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Abstract
Vision-language models (VLMs) show promising
generalization and zero-shot capabilities, offering a
potential solution to the impracticality and cost of
enabling robots to comprehend diverse human in-
structions and scene semantics in the real world.
Existing approaches most directly integrate the
semantic representations from pre-trained VLMs
with policy learning. However, these methods are
limited to the labeled data learned, resulting in poor
generalization ability to unseen instructions and ob-
jects. To address the above limitation, we propose
a simple method called “Attention before Manip-
ulation” (ABM), which fully leverages the object
knowledge encoded in CLIP to extract information
about the target object in the image. It constructs
an Object Mask Field, serving as a better repre-
sentation of the target object for the model to sep-
arate visual grounding from action prediction and
acquire specific manipulation skills effectively. We
train ABM for 8 RLBench tasks and 2 real-world
tasks via behavior cloning. Extensive experiments
show that our method significantly outperforms the
baselines in the zero-shot and compositional gener-
alization experiment settings.

1 Introduction
The primary goal of robot learning is to perform various tasks
in the workspace [Paradis et al., 2021; Zhang et al., 2018;
Rahmatizadeh et al., 2018]. To meet the requirements of
human-robot interaction, robots need to comprehend the re-
lationship between human instructions and the environment,
and then execute accurate actions to complete tasks. Recent
studies propose to use instructions and visual images as inputs
to optimize end-to-end models through imitation learning ob-
jectives [Stepputtis et al., 2020]. However, such methods in-
troduce a challenge where end-to-end training tightly couples
instructions, perceptions, and actions, i.e., models only learn
the mapping between semantic features and robot actions. To
be specific, these methods perform well when perceptions and
instructions share the same distribution as the training data
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Figure 1: The illustration of our motivation. (a) shows that we train
our model and baselines on a subset of objects, instructions and ac-
tions. (b) shows that we evaluate models in zero-shot experiment
setting where objects and instructions are unseen in (a). (c) shows
that we evaluate models in compositional experiment setting where
the target objects originate from different tasks in (a).

(see Figure 1 (a)). However, they fail to generalize to unseen
objects and instructions, which create a novel distribution dif-
ferent from the training data (see Figure 1 (b)). Furthermore,
they also struggle to complete compositional tasks (see Fig-
ure 1 (c)), whose target objects originate from different train-
ing tasks.

Many studies demonstrate the powerful generalization and
zero-shot abilities of vision-language models (VLMs) which
are pre-trained at the internet scale. Recent works [Shridhar
et al., 2022; Liu et al., 2022] treat the encoders of VLMs
as feature extractors to train a model with certain general-
ization capabilities and have shown remarkable achievements
in robot generalization tasks. Though success, directly inte-
grating semantic representations from VLMs into policy op-
timization still fails to effectively decouple the binding rela-
tionships among instructions, perceptions, and actions. These
approaches result in the model achieving only feature-level
generalization. In other words, the model performs well only
when presented with instructions and images semantically
close to the training data. Otherwise, the model almost fails.
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The reason is that the semantic representation distribution of
the unseen images and instructions is not consistent with that
of the training data, which is an unknown distribution to the
model and thus cannot be predicted correctly. Consequently,
these methods can achieve only limited generalization, fail-
ing to meet the requirements of open-ended human instruc-
tions and object sets. Therefore, we need to explore a more
intuitive and effective representation to leverage the rich com-
monsense within VLMs, aiding the policy in achieving better
generalization performance.

