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Abstract
Zero-shot sketch-based image retrieval (ZS-SBIR),
aiming to recognize and retrieve relevant photos
based on freehand sketch queries that belong to
unseen categories in the search set, has sparked
considerable interest, benefiting from the rapid ad-
vancements in multimodal learning and feature rep-
resentation research. Despite the recent improve-
ments in performance, there are still rooms for
refining feature representation and thus enhanc-
ing the generalization capabilities of the models.
Most of the existing research efforts have primar-
ily focused on learning the feature distribution of
modalities within specific datasets, without con-
sidering the broader dataset-agnostic ‘population
distribution’ of relevant modalities. In this pa-
per, we investigate the modality population dis-
tribution and apply such knowledge to guide fea-
ture learning. Specifically, we propose a modal-
ity capacity constraint loss to control the learning
of population distribution for sketches and pho-
tos. This loss can be effectively combined with re-
trieval loss (e.g., triplet loss) or classification loss
(e.g., InfoNCE loss) to enhance the performance of
ZS-SBIR, through the fine-tuning process of pre-
trained models like CLIP and DINO. Extensive
experiment results have demonstrated our signifi-
cant performance improvements, achieving an in-
crease of 7.3%/3.2% and 19.9%/10.3% in terms
of mAP@200/P@200 compared to the state-of-the-
art models on CLIP and DINO, respectively, on
the Sketchy-ext dataset (split 2). Data, code, and
supplementary information are available at https:
//github.com/YHdian0716/ZS-SBIR-MCC.git

1 Introduction
Zero-shot learning (ZSL) aims to recognize and categorize
objects or classes that have never been seen before in the
training process. As a specific application of ZSL, zero-shot
sketch-based image retrieval (ZS-SBIR) involves a combi-
nation of ZSL and SBIR, aiming to retrieve photos by in-
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Figure 1: Illustration of our proposed method.

putting query sketches of categories not seen in the training
set. Benefit from the rapid advancements of self-supervised
models (e.g., DINO) and large language-vision models (e.g.,
CLIP), the performance of ZSL-SBIR has improved by large
margins. These models have been all trained on large-scale
datasets, equiping them with generalized vision features,
which play a vital role in ZSL-SBIR. For instance, based on
DINO, some studies [Tian et al., 2022; Wang et al., 2022;
Tian et al., 2023] leveraged knowledge distillation to enhance
the model’s ability to generalize to unseen classes and im-
prove its discriminability to distinguish instances and cate-
gories. Other studies attemp to adapt CLIP for SBIR, lever-
aging its vision-semantic alignment capability for effective
knowledge transfer. For example, [Sain et al., 2023a] and
[Dong et al., 2023] proposed to use prompt learning and
adapters to adapt CLIP text encoder to ZSL-SBIR while pre-
serving its generalizability.

In the early work of image retrieval, statistical knowl-
edge, such as distribution characteristics, is often utilized
to design hand-crafted features [Stricker and Swain, 1994;
Brunelli and Mich, 2001]. Such overall distribution char-
acteristics, however, have been largely overlooked in recent
deep learning-based model training. We argue that a good un-
derstanding of representation statistics is essential for model
learning too. In the context of ZS-SBIR, existing loss func-
tions, such as triplet loss and InfoNCE loss, focus solely on
the relationship between individual samples without consid-
ering the overall distribution characteristics. To address this
issue, we introduce in this paper a new concept of modality
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capacity and design a new loss according to the law of large
numbers (LLN) to guide the feature learning process. More
specifically, the modality capacity examines the effectiveness
of a representation space (see Figure 1) by calculating the av-
eraged inter-class similarity among samples within the same
modality. With the modality capacity constraint loss defined,
we can drive the modality capacity towards an optimal state,
resulting in more balanced decision boundaries. This assists
the model to self adjusted to learning more robust and gener-
alizes, in particularly when inter-class similarity is either very
small or too large, where existing models fail to learn dis-
criminative representations or the learning is biased towards
a specific category. Therefore, our method can facilitate rep-
resentation learning for different modalities and, finally, im-
prove the performance of ZS-SBIR. The main contribution of
this paper can be summarized:

• To our best knowledge, our work is the first to con-
sider the effectiveness of population during the ZS-SBIR
learning process.

• A modality capacity is introduced to measure the effec-
tiveness of a representation space for retrieval.

