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Abstract
Box supervised instance segmentation (BSIS) aims
to achieve an effective trade-off between annota-
tion costs and model performance by solely rely-
ing on bounding box annotations during training
process. However, we observe that BSIS model is
bottlenecked by the intricate objective under lim-
ited guidance, and tends to sacrifice segmentation
capability in order to effectively recognize mul-
tiple instances. To boost the BSIS model’s per-
ceptual ability for object shape and contour, we
introduce MISA, that is, MIning Saliency-Aware
semantic prior from a well-optimized box super-
vised semantic segmentation (BSSS) network, and
incorporating cross-model guidance into the learn-
ing process of BSIS. Specifically, we first design a
Frequency-Space Distillation (FSD) module to ex-
tract assorted salient prior knowledge from BSSS
model, and perform cross-model alignment for
transfering the prior to BSIS model. Furthermore,
we introduce Semantic-Enhanced Pairwise Affinity
(SEPA), which borrows the object perceptual abil-
ity of BSSS model to emphasize the contribution of
salient objects for pairwise affinity, providing more
accurate guidance for the BSIS network. Extensive
experiments show that our proposed MISA consis-
tently surpasses the existing state-of-the-art meth-
ods by a large margin in the BSIS scenario.

1 Introduction
Instance segmentation, which aims to locate different objects
and assign them pixel-wise masks, is a fundamental task in
vision. The efficacy of instance segmentation methods op-
erating in various paradigms (e.g, query-based [Wang et al.,
2020b], top-down [Chen et al., 2019a], and bottom-up [Gao
et al., 2019]) has experienced a swift evolution in the vi-
sion community. Nonetheless, these methods heavily rely on
labour intensive manual mask annotations, which incur sub-
stantial time costs. In contrast, coarse object annotations sig-
nificantly reduce annotation costs, e.g, the average time cost
of point-level and box-level annotations for each instance is
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Figure 1: Segmentation performance when instance discrimination
is ignored. (a) The mIoU between semantic segmentation and in-
stance segmentation under both box supervised and fully supervised
settings. Instance segmentation demonstrates a lower mIoU, espe-
cially under weak supervision. (b) Visualization results of BSIS and
BSSS. BSIS exhibits a remarkable decrease in mask accuracy due to
the complicated objective.

9s and 7s respectively, which is much lower than that of mask-
level annotation (79.2s) [Cheng et al., 2022b].

For a trade-off between annotation costs and segmenta-
tion performance, our work focuses on box-supervised in-
stance segmentation (BSIS). Given the limited information
from bounding boxes, most current methods model the pair-
wise affinity at the image level to obtain extra prior knowl-
edge [Hsu et al., 2019; Tian et al., 2021], and propagate
the pairwise affinity globally and locally [Li et al., 2022b;
Li et al., 2023b]. Although these methods mitigate the chal-
lenges arising from the lack of mask supervision, there still
exists a significant gap compared to fully supervised ap-
proaches. The main reason is that the objective of instance
segmentation task is inherently more complicated, the net-
work is supposed to not only segment objects but also per-
form instance discrimination. Consequently, the model may
sacrifice the perceptual ability for object shape and contour
in order to recognize multiple instances, leading to subop-
timal segmentation results. This issue becomes even more
serious due to the lack of accurate mask supervision. An in-
tuitive comparison is shown in Figure 1, the performance of
BSIS network is obviously inferior to box-supervised seman-
tic segmentation (BSSS) when neglecting instance discrim-
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ination. By straightforwardly focusing on the segmentation
task, the model demonstrates better segmentation capability
and may provide valuable guidance for addressing complex
segmentation tasks (i.e, BSIS) in weakly supervised setting.

In this work, we present MISA to address box supervised
instance segmentation task. We MIne the Saliency-Aware
semantic prior knowledge within dense feature of a well-
optimized BSSS model, and perform cross-model guidance
onto the query-based BSIS model to facilitate its representa-
tion learning process, thereby enhancing model’s segmenta-
tion capability. The proposed MISA constitutes of two com-
ponents: (1) a Frequency-Space Distillation (FSD) module,
and (2) Semantic Enhanced Pairwise Affinity (SEPA).