To address this issue, we propose “Attention before Manip-
ulation” (ABM), which effectively decouples visual ground-
ing from action prediction by extracting rich commonsense
within CLIP, enabling generalization to unseen objects and
instructions. Different from previous works, we design an
Object Mask Field, which indicates the spatial location of the
target object in the point cloud of current scene, serving as
a better representation of the target object to assist in policy
learning. Given a human instruction, we first break down the
instruction into a target object description and a robot skill via
instruction decomposition module. Then we extract semantic
representations from the target object description and images
to construct an Object Mask Field, which combines with the
original image perceptions and robot skill, jointly optimizing
the policy. This allows the model to learn the mutual relation-
ships between the target objects identified by the Object Mask
Fields, robot skills, and expert actions. Once the target object
in the instruction is translated into the Object Mask Field, the
policy only needs to interpret the positional information indi-
cated in the Object Mask Field correctly and know how to use
the learned robot skills to physically manipulate new target
objects, without the need to ground the target object in the in-
struction beforehand. This formulation enables our system to
employ the acquired robotic skills to achieve zero-shot gener-
alization to unseen objects and complete compositional tasks
without further fine-tuning (see Figure 1). To summarise, our
main contributions are as follows:

• We introduce a novel framework called “Attention be-
fore Manipulation” (ABM) for generalization in robot
manipulation tasks, which can generalize to unseen ob-
jects and instructions without further fine-tuning.

• To decouple visual grounding from action prediction, we
design an Object Mask Field, which indicates the spatial
location of the target object in the point cloud of current
scene, serving as a better representation of the target ob-
ject to assist in policy learning.

• Extensive experiments conducted in both simulation and
real world demonstrate that ABM significantly outper-
forms the baselines in zero-shot and compositional gen-
eralization experiment settings. Visual results are pro-
vided at: ABM.github.io.

2 Related Work
2.1 Language Conditioned Imitation Learning for

Robot Manipulation
Behavior cloning provides a simple and effective approach
for robots to learn new skills by mapping observations to ex-

pert actions through supervised learning. It enables agents
to quickly and efficiently learn from expert actions, mak-
ing it a widely used imitation learning method in robotics.
Models based on behavior cloning are typically trained end-
to-end. Recently, an increasing number of studies have in-
tegrated human instructions with behavior cloning, allowing
robots to execute actions based on human commands. Some
of these works leverage pre-trained language models [Brohan
et al., 2022; Jiang et al., 2023] or language encoders from pre-
trained VLMs [Shridhar et al., 2022; Shridhar et al., 2023;
Goyal et al., 2023] to encode instructions, using text fea-
tures as one of the inputs for agent training. For instance, ap-
proaches [Shridhar et al., 2023; Goyal et al., 2023] combine
text features encoded by the CLIP language encoder with per-
ceptual features, learning their mutual relationships through
an attention module [Vaswani et al., 2017] to jointly optimize
the policy. Cliport [Shridhar et al., 2022] , building upon the
Transporter manipulation framework [Zeng et al., 2021], in-
tegrates pre-trained image and language representations from
CLIP to enhance the performance of the original model with a
certain degree of generalization capability. However, this ap-
proach binds the relationships between perceptions, instruc-
tions, and actions at the feature level, limiting the model’s
generalization ability. In contrast to these works, we use Ob-
ject Mask Fields to represent the target objects in language
instructions, eliminating the agent’s reliance on the descrip-
tions of the target object in the instructions. This allows the
model to focus more on learning robot skills from instruc-
tions, enabling it to generalize the same operational skills to
new semantic object categories.