• A novel modality capacity constraint loss is designed to
guide the model to learn more robust and generalized
representations by constraining the modality capacity.

• Without introducing extra parameters, our proposed
method, when combined with triplet/InfoNCE loss, ob-
tains an increase of 2.4%/1.8% and 24.0%/2.5% re-
spectively in terms of mAP@200 compared to the base-
lines of CLIP and DINO.

2 Related Work
Zero shot learning. Zero-shot learning (ZSL) is a method
that enables a model to classify data samples, whose classes
are not present during training. Most ZSL approaches
leverage semantic information (e.g., manually defined at-
tributes [Luo et al., 2020] or word vectors [Akata et al.,
2016]) to bridge the gap between both seen and unseen
classes. These works usually employ an embedding or map-
ping function to establish a connection between the low-level
visual features and their respective semantic vectors. They
can be presented as ‘visual→ semantics’ (e.g., [Chen et al.,
2018]), ‘semantics→ visual’ (e.g., [Shigeto et al., 2015]) or
‘visual → latent ← semantics’ (e.g., [Zhang et al., 2017]).
Instead, we believe that models like CLIP and DINO, which
are pre-trained on large-scale datasets, possess a comprehen-
sive understanding of vision and can achieve ZS-SBIR when
appropriate guidance is provided. In short, we focus on the
relationship between ‘vision (sketch)’ and ‘vision (photo)’.
ZS-SBIR. When combining ZSL and SIBR, research stud-
ies can be classified as vision-centric, vision-semantic-
alignment, or a combination of both. Vision-centric works
often focus on properties within the vision domain. [Wang
et al., 2021b] proposed using an image bank to bridge the
domain gap. [Wang et al., 2021a] utilized vision feature
norm to guide the sketch and photo alignment. Visual image
generation is also a promising and widely-considered sub-
direction due to the success of GANs and their variants. [Ren

Figure 2: Inter-category similarity histogram investigation (accord-
ing to Table 1). Left: CLIP-Based. Right: DINO-based. The results
are obtained through 10k samplings.

Dp Ds

Sketchy-Ext 0.73 ± 0.08 0.91 ± 0.03

TUBerlin-Ext 0.77 ± 0.07 0.89 ± 0.04

QuickDraw-Ext 0.81 ± 0.07 0.94 ± 0.02

Sketchy-Ext 0.07 ± 0.12 0.77 ± 0.09

TUBerlin-Ext 0.09 ± 0.11 0.67 ± 0.09

QuickDraw-Ext 0.15 ± 0.13 0.80 ± 0.08

Dataset Capacity

Table 1: ‘mean ± std’ of the inter-category similarities obtained
from the pre-trained CLIP (top) and DINO (bottom). The results
are calculated using category representations (mean feature value).

et al., 2023] utilized CycleGAN to enhance the knowledge of
feature extractor to further improve the generalization abil-
ity of ZS-SBIR. [Dutta and Akata, 2019] proposed a cycle-
consistent generator leveraging semantic information for bet-
ter knowledge about the unseen classes. Recently, several
studies have demonstrated the superior performance of com-
bining vision-related semantics with ViT models pre-trained
on large-scale datasets. For example, [Dong et al., 2023]
leveraged the CLIP text encoder and incorporated adaptors
into DINO, resulting in competitive performance. [Sain et
al., 2023a] proposed an approach that fine-tunes CLIP using
a prompt learning mechanism. This enables the integration of
vision-semantic knowledge into the ZS-SBIR problem. How-
ever, none of these methods considered high-level population
distribution information, potentially resulting in a bised learn-
ing that is unsuitable for unexplored categories.

3 Method
In this section, we first describe our problem formulation
and the baseline. By investigating population distribution of
the learned features of the baseline model, a novel metric –
modality capacity contraint loss – is then introduced and in-
tegrated with existing retrieval losses for a more effective rep-
resentation learning.