As for the Frequency-Space Distillation (FSD) module, we
extract assorted salient semantic prior knowledge from BSSS
model and perform cross-model alignment aiming to transfer
the salient prior to BSIS model. Specifically, we decompose
the dense feature representations of segmentation networks
into high-frequency and low-frequency components respec-
tively. Then we acquire the high-frequency features of object
regions and the low-frequency features of background regions
according to the ground-truth bounding boxes. Next, we align
the aforementioned features between BSIS and BSSS net-
works to facilitate the BSIS model in capturing essential se-
mantic prior by minimizing feature level Mean Squared (L2)
loss. Rich textural knowledge in the high-frequency compo-
nent of the object features drives the network towards accu-
rately segmenting edges, while the low-frequency component
of background features implies global structural information,
which prevents false positive predictions.

As for the Semantic Enhanced Pairwise Affinity (SEPA),
we borrow the object perceptual ability of the BSSS net-
work to emphasize the contribution of salient foreground ob-
jects for pairwise affinity, providing more accurate guidance
for the BSIS network. In particular, inspired by class ac-
tivation maps (CAMs) [Zhou et al., 2016], we extract the
classifier weights corresponding to different object categories
and utilize them to reweight the semantic features, highlight-
ing the contributions of different channels in discriminating
foreground objects. The modulated saliency-aware features
then cooperated with the low-level cues to model the pair-
wise affinity, which will propagate on the predicted mask to
effectively guide the BSIS model.

Overall, our contributions can be summarized as follows:

• We propose MISA to guide the query-based box su-
pervised instance segmentation during learning process
via MIning Saliency-Aware semantic prior from BSSS
model. To the best of our knowledge, this is the first
work to introduce cross-model guidance to boost the per-
formance of BSIS.

• Two novel technologies are presented: (1) a Frequency-
Space Distillation (FSD) module, and (2) Semantic En-
hanced Pairwise Affinity (SEPA). Both technologies ex-
plore the salient semantic prior within the dense feature
of the BSSS model from different perspectives, so as to
provide valuable guidance that enhances the segmenta-
tion capability of BSIS model.

• Extensive experimental results on various benchmarks

demonstrate that our proposed method remarkably out-
performs existing state-of-the-art BSIS methods. Our
work narrows down the gap in performance between full
mask and box supervised instance segmentation.

2 Related Works
2.1 Instance Segmentation
Instance segmentation aims to segment and recognize each
foreground object from an image. Existing instance segmen-
tation methods can be roughly categorized into query-based,
top-down and bottom-up paradigms [Wang et al., 2022]. Top-
down approaches [He et al., 2017; Chen et al., 2019a] de-
tect target objects and further utilize semantic segmentation
algorithms to achieve pixel-level results. Bottom-up meth-
ods [Gao et al., 2019] accomplish segmentation by clustering
similar pixels and grouping them into distinct objects. Re-
cently, query-based methods [Wang et al., 2020b; Cheng et
al., 2022a] have emerged as state-of-the-art paradigm, which
introduce a set of learnable query vectors to decode predicted
masks from dense feature representations. Our work builds
upon the query-based paradigm.

2.2 Box Supervised Segmentation
Box supervised segmentation aims to accomplish semantic or
instance segmentation tasks using only bounding box annota-
tions.It has gained growing attention due to its balance be-
tween segmentation performance and annotation costs [Shen
et al., 2023]. For box supervised semantic segmentation
(BSSS), Box2Seg [Kulharia et al., 2020] utilizes GrabCut
[Rother et al., 2004] to refine CAMs [Zhou et al., 2016] and
combines those with attention maps to jointly guide the seg-
mentation network. BAP [Oh et al., 2021] aims to acquire
high-quality pseudo masks by excluding background regions
from the bounding boxes. For box supervised instance seg-
mentation (BSIS), BoxInst [Tian et al., 2021] assumes that
adjacent pixels with similar colors are likely belong to the
same instance. Recently, several approaches [Li et al., 2023b;
Li et al., 2022b] utilize low-level image cues to model pair-
wise affinity, and propagate it on the predicted masks to gen-
erate pseudo labels. In our work, we focus on mining salient
semantic prior from a well-optimized BSSS network to boost
the segmentation ability of BSIS network.