2.2 Foundation Models for Robotics
Foundation models typically refer to models trained on
Internet-scale datasets. Typically, we fine-tune pre-trained
foundational models for diverse downstream tasks or uti-
lize embedded commonsense to aid downstream models in
achieving varied generalization objectives. Recent studies
leveraging foundation models demonstrate remarkable gen-
eralization and zero-shot capabilities. Instruct2Act [Huang
et al., 2023b] uses CLIP image-level features for target re-
trieval and employs Large Language Models (LLMs) to gen-
erate executable Python code for task completion, while
Vosposer [Huang et al., 2023c] utilizes LLMs and VLMs to
create 3D value maps as objective functions for synthesiz-
ing trajectories in a zero-shot manner. VLMap [Huang et al.,
2023a] utilizes LSeg [Li et al., 2022] to build a 2D seman-
tic map for navigation, while CLIP-Fields [Shafiullah et al.,
2022] learns a mapping from spatial locations to semantic
embedding vectors via foundation models. Moreover, sev-
eral recent works integrate 2D foundation models with 3D
feature fields for robotic manipulation. Act3D [Gervet et al.,
2023] learns 3D scene feature fields through recurrent coarse-
to-fine 3D point sampling and featurization utilizing relative-
position attentions. F3rm [Shen et al., 2023] extracts patch-
level dense features for the images from CLIP and distills
them into a feature field by modeling a NeRF [Mildenhall et
al., 2021] for generalization in robot tasks. D3 Fields [Wang
et al., 2023b] utilizes point clouds and foundation models
to construct unified descriptor fields that are 3D, dynamic,
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Figure 2: Overview of the proposed ABM. (1) Extract dense features for the image from CLIP backbone and project them in 3D to construct
CLIP Feature Cloud (PCA shown). (2) Query CLIP Feature Cloud with target object to generate Object Mask Field (heatmap shown) and
re-render to produce center pixel obejct masks. (3) Feed them to a multi-view transformer for actions inference after fusing with virtual
images.

and semantic. Inspired by these works, our method similarly
constructs a dynamic 3D feature field in the form of point
cloud, where each point’s features are derived from interpo-
lated patch-level image representations from CLIP, providing
strong spatial and semantic prior for downstream robotic ma-
nipulation.

2.3 Generalization in Robot Learning
Recent researches focus on enabling agents to generalize
physical operations to unseen objects and novel instruc-
tions [Jang et al., 2022; Wang et al., 2023a; Jiang et al.,
2023]. Furthermore, some studies investigate completing
tasks without any specific training by leveraging pre-trained
VLMs [Huang et al., 2023c; Huang et al., 2023b]. Program-
port [Wang et al., 2023a] decouples general visual ground-
ing from policy learning by utilizing the semantic structure
of instructions and VLMs, resulting in better generalization.
MOO [Stone et al., 2023] trains the policy with masks cen-
tered on the detected objects to achieve novel concept ground-
ing, while VIMA [Jiang et al., 2023] achieves this through a
novel multimodal prompting formulation. Our approach sim-
ilarly emphasizes making the policy strongly dependent on
visual grounding results, instead of training directly with fea-
tures from VLMs.

3 Method
We present ABM, whose key idea is to extract rich common-
sense from a frozen pre-trained CLIP to construct an Object
Mask Field and use it as a better representation of the target
object for policy learning. Our objective is to empower the
agent to successfully execute manipulation tasks involving
novel object categories not included in the training dataset,

guided by instructions. An overview of the proposed ABM is
shown in Figure 2.

3.1 Demonstrations
We assume that we are given a dataset D =
{D1, D2, . . . , Dn} of n expert demonstrations covering
various tasks. Each demonstration corresponds to a sequence
of observation-action pairs and an English instruction,
i.e., Di = {(o1, a1)i, (o2, a2)i, . . . , (ot, at)i, li}. Here,
{o1, o2, . . . , ot}i denotes RGB-D image(s) and gripper
state at each timestep during a successful roll-out, i.e.,
ot = {x, aopen}t. {a1, a2, . . . , at}i denotes the corre-
sponding expert actions, which consist of the 6-DoF pose,
gripper open state, and whether the motion planner used
collision avoidance to reach an intermediate pose, i.e.,
at = {{atrans, arot}pose, aopen, acollide}t. li represents the
language instruction annotating the ongoing task.