3.1 Problem Formulation
In ZS-SBIR, the dataset consists of two types of sam-
ples: sketches P and photos S, and is denoted as D =
{(imgi, yi)|yi ∈ C}Ni=1, where each sketch/photo imgi is
associated with a corresponding label yi. The sketches and
photos are divided into two subsets Dseen = {P seen, Sseen}

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1781



and Dunseen = {Punseen, Sunseen} for training and testing.
More specifically, Dseen = {(imgi, yi)|yi ∈ Cseen}Ns

i=1,
where Ns = |P seen| + |Sseen|, imgi ∈ P seen

⋃
Sseen

and Cseen is the seen category set. Similarly, Dunseen =
{(imgi, yi)|yi ∈ Cunseen}Nu

i=1, where Nu = |Punseen| +
|Sunseen|, imgi ∈ Punseen

⋃
Sunseen and Cunseen is the

unseen category set. There is no overlap between Cseen

and Cunseen, that is Cseen ∩ Cunseen = ∅. Our goal is to
train a model using the seen data Dseen to retrieve photos of
the same category for a query sketch from the unseen data
Sunseen.

3.2 Baseline ZS-SBIR Framework
We here provide an overview of our baseline framework for
ZS-SBIR. Given a sketch/photo pair, a sketch/photo feature
extractor is utilized to obtain the vision feature fs = Fs(s)
and fp = Fp(p), where fs, fp ∈ Rc are the sketch and photo
features, respectively, and c is the feature dimension. To es-
tablish our baseline, we employ either DINO or CLIP as the
vision extractor, which is trained with different loss functions
based on the respective characteristics of the extractor.
DINO-based. DINO is trained on large-scale image
datasets in a self-supervised manner, to learn discriminative
visual representations. Recent studies have shown that using
the visual representations directly as a common space yields
good results in ZS-SBIR. As a result, we employ the triplet
loss to train the model based on DINO in the visual space,
without leveraging semantic information.

During training, we sample a triplet consisting of a sketch
anchor s, a positive photo p+ and a negative photo p−. The
objective of the triplet loss Ltri is to minimize the distance
d(s, p+) between s and p+, while simultaneously maximiz-
ing the distance d(s, p−) between s and p+. Here, d(·, ·) is
measured using the cosine distance. The calculation of the
triplet loss can be represented as:

Ltri = max{0, µ+ d(s, p+)− d(s, p−)} (1)

where µ is a hyperparameter that defines the minimum de-
sired margin between the positive and negative samples.
CLIP-based. CLIP learns joint representations of image
and text, which in turn facilitates zero-shot learning. We
adopt CLIP-AT [Sain et al., 2023b] and leverage text embed-
ding to guide the feature learning by incorporating a classifi-
cation loss as follows:

Lcls =
1

N

N∑
i=1

− logP (yi|pi)− logP (yi|si) (2)

P (yi|I) =
exp(sim(fI , f

yi

t )/τ)∑|Cseen|
j=1 exp(sim(fI , f

j
t )/τ)

(3)

where I ∈ {s, p} represents a sketch or photo, sim(·) denotes
the cosine similarity function, and τ is the temperature hy-
perparameter. In addition, several recent studies (e.g., [Sain
et al., 2023a]) have demonstrated the effectiveness of com-
bining Ltri (Eq. 1) with CLIP. Therefore, we also adopt this
setting as one of our baselines. In sum, a total of three base-
lines are adopted based on DINO and CLIP with triplet or
classification loss.

mAP@200 P@200 Dp Ds

CLIP 0.372 0.320 0.91 0.73
CLIP w/ Lmcc 0.506 0.433 0.42 0.22

Table 2: Effectiveness of DI in mAP@200 and P@200.

3.3 Population Similarity Investigation
To evaluate the effectiveness of representations in the im-
age retrieval task, the commonly used metrics are P@k and
mAP@k. P@k is the proportion of retrieved top-k images
that are from the same category. The mAP@k is the mean
AP@k of all queris where the AP@k of each query is com-
puted by AP@k =

∑k
i=1

P@i×γ(i)
N with γ(i) = 1, if the i-th

ranked image is from the same category as that of the input
query sketch, otherwise, γ(i) = 0, and N is the total number
of relevant images. These metrics provide a comprehensive
performance assessment for retrieval system. However, they
are non-differentiable and can not be directly interpreted as
a loss function to guide the representation learning through
training. To address this issue, we propose a modality capac-
ity to measure the effectiveness of representations. Taking
into account inter-category dissimilarities, we calculate the
modality capacity as the averaged similarity value of all neg-
ative pairs belonging to different categories:

DI =(
1

mI

N∑
j=1

N∑
k ̸=j

1c(Ij)̸=c(Ik) · d(fj , fk)) (4)

where I ∈ {s, p}, s and p represent sketch and photo modal-
ity, N is the data size and c(·) represents a category of a
sketch or photo. mI is a normalization factor, counting the
valid number of (s, s) (or (p, p)) pairs with different cate-
gories:

mI =

N∑
j=1

N∑
k ̸=j

1c(Ij)̸=c(Ik) (5)

Table 1 shows the calculated modality capacities of sketch
and photo in three datasets using CLIP and DINO, re-
spectively, while Figure 2 illustrated the corresponding his-
tograms. It can be shown that the mean of inter-category sim-
ilarity on sketches is higher than that on photos. The mean
of inter-category similarity based on CLIP is higher than that
based on DINO while the standard deviation is larger, indi-
cating that DINO learns more discriminative visual represen-
tations than CLIP but less stable. It shows that the distribu-
tions based on the same baseline architecture are quite similar
across different datasets. Hence, we can find out a optimal es-
timation of population similarity to guide the model learning
regardless the datasets used for a modality. Table 2 shows
the values of mAP@all and P@200 in the sketch to image
retrieval task. As shown, the lower the value of modality ca-
pacity indicates the better the image retrieval performance.

3.4 Modality Capacity Constraint Loss
The modality capacity constraint loss is defined, aiming to
utilize the proposed modality capacity to guide the feature
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Methods S Vis-Enc Sketchy-Ext Split 1 Sketchy-Ext Split 2 TU-Berlin QuickDraw

mAP@all P@100 mAP@200 P@200 mAP@all P@100 mAP@all P@200

ZS-CAAE (ECCV’18) - VGG-16 - - 0.156 0.260 0.005 0.003 - -
ZS-CVAE (ECCV’18) - VGG-16 - - 0.225 0.333 0.005 0.001 0.003 0.003
ZS-CCGAN (CVPR’19) ✓ VGG-16 0.349 0.463 - - 0.297 0.426 - -
ZS-GRL (CVPR’19) ✓ VGG-16 - - 0.369 0.370 0.110 0.121 0.075 0.068
ZS-IIAE (NIPS’20) - VGG-16 0.573 0.659 0.373 0.485 0.412 0.503 - -
ZS-Sketch3T (CVPR’22) - VGG-16 - - 0.579 0.648 0.507 0.671 - -
ZS-SAKE (ICCV’19) ✓ ResNet50 0.547 0.692 0.497 0.598 0.475 0.599 - -
ZS-GCN (AAAI’20) ✓ ResNet50 0.382 0.538 0.568 0.487 0.110 0.121 - -
ZS-TCN (TPAMI’21) ✓ ResNet50 0.616 0.763 0.516 0.608 0.495 0.616 0.140 0.231
ACNet (TCSVT’23) - ResNet50 - - 0.517 0.608 0.577 0.658 - -
SBTKNet (PR’22) - ResNet50 0.553 0.698 0.502 0.596 0.480 0.608 0.119 0.167
NAVE (IJCAI’21) - ResNet50 0.613 0.725 - - 0.493 0.607 - -
ZSE (CVPR’23) - ViT 0.736 0.808 0.504 0.602 0.569 0.637 0.142 0.202
ZS-PSKD (MM’22) - DINO-ViT 0.671 0.762 0.535 0.630 0.495 0.608 0.148 0.212
ZS-TVT (AAAI’22) - DINO-ViT 0.648 0.796 0.531 0.618 0.484 0.662 0.149 0.293
Sherry‡ (arxiv’23) ✓ DINO-ViT 0.741 0.835 0.616 0.695 0.541 0.664 - -
CLIP-AT (CVPR’23) ✓ CLIP-ViT - - 0.723 0.725 0.651 0.732 0.202 0.388

Ours w/ Lcls+mcc ✓ CLIP-ViT 0.771 0.841 0.782 0.747 0.668 0.773 0.332 0.436
Ours w/ Ltri+mcc ✓ CLIP-ViT 0.784 0.842 0.790 0.757 0.642 0.750 0.314 0.402
Ours w/ Ltri+mcc ✓ DINO-ViT 0.817 0.875 0.805 0.768 0.636 0.722 0.222 0.317

Table 3: Quantitative comparison. ‘S’ and ‘Vis-Enc’ means ‘Semantic’ and ‘Visual-Encoder’, respectively.