2.3 Knowledge Distillation
Knowledge distillation [Hinton et al., 2015] aims to com-
press the complexity of the model by aligning soft labels
between a cumbersome model and a compact model. This
paradigm has been widely adopted in object detection and se-
mantic segmentation. SSTKD [Ji et al., 2022] transfers the
low-level structural and statistical texture information from
teacher to student model individually. SKD [Liu et al., 2019]
proposes to capture structured information between pixels
by constraining both pairwise similarity and holistic correla-
tions. DeFeat [Guo et al., 2021] highlights the significance of
both foreground and background during the learning process,
and distilling them separately to yield more prominent results.
In contrast, our method focuses on performing a cross-model
distillation to boost the segmentation performance of BSIS.
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Figure 2: The overview architecture of our proposed MISA. The images are fed into well-optimized BSSS model and BSIS model to extract
dense features. Then we decompose the high-frequency features of object regions and the low-frequency features of background regions in
Frequency-Space Distillation (FSD) module. These features are aligned to facilitate salient knowledge transfer from BSSS to BSIS models.
Subsequently, we reweight the dense feature of BSSS model at channel dimension based on saliency factors. The modulated dense features
are incorporated with low-level cues to model the Semantic Enhanced Pairwise Affinity (SEPA) for generating more accurate pseudo masks.

3 Methodology
In this section, we introduce our proposed MIning Saliency-
Aware semantic prior (MISA) for box supervised instance
segmentation. The overall architecture of MISA is shown
in Figure 2. In Section 3.1, we review the semantic seg-
mentation and query-based instance segmentation methods.
In Section 3.2, we present the Frequency-Space Distillation
(FSD) module to effectively extract and transfer the salient
prior knowledge within dense feature of BSSS model. In
Section 3.3, we introduce the Semantic Enhanced Pairwise
Affinity (SEPA) to emphasize the contribution of salient ob-
jects for modeling more accurate pairwise affinity.

3.1 Preliminary
Semantic Segmentation
Most semantic segmentation methods employ an encoder-
decoder architecture. A training image is fed into an encoder
to obtain low-resolution feature maps, then the feature are
continuously upsampled in decoder, generating the semantic
dense feature representation S ∈ RH×W×D to obtain predic-
tion mask:

M sem = softmax(S ∗K), (1)

where M sem ∈ [0, 1]H×W×C denotes the prediction seman-
tic probability map, D refers to the channels of semantic fea-
ture map, C denotes the number of categories. ’∗’ represents
a convolution operation and K = {k1, ...,kC} ∈ RC×D

refers to a 1× 1 conv with C convolutional kernels.

Query-based Instance Segmentation
Query-based instance segmentation methods often feed the
extracted image feature into both the query branch and mask
feature branch, yielding corresponding instance-aware em-
beddings Q = {q1, ..., qN} ∈ RN×D′

and dense feature rep-
resentations I ∈ RH×W×D′

for generating predicted masks:

Mn = sigmoid(I · qn), n ∈ {1, · · · , N}, (2)

where N denotes the number of positive sample grid points
in the training image (i.e, SOLOv2), Mn ∈ [0, 1]H×W×1 is
the prediction mask corresponding to the nth grid point.

3.2 Frequency-Space Distillation
The purpose of proposed Frequency-Space Distillation mod-
ule is to explore the salient prior knowledge within dense fea-
ture of a well-optimized BSSS model, and imbue the BSIS
network with extracted valuable salient prior. As shown in
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Figure 3: Details of frequency-space decomposing approach. The
dense feature is decomposed into high-frequency and low-frequency
components through Fourier transformation. Next, the foreground
regions in the high-frequency feature and the background regions in
the low-frequency feature are extracted based on the ground-truth.

