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Abstract

Recently, scene text recognition (STR) models
have shown significant performance improvements.
However, existing models still encounter difficul-
ties in recognizing challenging texts that involve
factors such as severely distorted and perspective
characters. These challenging texts mainly cause
two problems: (1) Large Intra-Class Variance. (2)
Small Inter-Class Variance. An extremely dis-
torted character may prominently differ visually
from other characters within the same category,
while the variance between characters from differ-
ent classes is relatively small. To address the above
issues, we propose a novel method that enriches the
character features to enhance the discriminability
of characters. Firstly, we propose the Character-
Aware Constraint Encoder (CACE) with multiple
blocks stacked. CACE introduces a decay matrix
in each block to explicitly guide the attention re-
gion for each token. By continuously employing
the decay matrix, CACE enables tokens to perceive
morphological information at the character level.
Secondly, an Intra-Inter Consistency Loss (I2CL)
is introduced to consider intra-class compactness
and inter-class separability at feature space. I2CL
improves the discriminative capability of features
by learning a long-term memory unit for each
character category. Trained with synthetic data,
our model achieves state-of-the-art performance
on common benchmarks (94.1% accuracy) and
Union14M-Benchmark (61.6% accuracy). Code is
available at https://github.com/bang123-box/CFE.

1 Introduction
Scene Text Recognition (STR) aims to recognize character
sequences from cropped text images [Bautista and Atienza,
2022; Zhang et al., 2023; Cheng et al., 2023; Fan et al., 2023].
Existing STR methods adeptly read texts encompassing bill-
boards, road signs, checks, etc. However, with societal ad-
vancements, the demands on STR models are no longer lim-
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Figure 1: Differences between simple and challenging texts. (a)
Simple texts are singular in style and uniform in size. (b) With vari-
ations in appearances and size, the character ‘t’ is misrecognized. (c)
The similarity in appearances of different category characters leads
to wrong recognition. The first line is the label and the second line is
the prediction with our baseline model. The incorrectly recognized
characters are highlighted in red.

ited to performing well in simple texts, but also need to im-
prove their performance in challenging texts.

The recent methods have obtained superior performance
on six common benchmarks [Risnumawan et al., 2014;
Mishra et al., 2012; Wang et al., 2011; Phan et al., 2013;
Karatzas et al., 2013; Karatzas et al., 2015] which are easy to
recognize as shown in Figure 1(a). However, with the intro-
duction of a challenging Union14M-Benchmark [Jiang et al.,
2023], existing STR models perform poorly on Curve, Artis-
tic, and Contextless datasets. For example, MGP-Base [Wang
et al., 2022] only achieves the accuracy rates of 55.2%,
52.8%, and 48.4% on them, respectively. We believe that the
poor performance on challenging texts is primarily due to two
ignored issues.

The first issue is summarized as Large Intra-class Vari-
ance (LISV). Figure 1(b) illustrates the different instances of
the character ‘t’. There are variations in the visual appear-
ances, shape, and size, which lead to errors in recognition
results. We attribute the misrecognition of characters to the
large variance of the same category characters. Due to the
existence of LICV, the discriminative features of characters
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will be weakened, eventually leading to the misrecognition of
characters. To solve LICV, it’s essential to enhance the dis-
criminability of features by encoding local patterns or struc-
tures within the character. This helps model the correlation
between the components of a character, capturing discrimi-
native information more comprehensively. However, exist-
ing STR encoders have difficulty learning the intra-character
local patterns. CNN-based encoders [Shi et al., 2016;
Baek et al., 2019] can learn local features, but the receptive
field is too small to perceive the information of the whole
character. Transformer-based encoders [Sheng et al., 2019;
Bautista and Atienza, 2022] hardly focus on the local infor-
mation at character level due to the global modeling during
self-attention. Thus, improving the ability to encode local
patterns (e.g., stroke, morphology, etc.) at character level is a
crucial step in solving LICV.

