported queries. Section 4 presents the
proof generation and validation framework for SharpSSAT.
The experimental evaluation follows in Section 5. Finally,
Section 6 concludes this paper.

2 Preliminaries
In this section, we define the notations used throughout the
paper, and briefly review the foundations of SSAT and knowl-
edge compilation.

Boolean values TRUE and FALSE are denoted by ⊤ and ⊥,
respectively. Boolean connectives ¬, ∧, ∨, and→ are inter-
preted in their conventional semantics. A literal l is a Boolean
variable v or its negation ¬v (also written as v̄ for simplicity),
and we write var(l) = v to denote the corresponding Boolean
variable. A clause C is a disjunction of literals. A Boolean
formula ϕ is in conjunctive normal form (CNF) if it is a con-
junction of clauses. We also view a clause C as a set of literals
and a CNF formula ϕ as a set of clauses whenever appropriate.
The substitution of variable v with formula ψ in formula ϕ is
denoted by ϕ[ψ/v]. We denote the set of variables occurring
in a formula ϕ by vars(ϕ).

Let V be a set of Boolean variables. An assignment α on
V is a mapping from V to B = {⊤,⊥}, and we denote the set
of all possible assignments on V by A(V ). The projection of
formula ϕ over variables V onto an assignment α on V ′ ⊆ V
is denoted by ϕ[α], which is obtained by substituting each
occurrence of each v ∈ V ′ with the Boolean value α(v).

2.1 Knowledge Compilation
The idea of knowledge compilation is to first compile a propo-
sitional theory (or equivalently, a Boolean function) into a
target language in an offline phase. Then, queries on the target
language are performed during the online phase. A compari-
son of supported queries and succinctness of different target
languages can be found in [Darwiche and Marquis, 2002].

Among the target languages, we are particularly interested
in dec-DNNF, which is a special negation normal form (NNF),
to be defined as follows.
Definition 1 (Negation normal form). A Boolean formula ϕ
is in the negation normal form (NNF) if it consists of only the
connectives ∧, ∨, and ¬, and the negation connective ¬ only
occurs immediately before a variable.

We define the notions of decomposability and decision for
a formula as follows.
Definition 2 (Decomposability). A conjunction

∧
i ϕi of sub-

formulas ϕi’s is decomposable if vars(ϕi)∩vars(ϕj) = ∅ for
all i ̸= j. A Boolean formula ϕ in NNF is in the decomposable
negation normal form (DNNF) if every conjunction in ϕ is
decomposable.
Definition 3 (Decision). A disjunction ϕ1 ∨ ϕ2 of two subfor-
mulas ϕ1 and ϕ2 is called a decision with decision variable v
if ϕ1 = v ∧ ψ1 and ϕ2 = ¬v ∧ ψ2.

Finally, we define dec-DNNF.
Definition 4 (Dec-DNNF). Dec-DNNF is a language consist-
ing of Boolean formulas in NNF, where each conjunction is
decomposable, and each disjunction is a decision.

In the sequel, we shall view a dec-DNNF formula ϕ as a
directed acyclic graph (DAG) with a unique root node labeled
with ϕ. Each leaf node is labeled with either a literal or a
Boolean constant, and each internal node is either an AND
node, whose ith child is labeled with the conjoined subformula
ϕi as in Definition 2, or a decision node N associated with
decision variable v, denoted dvar(N) = v, with exactly two
children labeled with ψ1 and ψ2 as in Definition 3. Note that
each subgraph induced by a node N and its descendants is a
dec-DNNF graph representing the subformula ϕN that N is
labeled with. We sometimes use the terms dec-DNNF formula
and dec-DNNF graph interchangeably.

2.2 Stochastic Boolean Satisfiability
Stochastic Boolean satisfiability (SSAT) is initially proposed
in [Papadimitriou, 1985] as a game against nature.
Definition 5 (SSAT Syntax). An SSAT formula Φ = Q. ϕ over
variables V is of the form

Q1v1, Q2v2, . . . , Qnvn. ϕ , (1)

where Q = Q1v1, Q2v2, . . . , Qnvn. is the quantifier prefix
(prefix for short), and ϕ is the matrix. Each Qi ∈ {∃,

Rpi},
and ϕ is a quantifier-free Boolean formula over V in CNF. The
symbol

Rp denotes a randomized quantifier, where

Rp r states
that variable r evaluates to ⊤ with probability p and ⊥ with
probability 1 − p. We denote the quantifier of variable v as
Q(v), i.e., Q(vi) = Qi. If Q(v) = ∃ (resp.

R

), we say that v
is an existential (resp. randomized) variable.
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The quantification level (to count quantifier alternations) of
variable vi, denoted by lvl(vi), is recursively defined as

• lvl(v1) = 1, and

• lvl(vi) =

{
lvl(vi−1) if Qi = Qi−1

lvl(vi−1) + 1 otherwise
for i > 1.