learning of the model in the training process. To this end,
we calculate the modality capacity for each batch of data and
minimize this modality capacity to a certain value γI . The
modality capacity constraint loss is given as:

Lmcc
I =|( 1

mI

B∑
j=1

B∑
k ̸=j

1c(Ij) ̸=c(Ik) · d(Ij , Ik))− γI | (6)

where B is the batch size. According to the law of large num-
bers (LLN), when the sampling size is sufficiently large, the
feature capacity on the whole dataset can also be minimized
to the value γI .
γI is a hyperparameter controlling the target modality ca-

pacity value within the population I , i.e., sketch or photo.
For the representation learning of different modalities, the γI
should be set differently. However, as γI involves the estima-
tion of the general modality capacity for different modalities,
once this value has been found on a large dataset for a modal-
ity, it can be directly applied to other datasets of the same
modality.
Total loss. Our proposed modality capacity constraint
loss can be applied to different baselines for ZS-SBIR. The
total loss based on DINO and CLIP is respectively as:

Ltri+mcc = λ1 · Ltri + λ2 · Lmcc
s + λ3 · Lmcc

p (7)

Lcls+mcc = λ4 · Lcls + λ5 · Lmcc
s + λ6 · Lmcc

p (8)

where λ1,2,3,4,5,6 are the hyperparameters, Ltri is the triplet
loss and Lcls is the classification (or InfoNCE) loss (Eq. 2).

γs γp

Ours CLIP-ViT w/ Lcls+mcc 0.2 0.0
Ours CLIP-ViT w/ Ltri+mcc 0.1 0.0
Ours DINO-ViT w/ Ltri+mcc 0.0 0.0

Table 4: Hyperparameter settings.

Figure 3: Qualitative comparison on the Sketchy-Ext dataset.

4 Experiments
4.1 Datasets and Experimental Settings
Dataset. We evaluated the effectiveness of our proposed
modality capacity constraint loss on there widely-used bench-
marks: Sketchy-Ext [Liu et al., 2017], TUBerlin-Ext [Eitz et
al., 2012] and a subset of QuickDraw-Ext [Dey et al., 2019a].
Sketch Ext. [Liu et al., 2017] contains 75,471 sketches and
60,502 photos, with a total of 125 categories. The TUBer-
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Lcls Lmcc
s Lmcc

p mAP@200 P@200

✓ ✗ ✗ 0.764 0.730
✓ ✓ ✗ 0.770 0.735
✓ ✗ ✓ 0.745 0.711
✓ ✓ ✓ 0.782 0.747

Table 5: Ablation study of Lmcc
s and Lmcc

p using ‘Ours (CLIP-ViT)
w/ Lcls’ on Sketchy-Ext dataset (split 2).

Ltri Lmcc
s Lmcc

p mAP@200 P@200

✓ ✗ ✗ 0.766 0.734
✓ ✓ ✗ 0.786 0.750
✓ ✗ ✓ 0.749 0.716
✓ ✓ ✓ 0.790 0.757

Table 6: Ablation study of Lmcc
s and Lmcc

p using ‘Ours (CLIP-ViT)
w/ Ltri’ on Sketchy-Ext dataset (split 2).

lin dataset [Eitz et al., 2012] contains 204,489 photos and
40,000 free-hand sketches with 250 categories of 80 free-
hand sketches each. QuickDraw Ext. [Dey et al., 2019a] con-
tains 50 million sketches over 345 categories. Following [Dey
et al., 2019b], we utilized a subset of QuickDraw Ext. [Dey
et al., 2019a] composing of 330,000 sketches, 204,000 photos
and 110 categories for evaluation. For data partitioning, we
also followed [Dey et al., 2019b] to divide Sketch Ext. [Liu et
al., 2017] into 100/104 categories for training and 25/21 cat-
egories for testing, which are denoted as ’Sketchy Ext Split
1’ and ’Sketchy Ext Split 2’, respectively. We utilized 25 cat-
egories from Sketch Ext. [Liu et al., 2017] and 30 categories
from TUBerlin-Ext [Eitz et al., 2012] for testing and utilized
the rest 100/220 categories for training. Table 4 lists the val-
ues of our γs and γp for various proposed methods.