The second problem is Small Inter-Class Variance (SICV).
As shown in Figure 1(c), our baseline recognizes some char-
acters as other different category characters due to their sim-
ilar visual appearances. For example, the word ‘happy’ is
misrecognized as ‘floppy’, which also conforms to linguistic
rules. Therefore, using additional language models or lin-
guistic information does not help solve the SICV problem.
Furthermore, we argue that SICV can lead to a mixed distri-
bution of different category character features in the decoding
space (demonstrated formally in Sec. 4.6). To solve SICV
and LICV together, CornerTransformer [Xie et al., 2022] de-
signs a Character Contrastive loss (CC loss) to bring the same
category characters closer and separate characters from dif-
ferent classes. However, since CC loss only considers the
character feature distribution within a batch, it greatly lim-
its the diversity and richness of the global character feature
distribution. Hence, how to utilize global character feature
distribution is a great challenge for solving LICV and SICV.

To address the above issues, we propose a Character Fea-
tures Enriched model (CFE) to obtain the discriminative char-
acter features from two aspects. Firstly, the Character-Aware
Constraint Encoder (CACE) is proposed to perceive the local
patterns such as the morphological information. For CACE,
the discriminative features are extracted by multiple stacked
blocks. In each block, we design a decay matrix D to at-
tenuate the self-attention mechanism according to the spatial
distances between visual tokens. The greater the distances
between tokens, the less attention is paid to them. Compared
to the vanilla self-attention, the block can alleviate the noise
interference from other characters and pay more attention to
the region near each token. In this way, CACE encodes the
local patterns and relationships between the components of
each character. Additionally, to fully utilize the visual fea-
tures output from the multiple blocks, a fusion strategy is em-
ployed to merge them. Secondly, an Intra-Inter Consistency
Loss (I2CL) is introduced to solve LICV and SICV. Based on
the contrastive learning [Qi and Su, 2017; Xie et al., 2022;
Zhang et al., 2022], I2CL further predefines a long-term
memory unit for each character category. For each character
in a batch, its positive example refers to the unit with the same
character category, while the other units serve as negative
samples. In the training, I2CL updates these memory units
based on each character. Different from [Xie et al., 2022;

Zhang et al., 2022] that only consider the local distribution,
I2CL can efficiently represent all characters by learning a
discrete distribution for long-term memory units. Finally,
all characters will be tightly distributed around the memory
units according to their categories. This ensures the intra-
class compactness and inter-class separability, and improves
the discriminability of characters. Compared with previous
methods, we have fewer training parameters, while achieving
better performance.

The main contributions of our work are as follows:
• We point out that the LICV and SICV issues in challeng-

ing texts lead to poor performance of the STR models,
and propose a novel approach to effectively handle the
two issues.

• We design a Character-Aware Constraint Encoder to fo-
cus on the local patterns of character level, which utilizes
the morphological information to enrich features.

• We introduce an Intra-Inter Consistency Loss to reduce
intra-class variance and increase inter-class variance by
learning a set of long-term memory units.

• Experiments on common benchmarks and Union14-
Benchmark demonstrate that our CFE surpasses state-
of-the-art performance, with accuracy rates of 94.1%
and 61.6%, respectively.

2 Related Work
2.1 Scene Text Recognition
In scene text recognition models, the visual encoder is an
essential component. It aims to provide discriminative vi-
sual feature representation for subsequent CTC [Graves et al.,
2006] decoders, attention decoders, or Transformer decoders.
Early methods employing CNN as encoder have been widely
applied in various networks and applications [Shi et al., 2016;
Shi et al., 2018; Baek et al., 2019]. However, CNN-based ap-
proaches typically compress the height dimension of images
into 1 during feature extraction, causing each visual feature
to correspond to a thin-slice region in the image. This lim-
itation leads to poor performance on irregular datasets. Re-
cently, due to the significant advancements of Transformer
in the visual domain, many recent works [Atienza, 2021;
Du et al., 2022; Bautista and Atienza, 2022; Wang et al.,
2023] have opted to use Vision Transformer as the visual en-
coder. These methods demonstrate good performance on ir-
regular datasets. ViTSTR [Atienza, 2021] utilizes the Vision
Transformer as the encoder to model relationships between
different visual tokens. SVTR [Du et al., 2022] employs a
pyramid-style Transformer as the visual encoder to guide the
model in establishing global relationships between characters
and local relationships within character. Although SVTR and
ViTSTR are both pure visual models, there exist some per-
formance differences. We attribute this to SVTR enhancing
its ability to model the relationships between the character
components. For the problem of LISV, we also need to fo-
cus on the local features to obtain discriminative features for
recognizing characters. Therefore, we propose the Charatcer-
Aware Constraint Encoder. It can perceive the local patterns
within character by utilizing the decay matrix in each block.
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Figure 2: The framework of our CFE. The pipeline is composed of two key components: CACE and I2CL. CACE explores the local patterns
within character by utilizing the decay matrix. I2CL uses a set of learnable long-term memory units to represent the global character feature
distribution in the decoding space. CE loss denotes the cross entropy loss. DW means the 2x downsampling at height dimension using CNN.