Figure 3, to capture texture knowledge and global structural
information within the dense feature representations, we first
apply spectral modulation in Fourier domain [Si et al., 2023]
to extract the high-frequency and low-frequency components
of the dense feature separately:

T (F ) = FFT (F ) ,

T ′(F ) = T (F ) ·α,

F ′ = IFFT (T ′ (F )) ,

(3)

where F is the dense feature presentations (i.e, S and I),
FFT(·) and IFFT(·) denote Fourier transform and inverse
Fourier transform respectively. α ∈ [0, 1]H×W is the Fourier
mask, such as for high-pass filtering:

α(i, j) =

{︃
θ if

(︁
i− H

2

)︁2
+
(︁
j − W

2

)︁2 ≤ t2,
1 otherwise,

(4)

here θ is the frequency-dependent scaling factor and t denotes
the threshold frequency radius.

Texture knowledge in the high-frequency component of
the foreground regions is beneficial for recognizing object
contours, while global structural information in the low-
frequency component of the background regions helps re-
duce false positive predictions. Based on this, we decompose
the high-frequency foreground regions and the low-frequency
background regions of the dense feature representations sep-
arately. Let B ∈ {0, 1}H×W be a binary mask, where
B(i, j) = 1 if the location (i, j) belongs to any bounding
boxes in a training image and B(i, j) = 0 otherwise. The
decomposed dense feature representations can be calculated
as follows:

F ′
high = F ′

high ·B,

F ′
low = F ′

low · (1−B).
(5)

Finally, the decomposed feature representations between
BSIS and BSSS network will be aligned via minimizing the
Mean Squared (L2) loss to accomplish salient prior transfer:

Ltrans =
λbg

2Nbg

H∑︂
h=1

W∑︂
w=1

D∑︂
d=1

(S′
low(h,w, d)− I ′

low(h,w, d))
2

+
λfg

2Nfg

H∑︂
h=1

W∑︂
w=1

D∑︂
d=1

(S′
high(h,w, d)− I ′

high(h,w, d))
2,

(6)

where λbg and λfg denote the loss coefficients in background
and foreground regions, Nbg and Nfg refer to the number of
pixels in background and foreground regions. We adopt adap-
tation and projector layers [Yang et al., 2022] to adjust the
dense feature of BSIS before frequency-space decomposing.

3.3 Semantic Enhanced Pairwise Affinity
Since ground-truth masks are not available, most previous re-
search leverage the color consistency assumption that pix-
els with similar colors correspond to shared labels [Lin et
al., 2016; Tian et al., 2021]. In this context, some studies
[Araslanov and Roth, 2020; Li et al., 2023b] propagate low-
level pixel color affinity on predicted masks M to generate
pseudo labels M̂ , formulated as below:

Mnˆ (i, j) = wij

∑︂
(k,l)∈N (i,j)

Aij,kl ·M(k, l), (7)

Aij,kl = exp

(︄
−
(︃
|V (i, j)− V (k, l)|

σV

)︃2
)︄
, (8)

where Aij,kl is the low-level pairwise affinity between pixels
at locations (i, j) and (k, l), V (i, j) and V (k, l) represent
RGB vectors, σV denotes the standard deviation of V , N
represents the scope of the various receptive fields (e.g, 8-
way local neighbors [Ru et al., 2022] and global pixels [Li et
al., 2023b]). wij is the normalization coefficient:

wij =
1∑︁

(k,l)∈N (i,j) Aij,kl
(9)

However, in cases where the object and background have
similar color intensities, the color consistency assumption be-
come inapplicable [Li et al., 2023a]. To acquire more robust
prior knowledge, we employ dense feature S, obtained from
a well-optimized BSSS model (from Equation 1), to establish
high-level feature affinity, denoted as Af :