3.2 Instruction Decomposition Module
To break the deep binding between instructions, perceptions,
and actions in end-to-end training, we isolate the target ob-
ject description from the training process. To achieve this
and inspired by MOO [Stone et al., 2023], we propose an
instruction decomposition module to split language instruc-
tions. Given an instruction, we first break down instruction
into the target object description, representing the object that
the robot needs to manipulate in the current episode, and the
robot skill, describing how the robot should manipulate the
target object. We refer the description of target object as
X and robot skill as Tskill. We use simple regular expres-
sions Re to split the instructions: Re(li) = {X,Tskill}i.
We then use robot skill as the new language goal for the
current episode, i.e., li = T i

skill. For example, for the in-
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struction li = “put the tomato in the plate”, where T i
skill =

“put X in the plate” and Xi = “tomato”, the new language
goal for the current episode becomes “put X in the plate”,
i.e., li = “put X in the plate”. After splitting the instruction,
we use the text encoder H from a pre-trained CLIP model
to encode X with the prompt “a photo of a(an) X”, refered
as Xprompt, to obtain text features H(Xprompt) ∈ R1×D,
which will be used to retrieve the area-of-interest in the CLIP
Feature Cloud described in the next subsection. We denote
the text feature dimensions as D. Then, we utilize text
encoder H to encode robot skill Tskill, extracting the val-
ues of the text encoder’s last layer before projection as to-
ken embeddings of new language goal for policy learning,
H(Tskill) ∈ R77×D.

The purpose is to enable the policy to learn the abstract cor-
respondence between the character X and the rough 3D spa-
tial position of the target object identified by the Object Mask
Field described in the next subsection. We can also query
large language models (LLMs) such as ChatGPT [Ouyang et
al., 2022] to parse instructions, standardizing free-form user
inputs into the specified template.

3.3 Object Mask Field for Robotic Manipulation
To illustrate the concept, we only consider an RGB-D im-
age as an example, and for multiple camera inputs, just sim-
ply repeat the operation and stack them together. Given
the RGB image xt ∈ RH×W×3, we use the image en-
coder G from a pre-trained CLIP model to extract patch-level
dense features from the penultimate layer of G according to
the MaskCLIP reparameterization trick [Zhou et al., 2022],
G(xt) ∈ RH′×W ′×D. Here, we denote the spatial dimen-
sions of visual features as H ′ × W ′ and the feature dimen-
sions as D. Additionally, the extracted patch-level dense fea-
tures still maintain alignment with the CLIP text features in
the same feature space to support language guidance in sub-
sequent processing.

To project patch-level dense features into 3D space, we
restore the patch-level 2D feature map to the same resolu-
tion as the original image by interpolation, i.e., G(xt) ∈
RH′×W ′×D → G′(xt) ∈ RH×W×D. Therefore, we ob-
tain a pixel-resolution dense feature map interpolated from
the patch-level 2D feature map, G′(xt) = In(G(xt)), where
In(·) denotes an interpolation operator. And to preserve the
integrity of CLIP image features to the maximum extent, we
fill in with the nearest patch features based on relative posi-
tions rather than using linear interpolation.

Then we reconstruct a point cloud of the scene through
RGB-D image and project the obtained pixel-resolution dense
feature map, i.e. G′(xt), onto the corresponding points of
the point cloud via sensed depth, forming a semantic point
cloud, which we refer as CLIP Feature Cloud F ∈ RN×D,
where N denotes the number of 3D points in CLIP Feature
Cloud. As CLIP aligns image features and text features in
a shared feature space, we query the CLIP Feature Cloud
F with the target object text features H(Xprompt) to gen-
erate heatmap HF ∈ RN×1 through cosine similarity cal-
culation, where we aim for the points of the target object to
have higher values in the heatmap. Here, HF is defined as

HF = F ⊗ H(Xprompt). For ease of training, we use an
one-hot single channel Object Mask Field M ∈ RN×1 to
simplify the heatmap. The values are set to 1.0 where the
heatmap values are greater than the threshold we set manu-
ally; otherwise, we set them to 0 in M. Here, we set the
threshold to 0.7, i.e., M(p) = 1.0, where HF(p) > 0.7, oth-
erwise M(p) = 0. Here, p denotes an arbitrary 3D point in
M and HF . Therefore, we obtain an Object Mask Field for
robotic manipulation during training and evaluation.