2.2 Contrastive Learning in STR
In scene text recognition, the optimized object is not only
cross entropy or CTC loss [Graves et al., 2006], but also
combines contrastive learning to handle different problems.
ConCLR [Zhang et al., 2022] uses contrastive loss to bring
identical characters closer and separate different characters
in the embedding space. DiG [Yang et al., 2022] incorpo-
rates a contrastive learning branch to mimic human-like read-
ing behavior and learn text discrimination. In the meantime,
it employs a momentum branch to create a comprehensive
and reliable dictionary on-the-fly. CornerTransformer [Xie et
al., 2022] designs a Character Contrastive loss that implicitly
learns common features for each character class for solving
artistic text recognition. CLIP-OCR [Wang et al., 2023] in-
troduces a linguistic consistency loss for aligning the intra-
relationship and inter-relationship. We argue that contrastive
learning is also helpful in solving the problems of LICV and
SICV. Hence, we introduce the Intra-Inter Consistency Loss
to take intra-class compactness and inter-class separability
into account. This loss function can learn a long-term mem-
ory unit for each class, simultaneously ensuring that the mem-
ory units of different categories are far apart.

3 Proposed Method
In this section, we first detail the pipeline of the proposed
method CFE in Sec. 3.1, and then introduce Character-Aware
Constraint Encoder (CACE) and Intra-Inter Consistency Loss
(I2CL) in Sec. 3.2 and Sec. 3.3 respectively.

3.1 Pipeline
The pipeline of CFE is illustrated in Figure 2 and it can be
viewed as an encoder-decoder architecture. Given a batch of
images with size B×H×W ×3, after three stages in CACE,

we acquire the three visual sequences: F1 ∈ RB×HW
16 ×C1 ,

F2 ∈ RB×HW
32 ×C2 , F3 ∈ RB×HW

64 ×C3 . Subsequently,
we linearly map and concatenate them to get the final out-
put visual sequences F ∈ RB× 7

64HW×C . Next, F is fed
into the Transformer Decoder to generate recognition features
O ∈ RB×T×C . Finally, we calculate the CE loss and I2CL
separately and sum them up to obtain the training objective.

3.2 Character-Aware Constraint Encoder
To address the issue of LICV, we present a novel Character-
Aware Constraint Encoder (CACE). In this encoder, the vi-
sual features are extracted from three stages, and each stage
consists of multiple stacked blocks. CACE introduces an ex-
plicit decay matrix D into the block to encode the local pat-
terns (e.g., stroke, morphology, etc.) and relationships be-
tween the inter-character components. Additionally, to fully
utilize the visual features output from the three stages, we
employ a simple multi-scale fusion strategy to merge them.

The block is depicted in Figure 2, we summarize how the
block works in Eq 1:

Q = (LN(X))WQ)⊙Θ,

K = (LN(X))WK)⊙ Θ̂,

V = LN(X)WV,

X = X+ (Softmax(QKT /d)⊙D)V,

X = X+MLP (LN(X)),

(1)

where X ∈ RB×L×Ci is the input of the block and LN stands
for Layer Normalization. WQ, Wk, WV are the learnable
projection matrices. Θ represents the position embedding and
Θ̂ is its complex conjugate followed [Sun et al., 2023]. D
∈ RB×L×L represents the decay matrix which values in [0,
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(a) option 1 (b) option 2 (c) option 3

Figure 3: Visualization of three different options for generating de-
cay matrix.