Af
ij,kl = exp

(︄
−
(︃
|S(i, j)− S(k, l)|

σS

)︃2
)︄
. (10)

Nevertheless, the formulation of Eq. (10) indicates that
each feature vector contributes equally to the pairwise affin-
ity. This lacks concerns on the impact of salient foreground
objects, which can incorporate undesired noise from the
background regions. To provide more accurate cross-model
guidance, we further mine deep semantic prior from the
BSSS network and modulate the deep feature to strengthen
the awareness of target categories. To specify, inspired by
CAMs [Zhou et al., 2016], we first extract the classifier pa-
rameters K ∈ RC×D, which map D-dimensional dense fea-
ture to C-dimensional score map, encapsulating the contribu-
tions of different feature channels to different categories.

We view K as the saliency factors and then use it to
reweight the channel of dense feature for each foreground cat-
egory c to effectively reduce noise and amplify the distance
between foreground and background vectors:

Sc = Kc · S, (11)
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where Kc represents the cth entry of the K. Consequently,
the high-level feature pairwise affinity for each foreground
category c can be calculated as below:

Ac
ij,kl = exp

(︄
−
(︃
|Sc(i, j)− Sc(k, l)|

σSc

)︃2
)︄
. (12)

The ultimate Semantic Enhanced Pairwise Affinity Acˆ ,
corresponded to category c, is defined as:

Acˆ
ij,kl = Aij,kl +Ac

ij,kl, (13)

Therefore, the propagated pseudo labels Mnˆ in Equation 7
with ground-truth category c can be adjusted as:

Mnˆ (i, j) = ŵij

∑︂
(k,l)∈N (i,j)

Acˆ
ij,kl ·M(k, l). (14)

Finally, we adopt the Mean Absolute (L1) loss between
predicted masks M and propagated pseudo labels M̂ to
guide the BSIS network effectively.

Lpairwise =
N∑︂

n=1

H∑︂
i=1

W∑︂
j=1

⃓⃓⃓
Mnˆ (i, j)−Mn(i, j)

⃓⃓⃓
. (15)

4 Experiments
4.1 Datasets
PASCAL VOC 2012
The PASCAL VOC 2012 dataset [Everingham et al., 2010]
includes 20 object categories. This dataset is divided into
training and validation subsets, with 10,582 images for train-
ing and 1,449 images for validation.

COCO
The COCO dataset [Lin et al., 2014] is widely used in image
segmentation task. It comprises 80 different object categories
and contains a training set of 110k images, a validation set of
5k images, and a testing set of 20k images.

4.2 Evaluation Metrics
We use the standard COCO style metrics to evaluate the pro-
posed method. It contains mask AP (averaged over IoU
thresholds), AP50, AP75 (mask AP at different IoUs), and
APS , APM , APL (mask AP at different scales). All AP is
calculated using mask IoU [He et al., 2017].

4.3 Implementation Details
Our proposed method is implemented in Pytorch [Paszke et
al., 2017] with mmcv/mmdet [Chen et al., 2019b] repos-
itory. We choose SOLOv2 [Wang et al., 2020b] and
Mask2Former [Cheng et al., 2022a] as the query-based in-
stance segmentation frameworks, and we default to using
SOLOv2 unless specified. The different backbones of the
model (i.e, ResNet [He et al., 2016] and Swin Transformer
[Liu et al., 2021]) are pretrained on ImageNet [Russakovsky
et al., 2015]. We train our model on 8 GPUs with a batch
size of 16, and adopt AdamW as the optimizer with the initial
learning rate set to 1.2 × 10−4 and weight decay set to 0.05.

Image Color Affinity SEPA

(a)

(b)

Figure 4: Examples of different pairwise affinity. The propagation
of color affinity is erroneously expanded or terminated prematurely.
Utilizing SEPA yields more accurate results than color affinity.