The satisfying probability of an SSAT formula Φ is defined
recursively by

• Pr[⊤] = 1, Pr[⊥] = 0,

• Pr[∃v.Φ′] = max(Pr[Φ′[⊥/v]],Pr[Φ′[⊤/v]]), and

• Pr[

Rp v.Φ′] = (1− p) · Pr[Φ′[⊥/v]] + p · Pr[Φ′[⊤/v]],
where Φ′ is the SSAT formula obtained by removing the out-
ermost quantifier of Φ, i.e., Φ = Qv.Φ′.

Given an SSAT formula Φ and some θ ∈ [0, 1], deciding
whether Pr[Φ] ≥ θ is PSPACE-complete [Papadimitriou,
1985]. In addition, Theorem 1 shows that the satisfying proba-
bility of an SSAT formula can be computed by the satisfying
probability of its disjoint components. A similar property is
exhibited in model counting.

Theorem 1 ([Salmon and Poupart, 2020]). Given an SSAT
formula Φ = Q. ϕ, if ϕ =

∧k
i=1 ϕi is decomposable (Defini-

tion 2), then Pr[Φ] =
∏k

i=1 Pr[Q. ϕi].

2.3 Clausal Proof for Knowledge Compilation
CPOG [Bryant et al., 2023] can be used to certify the results
of a knowledge compiler by giving it a CNF formula ϕ and
its compiled dec-DNNF formula G as input. Given ϕ and G,
CPOG checks whether ϕ is logically equivalent to the Boolean
function represented by G. It is a clausal proof system based
on extended resolution [Tseitin, 1983]. A CPOG proof is a
sequence of extension, clause addition, and clause deletion
steps. An extension step introduces one extension variable
v that either encodes a conjunction or disjunction of literals
whose variables, called the defining variables of v, can be the
previously introduced extension variables or original variables
in the input formula. CPOG generates CNF encodings to de-
scribe the logical relation between extension variables and
their respective defining variables [Tseitin, 1983]. A clause
can be added to or deleted from the proof if the clause is an
implication redundancy with respect to the set of other clauses
in the proof. That is, if ψ → C holds for a clause C and a
CNF formula ψ, then C can be added to ψ to form ψ ∪ {C}
or deleted from ψ ∪ {C} to form ψ.
CPOG consists of a proof generator cpog-gen and a proof

checker cpog-check, and works as follows. cpog-gen
first encodes G into a CNF formula ψG by extension, and
then generates a clausal proof for ϕ→ ψG by clause addition
and a proof for ψG → ϕ by clause deletion. Given a CPOG
proof log P , cpog-check checks whether each extension,
clause addition, and deletion step in P is sound. Upon the
completion of proof checking, cpog-check claims ϕ ≡ ψG

if and only if 1) there is exactly one final unit clause {r}
added via implication redundancy, where r is the extended
literal representing the root of G, and 2) all input clauses of ϕ
have been deleted.

3 Knowledge Compilation for SSAT
We develop the idea of knowledge compilation for SSAT
tightly around the DPLL-style solver SharpSSAT [Fan and
Jiang, 2023]. SharpSSAT is a state-of-the-art solver that uti-
lizes component analysis, which is responsible for compiling
formulas with the decomposability property introduced in Sec-
tion 2.1 [Huang and Darwiche, 2005]. Inspired by the design
of SharpSSAT, we propose adding an ordering constraint on
dec-DNNF and allowing partial exploration to incorporate the
prefix structure of SSAT into the representation.

3.1 Levelized Dec-DNNF
As observed in [Huang and Darwiche, 2005], the trace of
an exhaustive DPLL-style search with component analysis
corresponds to a dec-DNNF formula. Also, in model counting,
due to its exhaustive nature, the effort of compilation only has
a slight overhead compared to direct solving, which makes it
especially compelling. As observed in [Salmon and Poupart,
2020], decomposability holds for SSAT, hence the idea of
SSAT evaluation with dec-DNNF seems plausible.

However, we recall the observation that deciding a QBF
is PSPACE-hard for arbitrary BDD [Coste-Marquis et al.,
2005, Proposition 1] and in P for BDD with compatible or-
dering [Coste-Marquis et al., 2005, Proposition 2]. As QBF
evaluation can be reduced to SSAT evaluation and dec-DNNF
is a superset of BDD, answering the satisfying probability of
an SSAT formula given an arbitrary dec-DNNF formula of its
matrix is also PSPACE-hard. Therefore, we know that some
ordering constraints must be imposed upon the dec-DNNF
formula to achieve SSAT evaluation in polynomial time with
respect to the formula size.

We thus propose levelized dec-DNNF to capture such repre-
sentation. To simplify our discussion, in the sequel we view a
leaf node N associated with literal l as a decision node with
dvar(N) = var(l), and ⊤ and ⊥ as the two children, thus
only considering constant nodes as leaf nodes. Note that this
modification increases the graph size by a constant factor, for
having two additional edges per literal node and two additional
constant nodes in total.

Definition 6 (Levelization). Given an SSAT formula Φ =
Q. ϕ in the form of Eq. (1) and a dec-DNNF graph G,1 we
say that G is levelized with respect to Φ if for each pair of
decision nodes N1 and N2, if N2 is reachable from N1, then
lvl(dvar(N1)) ≤ lvl(dvar(N2)).