This design leverages rich commonsense from the pre-
trained CLIP to indicate the rough position of the target object
in the workspace, providing the policy with a better represen-
tation of the target object. Importantly, we build the Object
Mask Field with a frozen CLIP model so that it does not spe-
cialize or overfit to the objects in the demonstrations, and the
policy can learn to be robust to errors made by CLIP during
the training loop.

3.4 Architecture and Training for Robotic Policy
In our architecture, our policy model extends the architecture
from RVT [Goyal et al., 2023] with following modifications.

First, as mentioned above in subsection 3.2, instead of us-
ing the entire language goal of each task, we use the robot
skill Tskill as the new language goal, and encode it through
text encoder H to obtain token embeddings H(Tskill) ∈
R77×D for policy learning.

Second, we re-render Object Mask Field M and point
cloud of the scene by Pytorch3D [Ravi et al., 2020] to obtain
four maps with a total of 8 channels in each virtual image.
Virtual images are re-rendered from five virtual viewpoints:
front, back, left, right, and above of the robot base. We re-
fer virtual images from each viewpoint as Vi ∈ R220×220×8,
where i ∈ {front, back, left, right, above}. And the
four maps respectively represent object mask (Map1 ∈
R220×220×1), RGB (Map2 ∈ R220×220×3), depth (Map3 ∈
R220×220×1), and (x, y, z) coordinates of the points in
the world frame (Map4 ∈ R220×220×3). The last three
maps are the same as RVT, and we refer them as V ′

i =
{Map2,Map3,Map4}i ∈ R220×220×7. Specially, object
mask indicates the rough position of the target object in the
virtual image. Since object mask is re-rendered from the
Object Mask Field, which indicates the target object’s po-
sition in 3D space with limited accuracy, we post-process
the object mask by taking the central pixel coordinate of
non-zero region in the object mask as the target object’s po-
sition in the virtual image. In other words, object mask
becomes Map′1(Center({Map1(u, v) ̸= 0})) = 1.0, other-
wise Map′1(u, v) = 0, where (u, v) denotes an arbitrary pixel
coordinate of the virtual image and Center(·) denotes center
pixel calculation. (see Figure 3 (b) center-pixel mask for ex-
ample).

Third, we expect that the policy should be conditioned on
the object masks mentioned above (i.e., five spatial object
masks indicating the position of the target object). There-
fore, we feed them into the joint transformer architecture of
RVT with a few modifications. We fuse Map′1 and V ′

i to ob-
tain perception features and break each of them into 20 × 20
patches to produce image token embeddings:

Embimage = Fpatchify(Ffuse(Cat(Map′1,Fcnn(V ′
i)))) (1)
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Figure 3: (a) Examples of evaluation trajectories across various instructions in simulation and real-world. (b) Examples of object mask type.

where Ffuse denotes a fusion layer, and Fcnn denotes a CNN
feature extractor. Fpatchify denotes a CNN layer to patchify
the fused features and Cat denotes concatenation operator.
Then Embimage is fed to eight transformers for the action
decoder, which predicts the target end effector pose (Qtrans,
Qrot), gripper state (Qopen), and collision (Qcollision). We refer
readers to the RVT paper for more details about the architec-
ture.

3.5 Training
We train our model end-to-end through behavior cloning by
minimizing the negative log-likelihood of predicted actions.
Concretely, given observation-action tuples (ot, lt, at) sam-
pled from expert demonstrations, our goal is to minimize:

min
θ

∑
(ot,lt,at)∼D

− log πθ(at|ot, lt) (2)

where t represents a certain timestep within the episode. We
use the loss function following RVT [Goyal et al., 2023].