Implementation details. All the experiments were con-
ducted on Pytorch with 11GB Nvidia RTX 3080-Ti GPU. We
used Adam optimizer to train the models with learning rates
of lr = 1e− 4 , β1 = 0.9 and β2 = 0.999. The input size of
the images was 224 × 224. The models were trained for 60
epochs with a batch size of 64. During the training stage, all
the parameters of the models were frozen except for the layer
normalization. The loss weights were set as λ1 = λ4 = 1,
λ2 = λ5 = 4 and λ3 = λ6 = 8. The margin µ was set as 0.3.

4.2 Comparison with Existing Methods
We compared our proposed method with 17 state-of-the-
art methods in Table 3. Our models based on CLIP and
DINO both outperform the listed SOTA methods on all three
datasets. Specifically, our model based on DINO (‘Ours
(DINO-ViT) w/ Ltri’ in Table 3) achieves the best perfor-
mance on the Sketchy-Ext dataset and outperforms other
DINO-based models by a large margin, in terms of all met-
rics on three datasets. It should be noted that all these SOTA
methods utilized extra information such as text embeddings
and the guidance from teacher models for model training,
whereas our model only relies on the pre-trained vision model
and fine-tunes it by combining the triplet loss and the pro-

ViT Ltri Lcls Lmcc mAP@200 P@200

DINO ✓ ✗ ✗ 0.775 0.734
DINO ✓ ✗ ✓ 0.805 0.768
DINO ✗ ✓ ✗ 0.375 0.345
DINO ✗ ✓ ✓ 0.615 0.551
CLIP ✓ ✗ ✗ 0.766 0.734
CLIP ✓ ✗ ✓ 0.790 0.757
CLIP ✗ ✓ ✗ 0.764 0.730
CLIP ✗ ✓ ✓ 0.782 0.747

Table 7: Ablation study of Lmcc on Sketchy-ext dataset.

mAP@200 P@200

CLIP 0.372 0.320
CLIP w/ Lmcc 0.506 0.433
DINO 0.248 0.234
DINO w/ Lmcc 0.645 0.574

Table 8: Fine-tuning without knowing the image categories.

posed Lmcc . This demonstrates that our method takes full
advantage of the pre-trained DINO model knowledge and
adapt it for ZSL-SBIR by our proposed Lmcc .

Moreover, our method (‘Ours (CLIP-ViT) w/ Lcls’) ob-
tains better performance than the best CLIP-based method,
i.e., CLIP-AT [Sain et al., 2023a], which has the same ar-
chitecture as our CLIP-based model and was trained exploit-
ing classification loss and prompt learning. Without prompt
learning, our model Lmcc surpasses CLIP-AT by 5.9% and
2.2%, in terms of mAP@200 and P@200, respectively, on the
Sketchy-Ext dataset (Split 2), by 1.7% and 4.1% in mAP@all
and P@100, respectievly, on TUBerlin-Ext dataset, and by
13% in mAP@all on QuickDraw-Ext dataset. This demon-
strates the effectiveness of our proposed Lmcc .

Figure 3 presents a qualitative comparison among three
methods: our proposed method (‘Ours (CLIP-ViT) w/
Lcls+mcc ’), CLIP-AT, and our baseline model (‘Ours (CLIP-
ViT) w/ Lcls’). It demonstrates that our model outper-
forms the other methods in identifying visually similar pho-
tos against the input sketch. Specifically, when considering
the cow sketch (first 3 rows in Figure 3), our method accu-
rately retrieves the top 10 photos, while both CLIP-AT and
the baseline occasionally retrieve rhinoceros photos.

4.3 Ablation Studies
To evaluate the effectiveness of our proposed loss, we con-
ducted ablation studies to examine individual components of
(i) the proposed modality capacity constraint loss Lmcc

s and
Lmcc
p ; (ii) the effect of the proposed modality capacity con-

straint loss in conjunction with different retrieval losses based
on CLIP and DINO; (iii) the effect of using only modality ca-
pacity constraint loss on the Sketchy-Ext dataset (Split 2).
The effect of Lmcc

s and Lmcc
p . Table 5 and Table 6 show

the ablation study results based on CLIP with Ltri and Lcls,
respectively. Our observation is that removing either Lmcc

s
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Figure 4: Inter-category similarity comparison (according to Table 11) on the Sketchy-Ext dataset.

task Lcls Lmcc mAP@200 P@200

CLIP p2p - - 0.891 0.840
Baseline p2p ✓ ✗ 0.941 0.905

Ours p2p ✓ ✓ 0.945 0.905
CLIP s2s - - 0.716 0.312

Baseline s2s ✓ ✗ 0.835 0.776
Ours s2s ✓ ✓ 0.843 0.787

Table 9: Sketch-to-sketch (s2s) and photo-to-photo (p2p) image re-
trieval comparison.