The condition ensures that for all paths from the root to
the leaves in the dec-DNNF formula G, the ordering of the
decision nodes is consistent with the prefix of Φ. In addition,
we remark that by the decomposability of the conjunctions in
N1, dvar(N1) cannot appear in the formulas represented by
the descendants of N1. In particular, we have dvar(N1) ̸=
dvar(N2). This corresponds to the well-known read-once
property [Darwiche and Marquis, 2002].

The idea of levelized dec-DNNF closely resembles that
of O-DDG [Fargier and Marquis, 2006] and BDD[∧] [Lai

1Note that we do not require the function represented by G to be
equivalent to ϕ, as this will not be the case when pruning techniques
are considered in Section 3.3.
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Algorithm 1 SSAT Evaluation with dec-DNNF

1: procedure EVALSSAT(Φ, G)
2: ▷ Φ = Q. ϕ is an SSAT formula, and G is a levelized

dec-DNNF graph equivalent to ϕ with m nodes
3: Let P be a vector of size m indexed by the nodes of

G
4: Initialize each cell of P to null
5: EVAL-NODE(Φ, G,G.root)
6: return P [G.root]
7: procedure EVAL-NODE(Φ, G,N )
8: ▷ N is a node in G
9: if P [N ] = null then ▷ Each node is computed once

10: if ϕN = ⊥ then
11: P [N ]← 0
12: else if ϕN = ⊤ then
13: P [N ]← 1
14: else if N is an AND node then
15: ▷ Let N1, . . . , Nk be the children of N
16: p← 1
17: for each child Ni of N do
18: EVAL-NODE(Φ, G,Ni)
19: p← p · P [Ni]
20: P [N ]← p
21: else
22: ▷ N is a decision node with decision variable

v and children N1, N2

23: EVAL-NODE(Φ, G,N1)
24: EVAL-NODE(Φ, G,N2)
25: if Q(v) =

Rp then
26: P [N ]← p · P [N1] + (1− p) · P [N2]
27: else ▷ Q(v) = ∃
28: P [N ]← max(P [N1], P [N2])

et al., 2017]. However, we relax the ordering constraint to
respect only the quantifier level instead of enforcing a total
order on the variables. By doing so, different branches of a
dec-DNNF formula can have different variable orders, allow-
ing more flexible ordering in the compilation. This leveliza-
tion also reflects the internal process of SSAT solvers, such
as SharpSSAT [Fan and Jiang, 2023], where an ordering
heuristics is invoked when choosing each branching variable,
instead of having a predetermined branching order.

3.2 SSAT Evaluation with Levelized Dec-DNNF
We start the subsection by showing that the satisfying proba-
bility of an SSAT formula Φ with its matrix in the levelized
dec-DNNF can be computed efficiently via Algorithm 1, as
formally stated in Theorem 2.

Theorem 2. Given an SSAT formula Φ = Q. ϕ in the form of
Eq. (1) and ϕ represented in the levelized dec-DNNF graph G,
Algorithm 1 computes the satisfying probability of Φ in time
O(|G|).

Proof. We first prove the correctness of the algorithm by in-
duction on the structure of G.

For the base case, let G consist of a single node N , which
must be a constant node. Its satisfying probability is 1 if

the node is associated with ⊤, and 0 if associated with ⊥, as
shown on Lines 10 to 13.

Suppose the node N is an AND node with k chil-
dren N1, . . . , Nk. By Theorem 1, we have Pr

[
Q. ϕN

]
=∏m

i=1 Pr
[
Q. ϕNi

]
, as done on Lines 14 to 20.

Finally, suppose the root node N is a decision node with
decision variable v and children N1 and N2. By the read-once
property, we have v /∈ vars(ϕN1) ∪ vars(ϕN2), and since
ϕN = (v∧ϕN1)∨ (¬v∧ϕN2), we have ϕN1 = ϕN [⊤/v] and
ϕN2 = ϕN [⊥/v]. Next, by the levelized assumption, v has the
smallest level among all variables in vars(ϕN ). The satisfying
probability can thus be computed as done on Lines 21 to 28
according to the recursive definition of satisfying probability
of SSAT introduced in Section 2.2.

It follows that the satisfying probability of the SSAT for-
mula is correctly computed. In addition, since the probabil-
ity of each node is computed only once using memoization
and each edge is visited once, the procedure runs in time
O(|G|).

Just as dec-DNNF supports weighted model counting of
different weights and under different partial assignments, lev-
elized dec-DNNF can do the same for SSAT formulas. We
first define the two types of queries of concern:
Definition 7 (Reweighting and cofactoring). Given SSAT for-
mulas Φ1 = Q1. ϕ1 and Φ2 = Q2. ϕ2, we say that Φ2 is a
reweighting of Φ1 ifQ1 andQ2 differ only in the probabilities
of the randomized variables and ϕ1 = ϕ2. We say that Φ2

is a cofactoring of Φ1 if Q1 = Q2 and ϕ2 = ϕ1[α] for some
assignment α ∈ A(V ′), where V ′ ⊆ vars(ϕ1).