4 Experiments
4.1 Simulation Experiments
Simulation Setup
Environment. Following to the simulation configuration of
RVT, we utilize CoppelaSim [Rohmer et al., 2013] to simu-
late a range of tasks from RLBench [James et al., 2020] which
is interfaced through PyRep [James et al., 2019]. All tasks are
executed by controlling a Franka Panda robot equipped with
a parallel gripper at the center of dinner table. Visual ob-
servations are captured from four noiseless RGB-D cameras
located at the front, left shoulder, right shoulder, and on the
wrist, each with a resolution of 128 × 128. Given the target
end effector pose, the Franka Panda robot will reach target
through motion planner.

RLBench Tasks. We train our model on 8 RLBench tasks,
where 6 tasks are adapted from the training tasks in RVT
with slight modifications to meet the experimental require-
ments. Additionally, two tasks are entirely new tasks created
using the RLBench tool. Each task includes several varia-
tions with corresponding language instructions. For example,
in the “place food in plate” task, instructions like “put the
carrot in the plate” and “put the tomato in the plate” represent
two different variations of the task. These variations are ran-
domly sampled during the generation of the training dataset.
However, unlike RVT, to assess the zero-shot generalization
performance of the model during evaluation, we make corre-
sponding modifications to the validation sets of these 8 tasks,
which include colors, object quantities, and object categories
that have never been seen before. Of course, the agent also
needs to manage new object poses and goals, which are ran-
domly sampled, similar to RVT. In addition, we create 2 extra
compositional tasks to assess the model’s ability to combine
learned robot skills with new object categories. These tasks
involve scenarios composed of combinations of two different
training tasks.

Baselines. The efficacy of our proposed method is assessed
by comparing it with two baselines: Robotic View Trans-
former (RVT) and Integrate Clip Features Directly (IFD).
RVT is a multi-view transformer designed to predict actions
by fusing images re-rendered within the robot’s workspace.
IFD, a modification of RVT, differs in that it re-renders not
only virtual images around the robot but also clip feature
maps corresponding to these images. IFD directly integrates
these clip feature maps with the virtual images and incorpo-
rates language goals for action prediction.

Training and Evaluation Details. We utilize RLBench
tools to generate training datasets with 100 demonstrations
per task as RVT. For ABM data preprocessing, we employ the
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Avg. Put in Place Water Close Insert Meat off Pick Place
Method Success Safe Wine Plants Jar Peg Grill Block Food

RVT [Goyal et al., 2023]
seen

74.2 86.4 87.2 48 56 25.6 91.2 100 99.2
IFD 70.9 90.4 89.6 54.4 46.4 9.6 83.2 99.2 94.4
ABM (Ours) 70 86.4 87.2 55.2 48.8 14.4 75.2 97.6 95.2

RVT [Goyal et al., 2023]
unseen

24 19.2 5.6 20 33.6 5.6 52 35.2 20.8
IFD 34.5 0.8 15.2 41.6 33.6 11.2 92.8 54.4 26.4
ABM (Ours) 57.5 52.8 51.2 43.2 28 16 95.2 90.4 83.2

Table 1: Multi-Task Test Result. “unseen” represents the model’s performance in zero-shot generalization validation set, where the objects
are unseen during the training process. “seen” represents the model’s performance in the original validation set, where the objects are seen
during the training process.

frozen, pretrained ViT-L/14@336px CLIP encoder to encode
the images from four RGB-D cameras, and obtain patch-level
dense features, which will be upscaled to match the resolution
of the original images captured by the cameras during train-
ing. We use a batch size of 30 to train our model and baseline
methods on 6 NVIDIA RTX 3090 GPUs for 80k iterations
with the LAMB optimizer [You et al., 2019] and a learning
rate of 0.003. During training, data augmentation involves
random translations of point clouds within the range of [±
0.125m, ± 0.125m, ± 0.125m], and random rotations around
the yaw axis within the range of ± 45°. Evaluations are scored
as 0 for failures or 100 for complete successes, and we report
average success rates by evaluating the model five times on
the same 25 variations episodes per task in “seen”, “unseen”
and compositional generalization evaluations.