We also apply the projection loss term [Tian et al., 2021;
Li et al., 2022a] to constrain the predicted mask. Follow-
ing Apro[Li et al., 2023b], we propagate the Semantic En-
hanced Pairwise Affinity (SEPA) locally and globally to ob-
tain pseudo labels. We set θ = 0.2 and t = 10 in Equation 4.
The affinity balanced coefficient in Equation 13 is set to 0.7.
In the objective function of Equation 6, we set λbg = 6 and
λfg = 10 by default. The data augmentation strategies fol-
low the default settings recommended in mmdet. We adopt
the SeMask [Jain et al., 2023] as the segmentation framework
of BSSS, and we align the backbone of the BSSS and BSIS
models to better comprehend the impact of our approach in
comparative experiment. The BSSS model is used solely for
auxiliary training and is not utilized during inference.

4.4 Main Results
Results on COCO
We compare MISA with the state-of-the-art BSIS methods
on the COCO test-dev dataset in Table 1. Our proposed
method demonstrates remarkable superiority over other meth-
ods across various backbones. Specifically, MISA outper-
forms BoxInst [Tian et al., 2021] and DiscoBox [Lan et al.,
2021] by 2.8% and 2.9% mask AP with SOLOv2 framework
and ResNet-50 backbone. It obtains 36.0% mask AP, which
is higher than BoxLevelSet and Box2Mask by 2.6% and
1.8% mask AP with ResNet-101 backbone. With more pow-
erful backbone and query-based framework (i.eSwin Trans-
former [Liu et al., 2021] and Mask2Former [Cheng et al.,
2022a]), MISA exhibits outstanding performance with 42.0%
mask AP, surpassing existing state-of-the-art models such as
SIM [Li et al., 2023a], BoxTeacher [Cheng et al., 2023], and
Apro [Li et al., 2023b]. This is attributed to MISA’s ability to
mine and leverage salient semantic prior knowledge as guid-
ance, effectively mitigating the influence of noise and boost-
ing the the perceptual ability for object shape and contour.

Results on PASCAL VOC 2012
We also conduct experiments on PASCAL VOC 2012 val
dataset to further validate the effectiveness and generaliza-
tion capability of our method. As shown in Table 2, our pro-
posed MISA demonstrates superior performance compared to
recent BSIS methods based on different architectures.
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Method Backbone AP AP50 AP75 APs APm APl

Mask-supervised.
Mask R-CNN [He et al., 2017] ResNet-101 37.5 59.3 40.2 21.1 39.6 48.3
PolarMask [Xie et al., 2020] ResNet-101 32.1 50.6 32.8 12.1 33.3 47.1
SOLO [Wang et al., 2020a] ResNet-101 37.8 59.5 40.4 16.4 40.6 54.2
SOLOv2 [Wang et al., 2020b] ResNet-101 39.7 60.7 42.9 17.3 42.9 57.4
CondInst [Tian et al., 2020] ResNet-101 39.1 60.9 42.0 21.5 41.7 50.9
Mask2Former [Cheng et al., 2022a] ResNet-101 44.2 − − 23.8 47.7 66.7