The result is formally stated in the following theorem:
Theorem 3. Given an SSAT formula Φ = Q. ϕ, for ϕ rep-
resented in the levelized dec-DNNF graph G, the satisfying
probability of a reweighting or a cofactoring of Φ can be
computed in time O(|G|).
Proof. Let Φ′ = Q′. ϕ be a reweighting of Φ. Since the
proof for Theorem 2 does not make any assumption on the
probability of the randomized variables, Φ′ can be computed
by EVALSSAT(Φ, G) directly.

Let Φ′′ = Q. ϕ[α] be a cofactoring of Φ for some assign-
ment α ∈ A(V ′). We only need to modify Lines 26 and 28 to
assign P [N ] to P [N1] (resp. P [N2]) if v ∈ V ′ and α(v) = ⊤
(resp. ⊥).

3.3 Pruning Techniques
In the previous subsection, we demonstrate how to perform
SSAT-related queries with dec-DNNF by imposing an ordering
constraint on the representation. However, in addition to the
ordering constraint, SSAT also differs from model counting in
its optimization nature brought by existential quantification.
SharpSSAT [Fan and Jiang, 2023] utilizes this property

and implements some pruning techniques, including pure lit-
eral detection and existential early return, to enhance its per-
formance. The techniques exploit the fact that if Q(v) = ∃
and the implication ϕ[⊤/v] → ϕ[⊥/v] (resp. ϕ[⊥/v] →
ϕ[⊤/v]) holds, then Pr[Q. ϕ] equals Pr[Q. ϕ[⊥/v]] (resp.
Pr[Q. ϕ[⊤/v]]). It follows that the solver only needs to ex-
plore the branch ϕ[⊥/v] (resp. ϕ[⊤/v]) when ϕ[⊤/v] →
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x1(1)

AND(2) y1(3)
(ȳ1 ∨ ȳ2 ∨ y3)(y1 ∨ ȳ2 ∨ x̄2)
(y2 ∨ y3 ∨ x̄2)(y3 ∨ x2)

y2(4)
(ȳ2 ∨ x̄2)

(y2 ∨ y3 ∨ x̄2)(y3 ∨ x2)
y3(5)

(ȳ2 ∨ y3)
(y2 ∨ y3 ∨ x̄2)(y3 ∨ x2)

y3(6)(y3 ∨ x̄2)(y3 ∨ x2) AND(7) (x̄2)(y3 ∨ x2)

ȳ1(8) ⊥(9) ⊤(10) y3(11) x̄2(12)

(a) Without pure literal detection.

AND(1)

x1(2) (x1 ∨ ȳ1)(y1 ∨ ȳ2 ∨ x̄2)

AND(3) y1(4) (y1 ∨ ȳ2 ∨ x̄2)

y2(5) (ȳ2 ∨ x̄2)

y3(6) ȳ1(7) x̄2(8) ⊤(9)

(b) With pure literal detection.

Figure 1: Levelized dec-DNNF graphs for Example 1.

ϕ[⊥/v] (resp. ϕ[⊥/v] → ϕ[⊤/v]) holds, as the unexplored
branch ϕ[⊤/v] (resp. ϕ[⊥/v]) cannot have a higher satisfying
probability.

We incorporate the idea of pruning in our representation by
replacing each unexplored node with the constant node ⊥. By
doing so, the compiled dec-DNNF graph no longer represents
the matrix of the formula ϕ but rather represents a formula ϕl
such that ϕl → ϕ. We now revisit Theorems 2 and 3 on the
pruned representation.

Theorem 4. Given an SSAT formula Φ = Q. ϕ and a levelized
dec-DNNF graph Gl compiled from ϕ with pruning enabled,
the satisfying probability of Φ and a reweighting Φ′ of Φ can
be computed correctly by Algorithm 1 using Gl, while that of
a cofactoring Φ′′ of Φ cannot.

Proof. For Φ and Φ′, since the unexplored branch must have a
smaller satisfying probability and the decision variable is exis-
tential, Algorithm 1 still computes the correct satisfying prob-
ability, as the unexplored branch is never chosen on Line 28.

For the cofactoring case, let Φ = ∃v1,

R0.5 v2. (v1∨v2) and
consider the assignment α : v1 7→ ⊥. Since Q(v1) = ∃ and
v1 is a pure literal, the pruned representation will essentially
represent the formula v1. Hence, Algorithm 1 will return
Pr[Φ[α]] = 0, while it is in fact 0.5.

We remark that replacing each unexplored node with the
node of the explored branch will result in a dec-DNNF graph
Gu, which represents a formula ϕu such that ϕ→ ϕu. Notice
that replacing Gl with Gu does not affect the correctness of
Theorem 4. This observation paves the way for checkable
SSAT solving, which will be detailed in Section 4.

By introducing the pruning techniques into the compila-
tion, we effectively utilize the maximizing nature of SSAT to
compile a dec-DNNF graph of smaller size that still faithfully
captures the essence of the SSAT formula. In addition, we
note that the overhead in detecting pure literals is on traversing

the clauses, which occurs purely during the compilation pro-
cess. Hence, this overhead is amortized by the improvement
it brings in the multiple queries performed on the compiled
graphs.