Zero-short Generalization Performance
To validate the zero-shot generalization performance of the
ABM, we separate the objects used in the training set from
those in the validation set. Specifically, there is no overlap
between the objects in the training and validation sets, mean-
ing that the objects in the validation set have never been seen
by the model during the training process.

Table 1 compares the zero-shot generalization performance
between ABM and the baselines. We find that ABM achieves
similar average success rates to the baselines on all tasks in
the “seen” validation set, which are 4.2% lower than RVT
and 0.9% lower than IFD. However, in the “unseen” vali-
dation set, ABM significantly outperforms the two baseline
methods in 87.5% (7/8) of tasks, with average success rates
33.5% higher than RVT and 23% higher than IFD, respec-
tively. Overall, experimental results demonstrate that ABM
exhibits stronger zero-shot generalization ability compared to
the baseline methods, while IFD, which integrates clip fea-
tures into policy optimization directly, achieves only limited
generalization.

Compositional Generalization Performance
To assess the model’s ability to generalize in compositional
tasks, we design two completely new tasks. Instead of train-
ing on these tasks, we evaluate the performance of our model
and the baselines directly in the environments of these two
tasks. The concepts of the skills required for these tasks orig-

Avg. Pick Place
Method Success Food Block

RVT [Goyal et al., 2023] 21.6 20 23.2
IFD 31.2 5.6 56.8
ABM (Ours) 53.2 47.2 59.2

Table 2: Compositional Task Result.

inate from two training tasks, and successfully completing
these tasks would necessitate the model’s ability to combine
the learned robot skills from the training process with target
objects from different tasks. For instance, in the “place block
in plate” task, “put x in the plate” represents the robot skill
learned from “place food in plate” task, and “block” comes
from different task named “pick block to color target”.

Table 2 compares the compositional generalization perfor-
mance between ABM and the baselines. We find that the av-
erage success rate of ABM in compositional tasks is 31.6%
higher than RVT and 22% higher than IFD respectively. The
poor performance of baselines in compositional tasks can be
attributed to their learning of a mapping from observations to
expert actions in the training set, without acquiring specific
robot skill for each task. In contrast, ABM learns abstract
robot skills from training tasks and combines them with Ob-
ject Mask Fields of new scenes to generalize learned robot
skills to new objects. This, to some extent, demonstrates abil-
ity of ABM to reason and combine learned skills with objects
indicated by the Object Mask Fields.

Ablation Studies
To investigate the impact of different object mask fusion
methods and representations on the model, we conduct ad-
ditional ablation studies. It is worth noting that in the Object
Mask Field, the value of each 3D point corresponding to the
target object’s position is 1.0, while the rest are 0.0. However,
the value of object mask re-rendered by Pytorch3D [Ravi et
al., 2020] at each point in the target object’s position ranges
from 0.0 to 1.0, and we refer to this as the “re-rendered mask”
(see Figure 3 (b) re-rendered mask). Setting all non-zero val-
ues in the “re-rendered mask” to 1.0, we refer to this ob-
ject mask as the “full mask” (see Figure 3 (b) full mask).
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Avg. Put in Place Water Close Insert Meat off Pick Place
Method Success Safe Wine Plants Jar Peg Grill Block Food

Stack in channel

seen

72.8 87.2 93.6 48 58.4 14.4 87.2 95.2 98.4
Concatenate with re-rendered mask 72.6 92.8 89.6 45.6 52 24.8 84.8 92.8 98.4
Concatenate with full mask 71.9 81.6 94.4 51.2 52 16 85.6 95.2 99.2
Concatenate with center-pixel mask (ABM) 70 86.4 87.2 55.2 48.8 14.4 75.2 97.6 95.2

Stack in channel

unseen

54.9 41.6 48.8 33.6 40.8 8 92 99.2 75.2
Concatenate with re-rendered mask 54.7 37.6 45.6 13.6 52.8 16 89.6 96 86.4
Concatenate with full mask 57 27.2 67.2 37.6 58.4 12 80 97.6 76
Concatenate with center-pixel mask (ABM) 57.5 52.8 51.2 43.2 28 16 95.2 90.4 83.2

Table 3: Ablation studies of proposed method with different object mask fusion methods and representations.