From To
door, cabin, helicopter,
pear, saw, scissors,
skyscraper, sword, tree,
wheelchair, windmill,
window

object

dolphin living thing that can swim
cow, giraffe, mouse, rac-
coon, rhinoceros

living thing that lives on land

bat, seagull, songbird living thing that can fly

Table 10: Mapping table for super class based image retrieval.

or Lmcc
p leads to a decrease on both mAP@200 and P@200

on CLIP. Moreover, the impact of removing Lmcc
s is higher

than Lmcc
p . This indicates that improving the sketch repre-

sentation is more important than photo representation. This
is consistent with the observation in Table 1 that the modal-
ity capacity of sketch modality is higher than that of photo,
requiring more improvement for the sketch representation.

The effect of the proposed modality capacity constraint
loss in conjunction with different retrieval losses. We
conducted an ablation study to investigate the effectiveness
of our proposed loss function (Lmcc as a whole) when com-
bined with various retrieval losses (such as triplet loss and
InfoNCE loss) and different model architectures, as shown in
Table 7. The results demonstrate that incorporating our pro-
posed loss function significantly improves the performance
of ZS-SBIR. For instance, when we introduce our loss func-
tion to the method that uses CLIP ViT with InfoNCE loss, we
observe a notable increase of 3.4% in mAP@200. An inter-
esting finding is that when the model architecture is DINO
ViT, the Lcls results in a poor performance of only 0.375 in
terms of mAP@200. The reason behind this could be at-
tributed to the fact that the pre-trained DINO ViT is a fully

self-supervised vision model, lacking exposure to the seman-
tic embeddings, thereby posing extreme challenge to align the
vision and semantic spaces through the supervision of the In-
foNCE loss. However, after applying our proposed modality
capacity constraint loss , the mAP is increased from 0.375
to 0.615, which demonstrates that our proposed loss is com-
plementary with the InfoNCE loss and is able to improve the
representation though the overall similarity guidance rather
than the semantic alignment.

The effect of only using modality capacity constraint loss.
Table 8 shows the comparisons results with the original pre-
trained models and the model fined using only our proposed
modality capacity constraint loss . As it can be seen, merely
using our proposed modality capacity constraint loss has also
significantly improved features for ZSL-SBIR. Hence, our
proposed loss can also enable the model to learn discrimi-
native representations to distinguish images like triplet loss
and InfoNCE loss. In addition, the performance increase on
DINO is higher than that on CLIP using our proposed loss,
because the representation from CLIP contains semantic in-
formation, affecting the visual similarity distribution and con-
fusing the guidance.

4.4 Hyperparameter Analysis
Figure 5 shows the sensitivity analysis on performance when
hyperparameters are tuned across different values. Since the
pre-trained models perform worse on sketches than photos
(see Table 8), our our strategy is to find out the optimal set-
ting of γs first and then search the optimal setting of γp. As
shown, when γ is set in a range of 0 to 0.3, the model can be
effectively improved, meaning that it does not need careful
tuning of hyperparameter γ. Figure 5 also shows that it is ad-
vantageous to constrain the inter-category mean of sketches
to approximately 0.2, while maintaining the mean of photos
around 0.0. This finding aligns with the characteristics of the
sketch and photo modalities. For images of different cate-
gories, variations in background, angle, and lighting, lead-
ing to higher similarity between images belonging to different
categories. Therefore, it is reasonable to minimize the inter-
similarity to zero. However, for sketches of different cate-
gories, even if the sketch shapes are different, they still share
the same background and with black lines, exhibiting a cer-
tain level of similarity. Hence, it is unreasonable to minimize
the inter-similarity to zero for sketches; the inter-similarity
should be minimized to a value slightly greater than zero.
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Figure 5: Performance from various settings of γs and γp using
‘Ours (CLIP-ViT) w/ Lcls+mcc ’ on the Sketchy-Ext dataset.