We conclude this section with an example.
Example 1. Consider the SSAT formula

Φ =

R0.4 x1, ∃y1, ∃y2, ∃y3,

R0.6 x2.
(x1 ∨ ȳ1)(ȳ1 ∨ ȳ2 ∨ y3)(y1 ∨ ȳ2 ∨ x̄2)
(y2 ∨ y3 ∨ x̄2)(y3 ∨ x2) .

The compiled levelized dec-DNNF is shown in Fig. 1a. It is
easily verified that the read-once and levelization properties
are satisfied.

We now demonstrate how to compute Pr[Q. ϕ[y1]] by cal-
culating the probability pi of each node Ni, labeled with “(i)”
in the figure, of the compiled levelized dec-DNNF graph:

• p10 = 1 and p9 = 0 by the base cases,
• p12 = 0.4 · 1 + 0.6 · 0 = 0.4, p11 = p6 = p5 =
max(0, 1) = 1,

• p8 = 0 since y1 = ⊤ is assumed,
• p7 = p11 · p12 = 0.4,
• p4 = max(p6, p7) = 1, p3 = p5 = 1, p2 = p4 · p8 = 0,

and p1 = 0.6 · p2 +0.4 · p3 = 0.4 following the same set
of rules.

We hence conclude that Pr[Q. ϕ[y1]] = 0.4.
Since y3 is a pure literal in Φ, we can simplify the compi-

lation by exploring the branch y3 = ⊤ only. The resulting
dec-DNNF graph is shown in Fig. 1b. It can be seen that the
technique simplifies the representation when compared to that
shown in Fig. 1a.

4 SSAT Validation with Levelized Dec-DNNF
In order to extend CPOG to cert-SSAT for SharpSSAT
certification, two main modifications to CPOG are needed.
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SharpSSAT cpog-gen cpog-check

EvalSSAT

.sdimacs
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Figure 2: Computation flow of cert-SSAT.

First, cert-SSAT has to additionally validate levelization
of dec-DNNF. Second, more importantly, cert-SSAT has
to support checking the partial exploration introduced by the
pruning techniques. Checking the former is relatively straight-
forward. To achieve the latter, instead of simply checking
logical equivalence between the input CNF and compiled dec-
DNNF formulas as mentioned in Section 2.3, cert-SSAT
requires SharpSSAT to compile two dec-DNNF graphs Gu

and Gl and check Eq. (2) and Eq. (3) by Theorem 5 as follows.

Theorem 5. Given an SSAT formula Φ = Q. ϕ and two lev-
elized dec-DNNF graphs Gl and Gu respecting the quantifier
level of Φ, then Pr[Φ] = p if the following holds:

(Gl → ϕ) ∧ (ϕ→ Gu), and (2)

EVALSSAT(Φ, Gl) = EVALSSAT(Φ, Gu) = p. (3)

Proof. The proof follows from the same reasoning for pruning
techniques in Section 3.3.

SharpSSAT requires a minor modification to compile Gl

and Gu in addition to computing satisfying probability. When-
ever pruning occurs, SharpSSAT marks the pruned branch
so that the unexplored branch of the decision node can later
be connected to the constant node ⊥ or the explored branch
to form the nodes Nl ∈ Gl and Nu ∈ Gu, as explained in
Section 3.3.

The computation flow of cert-SSAT is shown in Fig. 2.
Given an input SSAT instance Φ in the sdimacs format,
the modified SharpSSAT under the certificate generation
option first generates two dec-DNNF graphs Gl and Gu

in the nnf format in addition to computing Pr[Φ]. Next,
EvalSSAT is applied to check whether Eq. (3) and the lev-
elization constraints hold for Gl and Gu. Then, the proof
generator cpog-gen takes Φ, Gl, and Gu as input, generates
CNF formulas ψGl

of Gl and ψGu
of Gu, and emits a clausal

proof that establishes Eq. (2) of the cpog format [Bryant
et al., 2023]. Finally, the proof checker cpog-check
checks whether ψGl

(resp. ψGu) is generated from Gl (resp.
Gu) by the extension process and verifies the correctness
of the clausal proof for Eq. (2) by the standard reverse unit
propagation (RUP) checking [Goldberg and Novikov, 2003;
Gelder, 2008].

Let the outputs of SharpSSAT and cpog-gen be re-
ferred to as nnf-proof and cpog-proof, respectively. Sup-
pose SharpSSAT reports Pr[Φ] = p for an SSAT instance
Φ = Q.ϕ. The cpog-proof for (ψGl

→ ϕ) and that for
(ϕ→ ψGu

) can certify the lower and upper bounds of Pr[Φ],
respectively. Since it is computationally easier to verify the

first implication,2 even if cert-SSAT fails to verify the sec-
ond implication and hence fails to conclusively prove that
Pr[Φ] = p, chances are that cert-SSAT could at least pro-
vide a lower-bound proof. In particular, when p = 1, it suffices
to prove that Pr[Φ] ≥ 1, and cert-SSAT only need to prove
the lower-bound case.