Box-supervised.
BoxInst [Tian et al., 2021] ResNet-50 32.1 55.1 32.4 15.6 34.3 43.5
DiscoBox [Lan et al., 2021] ResNet-50 32.0 53.6 32.6 11.7 33.7 48.4
Box2Mask [Li et al., 2022b] ResNet-50 32.6 55.4 33.4 14.7 35.8 45.9
Apro [Li et al., 2023b] ResNet-50 33.4 56.1 34.2 15.5 36.3 46.7
MISA ResNet-50 34.9 56.8 35.0 16.2 37.9 48.4
BoxInst [Tian et al., 2021] ResNet-101 33.2 56.5 33.6 16.2 35.5 45.1
BoxLevelSet [Li et al., 2022a] ResNet-101 33.4 56.8 34.1 15.2 36.8 46.8
Box2Mask [Li et al., 2022b] ResNet-101 34.2 57.8 35.2 16.0 37.7 48.3
Apro [Li et al., 2023b] ResNet-101 34.6 57.9 35.6 16.3 37.8 48.6
MISA ResNet-101 36.0 58.7 36.9 16.8 39.3 50.9
Box2Mask∗[Li et al., 2022b] ResNet-101 38.3 65.1 38.8 19.3 41.7 55.2
Apro∗[Li et al., 2023b] ResNet-101 38.5 64.7 39.4 20.6 42.4 54.3
MISA∗ ResNet-101 39.7 66.3 39.2 21.3 43.0 55.8
SIM[Li et al., 2023a] Swin-B 40.2 66.9 41.3 21.1 43.5 56.0
BoxTeacher [Cheng et al., 2023] Swin-B 40.6 65.0 42.5 23.4 44.9 54.2
Apro∗ [Li et al., 2023b] Swin-B 40.9 67.2 41.8 23.6 45.4 55.3
MISA∗ Swin-B 42.0 68.1 42.7 23.8 46.1 56.8

Table 1: Comparisons with state-of-the-art methods on the COCO test-dev dataset. Methods annotated with ”∗” utilize the Mask2Former
framework. Our proposed method consistently outperforms existing methods on various backbones and network architectures.

Method Backbone AP AP50 AP75

BoxInst [Tian et al., 2021] ResNet-50 34.3 59.1 34.2
SIM [Li et al., 2023a] ResNet-50 36.7 65.5 35.6
BoxLevelSet [Li et al., 2022a] ResNet-50 36.3 64.2 35.9
BoxTeacher [Cheng et al., 2023] ResNet-50 38.6 66.4 38.7
Apro [Li et al., 2023b] ResNet-50 38.3 65.1 39.4
Apro∗ [Li et al., 2023b] ResNet-50 42.3 70.6 44.5
MISA ResNet-50 39.9 67.4 40.6
MISA∗ ResNet-50 43.5 71.8 45.2
BoxInst [Tian et al., 2021] ResNet-101 36.5 61.4 37.0
SIM [Li et al., 2023a] ResNet-101 38.6 67.1 38.3
BoxLevelSet [Li et al., 2022a] ResNet-101 38.3 66.3 38.7
BoxTeacher [Cheng et al., 2023] ResNet-101 40.2 67.6 40.8
Apro [Li et al., 2023b] ResNet-101 40.3 67.2 41.9
Apro∗ [Li et al., 2023b] ResNet-101 43.6 72.0 45.7
MISA ResNet-101 41.5 68.4 42.2
MISA∗ ResNet-101 44.7 73.5 46.1

Table 2: Performance comparisons with state-of-the-art methods on
the PASCAL VOC 2012 val dataset. Our method achieves the
state-of-the-art mask AP.

Qualitative Results
We show the visualization results of the different pairwise
affinity in Figure 4. The examples provide an intuitive illus-
tration of the limitations of color affinity. Specifically, the
color affinity in Figure 4(a) erroneously propagates from the
snowboard to background due to their similar appearances.
In Figure 4(b), the propagation of color affinity is incorrectly
interrupted at the black-and-white boundary of the dog’s fur.
In contrast, our proposed SEPA mitigates the issues arising
from misleading color prior and yields more robust propaga-

tion results.
Figure 5 presents visualization results that demonstrate the

performance of our proposed MISA on the COCO val split.
It should be emphasized that our method consistently demon-
strates robust object segmentation capabilities even in intri-
cate scenarios and multiple-instance images.

4.5 Ablation Study
We conduct ablation studies on PASCAL VOC 2012 val
split to verify the effectiveness of each module in MISA. We
adopt ResNet-50 and SOLOv2 as the baseline, and the mask
AP at different IoU thresholds are reported. Additionally, we
discuss the sensitivity of hyperparameters and report the rel-
evant experiments in the supplementary materials.