Input: ‘A living thing that can fly’

Figure 6: Super Class Based Image Retrieval. Top: Baseline (CLIP-
ViT w/ Lcls). Bottom: Ours (CLIP-ViT w/ Lcls + Lmcc ).

4.5 Inter-Category Similarity Analysis
Table 11 displays the mean and standard deviation of inter-
category similarities after fine-tuning CLIP and Figure 4
shows the density distribution comparisons of inter-category
similarities of baselines and our models. Our results reveal
distinct patterns for baselines utilizing respective Lcls and
Ltri. Specifically, the Lcls aligns both photos and sketches to
a shared semantic space, making mean of the inter-category
similarities of photos and sketches becomes extremely sim-
ilar (0.11 vs 0.11). On the other hand, the Ltri involves
the interaction between the sketch and photo branches dur-
ing the training process, allowing for different mean values
(0.18 vs 0.10) to be achieved for sketch and photo modalities.
When Lcls is combined with our Lmcc , the inter-category
mean value of sketches increases. This is because that when
the photo population distribution is constrained with a tar-
get mean, the sketch population can better preserve original
knowledge from the pre-trained model due to the stabiliza-
tion of the counterpart (from 0.91 to 0.35 vs from 0.91 to
0.18). The preservation of such knowledge would be ad-
vantageous for aligning photo and sketch spaces. However,
when combined with Ltri, we constrain the two modalities to
have highly similar population characteristics (γs = 0.1 and
γp = 0.0) to achieve better overlay of photos (0.09 ± 0.28)
and sketches (0.14± 0.20) in a common space.

5 Other Applications
Image-to-image Retrieval. we investigate whether con-
trolling γs or γp individually can benefit the tasks of sketch-
to-sketch or photo-to-photo retrieval. To do so, we employ
the setting of ‘Ours (CLIP) w/ Lcls’ to fine-tune CLIP for re-
trieval . Table 9 demonstrates that using proper value of γI
can yield better single-domain retrieval performance.

Loss Ds Dp

Lcls 0.11± 0.31 0.11 ± 0.27

Ltri 0.18 ± 0.30 0.10 ± 0.28

Lcls+mcc 0.35 ± 0.22 0.07 ± 0.29

Ltri+mcc 0.14 ± 0.28 0.09 ± 0.28

Lmcc 0.42 ± 0.20 0.22 ± 0.23

Table 11: ‘mean ± std’ of the inter-category similarities after fine-
tuning on the Sketchy-Ext dataset using the CLIP-based model.

mAP@200 P@200 P@100

Baseline 0.909 0.920 0.917
Ours 0.949 0.945 0.947

Table 12: Quantitative comparison of super class based image re-
trieval (using Table 10) on Sketchy-Ext dataset. ‘Baseline’ and
‘Ours’ refers to ‘Lcls’ and ‘Lcls+mcc ’, respectively. Both meth-
ods utilize the CLIP-ViT architecture.

Super class based Photo/Sketch retrieval. In addition to
traditional explicit category/text-based image retrieval meth-
ods, there is a growing need to leverage learned features for
performing ‘fuzzy match’, which is widely accepted and ap-
plied in modern text-based retrieval systems. When it comes
to image based retrieval systems, we refer such ‘fuzzy match’
task as super class based photo/sketch retrieval, where a su-
per class is a description less implicit than the category. Ta-
ble 12 illustrates the superior performance using our method.
Figure 6 further demonstrates that our method yields more
accurate result in the super class based image retrieval task.

6 Conclusions
In this paper, we investigate the modality capacity to effec-
tively guide the feature learning process for ZS-SBIR. We
propose a modality capacity constraint loss that enables con-
trol over the inter-category similarity during the training pro-
cess. Our loss function seamlessly integrates with existing
retrieval loss functions, including triplet loss and InfoNCE
loss. Extensive experiments have been conducted to demon-
strate the effectiveness of our approach, which outperforms
the state-of-the-art (SOTA) methods by a significant margin.
Additionally, our proposed loss function has the potential to
benefit other applications, such as sketch-to-sketch, photo-to-
photo, and even challenging super class-based image retrieval
tasks. We will explore applying the modality capacity to other
multi-modality tasks as our future work. Hopefully, this work
can inspire the research community on more effective and in-
depth modality capacity utilization strategies.
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