5 Experimental Results
We equipped the state-of-the-art SSAT solver
SharpSSAT [Fan and Jiang, 2023] with a knowledge
compilation capability,3 implemented EvalSSAT of Al-
gorithm 1 in the C++ language, and modified CPOG for
the proposed SSAT validation toolchain cert-SSAT.4
For incremental SSAT evaluation using EvalSSAT, an
option (-d) was implemented in SharpSSAT to compile the
levelized dec-DNNF graph Gl. For proof checking using the
cert-SSAT flow, another option (-l) was implemented in
SharpSSAT to compile both Gl and Gu, and EvalSSAT
was also modified to check the ordering of the levelized
dec-DNNF graph.

We only enable the pruning techniques of Section 3.3 when
the original option for pure literal detection (-p) is turned on.
To study the effectiveness of incremental SSAT evaluation,
we conducted experiments on reweighting and cofactoring
queries. To study the effectiveness of SSAT proof checking,
we applied the cert-SSAT computation on all the instances.
The benchmark formulas are taken from [Chen et al., 2021].5

5.1 Incremental SSAT Evaluation
The experiments were conducted on a Linux machine with an
Intel Xeon Silver 4210 CPU processor at 2.2GHz. For each
SSAT formula, we randomly generated 10 instances for both
query types and compared the performance of solving incre-
mentally with knowledge compilation to that of solving from
scratch for each instance. We refer to the three solving meth-
ods as KC-p, KC-np, and baseline, which corresponds to
knowledge compilation with and without pruning and solving
from scratch each time, respectively.6 Because SharpSSAT
is a state-of-the-art solver, and, to the best of our knowledge,
no SSAT solvers support incremental solving, we did not
compare the performance with other SSAT solvers, such as
ClauSSat [Chen et al., 2021] and ElimSSAT [Wang et
al., 2022], whose ability on SSAT solving has already been
compared against SharpSSAT in [Fan and Jiang, 2023].

To fairly judge the performance of the two approaches, we
set a time limit of 2000 sec for each SSAT formula as follows:
For the settings KC-p and KC-np, we set a time limit of
1000 sec for compilation and 100 sec for each query. If the
compilation failed within the time limit, we view the queries as
failed as well. For the setting baseline, we set a time limit
of 200 sec for each query. The overall performance is then

2The first implication proof can be generated in one topological
traversal of the dec-DNNF, while proving the second implication
involves calling an SAT solver.

3Available at https://github.com/NTU-ALComLab/SharpSSAT.
4Available at https://github.com/NTU-ALComLab/cert-SSAT.
5Available at https://github.com/NTU-ALComLab/ClauSSat.
6For the baseline setting, the pruning techniques are enabled.
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Reweighting Cofactoring

baseline KC-np KC-p baseline KC-np

Family # #S PAR2 #S PAR2 #S PAR2 #S PAR2 #S PAR2

ToiletA 770 600 974.48 570 1080.65 570 1078.55 621 852.60 570 1080.61
tiger 50 50 9.63 50 2.93 50 3.03 50 9.66 50 2.90

MaxCount 250 110 2313.60 60 3043.53 110 2256.42 98 2450.17 60 3043.49
sand-castle 250 210 743.05 230 423.49 230 421.19 220 583.31 230 423.67

k ph p 40 40 38.52 20 2000.16 40 10.37 39 121.59 20 2000.15
MPEC 80 40 2153.34 40 2061.45 40 2059.91 47 1748.68 40 2060.45
gttt 3x3 90 90 12.98 90 3.94 90 3.88 90 9.76 90 3.93
arbiter 100 0 4000.00 0 4000.00 0 4000.00 5 3800.12 0 4000.00
depots 90 0 4000.00 0 4000.00 0 4000.00 1 3955.56 0 4000.00
Tree 140 140 0.05 140 0.01 140 0.01 140 0.05 140 0.01

k branch n 100 100 61.08 20 3323.22 100 7.37 81 824.77 20 3323.06
PEC 80 40 2146.18 40 2040.21 40 2040.96 50 1607.91 40 2039.86
tlc 130 130 0.15 130 0.06 130 0.05 130 0.14 130 0.09

Adder 60 50 669.67 40 1382.20 50 667.44 50 669.60 40 1383.85
pipesnotankage 90 0 4000.00 0 4000.00 0 4000.00 9 3600.06 0 4000.00

RobotsD2 100 41 2440.63 30 2803.77 40 2418.09 46 2263.88 30 2803.76
conformant 240 20 3671.57 20 3674.85 20 3674.86 22 3652.55 20 3674.80
stracomp 600 251 2363.32 80 3467.92 260 2280.44 354 1669.51 80 3467.92
Counter 80 70 578.93 75 338.91 80 284.00 78 264.96 80 275.68

ev-pr-4x4-log 70 70 0.72 70 15.41 70 15.43 70 8.07 70 15.27
Connect2 160 160 1.38 160 42.32 160 0.29 160 1.33 160 40.26

Overall 3570 2212 157.36 1865 193.86 2220 154.22 2361 140.03 1870 193.71

Note: The column “#” denotes the total number of instances in each family, the column “#S” denotes the number of successfully
computed queries, and the column “PAR2” denotes the average PAR2 score per instance. For each task, the best result out of
all settings is marked in bold. The row “Overall” summarizes the total number of instances and the average performance per
instance across all families.