Contributions of FSD and SEPA
Table 3 shows the contributions of the two components intro-
duced in our work (i.e, FSD and SEPA). Relying solely on
low-level cues to model pairwise affinity [Li et al., 2023b],
the method achieves mask AP of only 38.3%. After in-
corporating the FSD module, the performance is improved
to 39.5% mask AP. When propagating the SEPA to obtain
pseudo labels, our method reaches 39.3% mask AP. When
both the FSD and SEPA modules are employed, the perfor-
mance is significantly boosted to 39.9% mask AP. This is
due to the combination of FSD and SEPA provides a valu-
able prior guidance for BSIS network.

Distillation Schemes for FSD
We investigate the impact of frequency domain decomposi-
tion and foreground-background decoupling schemes on the
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Figure 5: Qualitative results of MISA with ResNet-101 backbone and SOLOv2 framework on COCO val dataset. The model demonstrates
commendable performance in object segmentation without any mask supervision.

Method FSD SEPA AP AP50 AP75

baseline 38.3 65.1 39.4

MISA
✓ 39.5 67.0 40.4

✓ 39.3 66.5 40.1
✓ ✓ 39.9 67.4 40.6

Table 3: Effects of two semantic prior modules.

Method Distillation Frequency Space AP AP50 AP75

baseline 38.3 65.1 39.4

MISA

✓ 38.7 66.0 39.3
✓ ✓ 38.8 66.4 39.5
✓ ✓ 39.0 66.5 39.9
✓ ✓ ✓ 39.5 67.0 40.4

Table 4: Effects of distillation schemes.

performance. As shown in Table 4, using only feature level
distillation yields a limited 0.4% mask AP improvement. Af-
ter incorporating the frequency domain decomposition and
foreground-background decoupling modules, there are 0.1%
and 0.3% mask AP improvements respectively. When the
aforementioned modules are combined, the performance is
further enhanced to 39.5% mask AP. This suggests that FSD
enables BSIS to capture salient prior knowledge from BSSS.

Different Pairwise Affinities for Propagation

We validate the efficacy of SEPA using two propagation
modes (i.e, PAMR [Araslanov and Roth, 2020] and Apro [Li
et al., 2023b]. PAMR employs the 8-way neighbors propa-
gation scope, whereas Apro performs affinity propagation in
both global and local contexts. As show in Table 5, the use
of semantic feature improves the performance by 0.2% and
0.4% mask AP for PAMR and Apro respectively. After using
the saliency factors to modulate the semantic feature, the re-
sults are largely improved by 0.6% and 1.0% mask AP. This
indicates that SEPA can generate more accurate pseudo labels
in different propagation modes.

Method Color Feature Saliency AP AP50 AP75

PAMR
✓ 37.7 65.1 38.7
✓ ✓ 37.9 65.4 39.1
✓ ✓ ✓ 38.3 65.9 39.3

Apro
✓ 38.3 65.1 39.4
✓ ✓ 38.7 65.9 39.9
✓ ✓ ✓ 39.3 66.5 40.1

Table 5: Effects of different pairwise affinities.

5 Conclusion
In this work, we indicate that owing to the intricate objective
and limited guidance, the box supervised instance segmen-
tation (BSIS) model often seeks a trade-off by significantly
sacrificing its segmentation capability to recognize multiple
instances. To this end, we present MIning Saliency-Aware
semantic prior (MISA) from a well-optimized box supervised
semantic segmentation (BSSS) network, and incorporating
cross-model guidance into the training process of BSIS, so
as to boost the segmentation ability of BSIS model. The pro-
posed MISA consists of two technologies, (1) a Frequency-
Space Distillation (FSD) module, and (2) Semantic Enhanced
Pairwise Affinity (SEPA). Both technologies make efforts to
mine the salient semantic prior within the dense feature of the
BSSS model from different perspectives and provide valuable
guidance for BSIS model. The experimental results on dif-
ferent benchmarks demonstrate the superior performance of
our proposed method. Taking a broader view, our proposed
MISA shows a novel perspective for exploring cross-model
guidance to boost the model capability of BSIS.
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