The results of the ablation experiments are reported in Ta-
ble 3. In this context, “stack in channel” means that we ap-
pend the re-rendered masks channel-wise to the virtual im-
ages and feed them directly to the policy. And “concatenate
with re-rendered mask” means that we concatenate the “re-
rendered mask” with the visual features, which are obtained
by feeding the virtual images to preprocessing MLP. Sim-
ilarly, “concatenate with full mask” involves concatenating
the “full mask” with the visual features. In summary, the ap-
proach of concatenating object masks with the policy model
yields better results in “unseen” setting. Moreover, indicating
the object’s position in masks with a single pixel, as done by
ABM, performs better than other representations. This may
be because the Object Mask Field is obtained from imprecise
and unstable segmentation, and using inaccurate masks like
“re-rendered mask” and “full mask” may confuse the model.

4.2 Real-World Experiments
Real-World Setup
Hardware. In real-world experiments, we employ a UR3
robot equipped with a parallel gripper for manipulation and
a RealSense D435i RGB-D camera mounted on top, pointing
at the workspace for perception. The camera provides RGB-
D images with a resolution of 1280×720 at 30 Hz. Before
being fed to the model, point clouds are transformed to the
robot base frame using the extrinsics between the robot and
the camera.
Real-World Tasks. We train our ABM model from scratch
on two tasks (with 4 variations), using a total of 40 demon-
strations. For each task evaluation, we use 10 task scenarios
for in-distribution target objects and another 10 for out-of-
distribution target objects. Similar to the simulation environ-
ment, each task is described by language instructions speci-
fying different variations.

Result
We train our ABM model on a real-world dataset using a con-
figuration similar to the simulation. We train the agent for 20k
iterations with a learning rate of 0.0032. Evaluation results
are reported in Table 4. Overall, our model achieve average
success rates of 55% in the “seen” test tasks and 65% in the
“unseen” test tasks. Note that “unseen” has a higher aver-
age success rate than “seen” on real-world tasks, and we be-
lieve that the insufficient number of validations is the cause.

Avg. Place in Place in
Method Success Plate Cabinet

ABM
seen 55 40 70

unseen 65 50 80

Table 4: Real-world Task Result.

For each task in both the “seen” and “unseen” settings, we
only conduct validations on 10 scenes, leading to potential
randomness in the validation results. Conducting multiple
rounds of validation on a larger number of scenes and averag-
ing the results would mitigate this issue. We assess the real-
time performance of our model on an NVIDIA RTX 3090,
achieving inference speeds of approximately 0.68 FPS for the
model and 0.98 FPS for generating object masks. Employing
keypoint tracking as mentioned in the limitations to track the
target instance from the initial timestep can significantly en-
hance the system’s inference speed.

5 Conclusions and Limitations
We present ABM, a transformer-based model, which lever-
ages rich commonsense from pre-trained CLIP for down-
stream policy learning. Simulation and real-world experi-
ments demonstrate the impressive generalization ability of
ABM, enabling agent to complete tasks which contain novel
instructions and objects that are never seen before.

While ABM achieves promising results, there are still
some important limitations: (1) ABM requires constructing
the Object Mask Field at each timestep, leading to vary-
ing spatial positions of the identified target object at each
timestep and time-consuming, which are detrimental to pol-
icy optimization. This issue can be addressed by employing
keypoint tracking to track the target instance from the first
timestep and we don’t need to construct the Object Mask
Field in later timesteps. (2) Currently, our method can only
focus on a single target object in a task and apply learned
skills to that object, limiting its application to more com-
plex multi-target object manipulation tasks. We can solve this
problem by decomposing the language goals into descriptions
of multiple subtasks, and focusing on the target objects spec-
ified by the corresponding descriptions at different timesteps.
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