Table 1: Experimental results of incremental solving.

judged based on the number of queries completed as well as
the penalized average runtime (PAR2) score, which penalizes
unfinished instances with two times the time limit.

The first experiment considers the reweighting query. The
queries are generated by replacing the probability of each
randomized variable with a value chosen uniformly at random
from [0, 1] independently. Since enabling pruning is sound for
this query (by Theorem 4), we compare all three settings for
this task. The second experiment considers the cofactoring
query. The queries are generated by sampling a variable and
randomly assigning it to ⊤ or ⊥.

Table 1 shows the result of both experiments. We note
that the setting KC-p significantly outperforms KC-np in the
reweighting task, and outperforms baseline in all but three
families based on the PAR2 score. This result suggests that
the pruning techniques are indeed useful and that the task
can indeed benefit from the proposed compilation-based in-
cremental solving. On the other hand, KC-np fails to beat
the performance of baseline in both tasks since the num-
ber of successfully compiled instances is a lot fewer in many
families. Fan and Jiang [2023] reported that the pure literal de-
tection technique has a significant impact on the performance
of SharpSSAT. Since all ten queries are considered failed
when the compilation failed, the benefit of incremental solving
is overshadowed by the timeout penalty.

To truly understand the power of incremental solving, we
further break down the compilation and query time for the

successfully compiled formulas and compare them against the
baseline setting. The results are shown in Table 2.7 We can
see that each query only takes around 9.3% of the compilation
time for the reweighting task and around 5.8% for the cofac-
toring task. On average, it takes 1.53 and 3.62 queries for the
compilation-based method to outperform the baseline for
the reweighting and cofactoring task, respectively. This result
shows that whenever compilation is successful, it only takes
very few queries to compensate for the additional effort.

The reason that the cofactoring task requires more queries is
two-fold: First, as discussed in Theorem 3, pruning techniques
are not applicable to the task. Therefore, baseline has the
advantage of utilizing pruning techniques to speed up. Second,
the cofactoring query introduces additional unit clauses in the
SSAT formula in the baseline setting, and may thus be
easier to solve.

To summarize, the reweighting task can be readily sped up
by the KC-p setting, and while the cofactoring task may seem
less favorable from Table 1, the breakdown analysis in Table 2
demonstrates its potential.

5.2 SSAT Proof Generation and Validation
We ran cert-SSAT on a Linux machine with a 12th Gen
Intel Core i9-12900 processor, and set a time limit of 1000 sec

7We skip the setting KC-np for the reweighting task, as it is
inferior to KC-p.
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Reweighting Cofactoring

baseline KC-p baseline KC-np

Family #C Total Compile Query Total #C Total Compile Query Total

ToiletA 57 297.76 33.48 6.12 39.59 57 153.18 34.60 7.05 41.65
tiger 5 9.63 1.67 1.36 3.03 5 9.66 1.64 1.26 2.90

MaxCount 11 73.60 8.22 8.20 16.42 6 4.00 1.21 2.27 3.49
sand-castle 23 489.50 54.73 46.46 101.19 23 352.04 57.04 46.64 103.67

k ph p 4 38.52 4.56 5.81 10.37 2 0.03 0.06 0.09 0.15
MPEC 4 153.34 21.59 38.32 59.91 4 74.84 20.82 39.64 60.45
gttt 3x3 9 12.98 1.93 1.96 3.88 9 9.76 1.93 2.00 3.93

Tree 14 0.05 0.01 0.00 0.01 14 0.05 0.01 0.01 0.01
k branch n 10 61.08 6.14 1.23 7.37 2 0.08 74.13 48.93 123.06

PEC 4 146.18 17.10 23.86 40.96 4 63.30 16.46 23.40 39.86
tlc 13 0.15 0.01 0.04 0.05 13 0.14 0.03 0.06 0.09

Adder 5 3.00 0.37 0.41 0.77 4 0.31 34.02 16.50 50.52
RobotsD2 4 72.46 10.65 7.44 18.09 3 2.29 2.09 1.67 3.76

conformant 2 4.90 5.30 2.89 8.20 2 13.69 5.23 2.90 8.13
stracomp 27 148.67 20.49 48.85 69.34 8 0.01 0.51 0.74 1.26
Counter 8 437.33 131.21 152.79 284.00 8 251.11 124.54 151.14 275.68

ev-pr-4x4-log 7 0.72 14.28 1.15 15.43 7 8.07 14.11 1.16 15.27
Connect2 16 1.38 0.22 0.07 0.29 16 1.33 39.01 1.25 40.26

Overall 223 240.54 32.22 30.06 62.28 187 130.38 38.97 22.74 61.70

Note: The column “#C” denotes the number of successfully compiled instances. The columns “Compile,” “Query,”, and “Total”
denote the time spent per instance on the compilation, performing the ten queries, and the total time, respectively. For each task,
the best result out of all settings is marked in bold. The row “Overall” summarizes the total number of formulas and the average
performance per formula across all families.

Table 2: Breakdown results of compilation and query time.

for SharpSSAT and EvalSSAT and a time limit of 2500
sec for cpog-gen and cpog-check. We excluded the
unsolvable instances by SharpSSAT reported in previous
work [Fan and Jiang, 2023], yielding 18 families of benchmark
with 236 instances in total for the experiment.

The experimental results are summarized as follows.
SharpSSAT successfully generated nnf-proofs for all 236
instances, and all of them passed the check of EvalSSAT.
For 205 instances (86.9%), cert-SSAT successfully proved
the easy implication (ψGl

→ ϕ) and hence verified their
lower bounds. Among these instances, the other implication
(ϕ → ψGu

) was proved for 190 instances (80.5%); hence
their satisfying probabilities were proved to be tight. For the
190 proven instances, the ratios between the combined time for
running EvalSSAT, cpog-gen, and cpog-check versus
the time for SharpSSAT had a harmonic mean of 6.6. As
for proof sizes, the ratios between the number of clauses in
cpog-proofs and that in the original sdimacs files had a
harmonic mean of 3.21.

We analyzed the 46 (236−190) instances that cert-SSAT
cannot fully prove or disprove the solving results. Among
them, 17 instances suffered from time out; cpog-gen un-
expectedly aborted on 13 cases. cpog-gen failed to gen-
erate cpog-proofs for all 13 instances in the tlc fam-
ily because the matrix of these instances is unsatisfiable,
which cpog-gen cannot handle. As an alternative, we can
pass their matrices directly into SAT solvers and apply stan-
dard proof logging and checking tools [Heule et al., 2013;
Wetzler et al., 2014] to verify the results. cpog-check

detected three cases, Tiger-25, c432 re, and cnt03e
violating decomposability. We conjectured that this was
caused by integrating both component caching and clause
learning in SharpSSAT. After we disabled clause learn-
ing in SharpSSAT, Tiger-25 passed the overall check
of cert-SSAT, while SharpSSAT timed out on solving the
other two instances. We leave fixing these issues for future
work.

We provide detailed runtime and proof size analyses of
cert-SSAT in Fig. 3 and Fig. 4, respectively. Fig. 3a
shows the relative runtime between a cert-SSAT run (i.e.,
the combined runtime for EvalSSAT, cpog-gen, and
cpog-check) and SharpSSAT. We report both the run-
time of complete (proving both implications) and partial (prov-
ing only the lower bound) runs. The complete (resp. partial)
runs are marked in orange (resp. blue) dots (resp. triangles).
Fig. 3b shows relative runtime between each cert-SSAT
subprocess and SharpSSAT. Dark-blue squares, sky-blue
triangles, and cyan dots represent the results of cpog-gen,
cpog-check, and EvalSSAT, respectively. We can see
that generating and verifying certificates tend to take much
longer when the formula is harder to compile. In addition,
the partial verification is often substantially faster than the
complete verification. This fact is helpful when certifying the
lower bound suffices.

Fig. 4 compares the relative proof size between cpog-
proofs and nnf-proofs. The proof sizes are measured in terms
of the number of clauses. We calculate the clause number of
nnf-proofs by the number of clauses in their corresponding
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Figure 3: Runtime Analysis.
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Figure 4: Proof Size Analysis.

CNF encodings. It can be observed that cpog-proofs for the
easy implication (marked in blue triangles) are almost linear
in size with respect to their corresponding nnf-proofs, while
cpog-proofs for the difficult implication (marked in orange
dots) are typically larger than their corresponding nnf-proofs.

With cert-SSAT, we were able to discover a tricky bug
of SharpSSAT in pure literal detection, which mistakenly
negated the phase of pure literals. The bug was hard to find
because it did not affect the reported satisfying probability
but resulted in wrongly extracted strategies. This use case
of cert-SSAT suggests its usefulness in validation solving
results and enhancing solver reliability.

6 Conclusions and Future Work
We proposed a dec-DNNF-based knowledge compilation tech-
nique for SSAT. The technique was implemented based on

the state-of-the-art SSAT solver SharpSSAT [Fan and Jiang,
2023], and the toolchain CPOG was extended to generate
checkable proofs from the compiled results. Empirical re-
sults demonstrated its effectiveness for incremental solving of
a wide range of benchmarks, and that checkable dec-DNNF
logs can be generated with little computational overhead. Es-
sentially, the cert-SSAT enhanced the trustworthiness of
SharpSSAT results.

For future work, we remark that our implementation may
serve as a general-purpose level-ordered dec-DNNF compiler,
analogous to the dec-DNNF compilers based on #SAT solvers.
It would be interesting to explore more applications of the com-
piler. In addition, the current supported incremental solving
is restricted to reweighting and cofactoring queries. It might
be worthwhile to explore other powerful techniques, such as
clause-learning-based incremental QBF solving [Lonsing and
Egly, 2014] and dynamic model counting [Li et al., 2006],
to allow addition and deletion of literals and clauses. For
cert-SSAT, we plan to make the entire toolchain formally
verified with theorem provers. We also plan to extend it to
support proof generation and validation for SSAT preprocessor
and DSSAT solver [Cheng and Jiang, 2023].
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