1]. We design three different ways to yield D:

Dij =


γ(|xi−xj |+|yi−yj |), option 1
γmax(|xi−xj |,|yi−yj |), option 2
[|xi − xj | ≤ w & |yi − yj | ≤ h], option 3

(2)

where xi and yi denote the X and Y coordinates, respectively,
of the i-th token in 2D space. γ values range between 0 and
1 [Sun et al., 2023]. [·] is an indicator function, if the con-
dition is satisfied returning 1 else 0. w, h are used to control
the region during self-attention which are set 5 and 3 (insen-
sitive) empirically. Further, we visualize D in the form of
heatmap. As shown in Figure 3, the first two options corre-
spond to dynamic decay, which is inversely proportional to
the distances. Option 3 employs fixed decay which utilizes a
predefined binary window to control the attention region for
each token like in SVTR [Du et al., 2022]. In this paper, we
adopt option 2 as our choice. We argue that dynamic decay
is compatible with human perception of distances. Ablation
study in Sec. 4.5 demonstrates its effectiveness.

In Eq. 2, D introduces spatial distances prior knowledge
into the self-attention mechanism. The longer distances be-
tween token i and j, Di,j become smaller. Its purpose is to
avoid the influence of irrelevant noisy tokens over long dis-
tances, allowing each token to model the different compo-
nents within the whole character. Finally, the decay matrix
enables the visual encoder to learn more distinctive visual
representations for characters. Consequently, compared to
global modeling without D, it exhibits greater proficiency in
capturing local patterns in each character. In practice, we em-
ploy D into the first x blocks for intra-character components
modeling, while the remaining blocks do not use D for inter-
character modeling.

To better capture the different patterns of a certain char-
acter, we design a fusion strategy to obtain multi-scale char-
acter features. Specifically, it fuses the features F1, F2, F3

by projecting them into the same hidden dimension. Overall,
on the one hand, by adding the decay matrix, CACE enables
each token to perceive local patterns within character, allow-
ing for better extraction of discriminative features. On the
other hand, through multi-scale fusion, CACE can integrate
the local patterns of a character at different scales, which can
enhance the diversity of character features.

3.3 Intra-Inter Consistency Loss
Although CACE can help alleviate the problem of LICV, the
existence of SICV still prevents the model from reaching

its optimal performance. The SICV issue leads to the phe-
nomenon of mixture distribution between character features.
Therefore, it is necessary to increase the distance between
characters of different categories and decrease the distance
between characters of the same category. We believe that us-
ing the trait of contrastive learning to solve the SICV prob-
lem is a good choice. However, existing contrastive learning
methods mostly cluster characters within a batch, lacking the
perception of global character feature distribution. Hence, we
introduce the Intra-Inter Consistency Loss (I2CL) to explore
the distribution of each character category by learning a set
of long-term memory units.

Formally, the I2CL is defined as illustrated in Eq 3:

Lcl =
1

2

BT∑
i=1

||Oi − cyi
||22

(ΣV
j=1,j ̸=yi

||Oi − cj ||22) + δ
, (3)

where Lcl represents the I2CL. Initially, we reshape the out-
put feature O into RBT×C . BT denotes the number of char-
acters in a batch and T is the maximum length of character
sequences in a text. Oi ∈ RC signifies the i-th character fea-
ture, yi denotes the label of Oi. cyi

represents the memory
unit of the yi-th character category in decoding space which
can be updated during training. V denotes the vocabulary
size. δ is a constant used to prevent the denominator from
equaling 0 and we set δ = 1 by default.

Compared with DiG [Yang et al., 2022] and CornerTrans-
former [Xie et al., 2022], although these approaches all use
contrastive learning loss, there remain some differences. DiG
and CornerTransformer only consider the intra-class com-
pactness and inter-class separability of features in a batch.
But I2CL considers the clustering between all the training
samples. After training, the memory units of our I2CL will be
a discrete distribution because there is a penalty for too small
distance between different memory units. In addition, we can
use these memory units to represent the global character fea-
ture distribution. From one perspective, this discrete distribu-
tion will increase the distance between characters of different
categories and solve the SICV problem. From another per-
spective, all characters will be tightly distributed around the
memory units corresponding to their categories, alleviating
the LICV problem.

3.4 Training Objective
The final objective function of the proposed method is for-
mulated in Eq. 4. Lce represents the cross entropy loss. λ
denotes the scalar used to balance the two loss functions and
is set to 0.2.

L = Lce + λLcl. (4)

4 Experiment
4.1 Datasets
Following the setup of [Wang et al., 2022; Fang et al.,
2021], we conduct experiments using MJSynth [Jaderberg
et al., 2014; Jaderberg et al., 2016] and SynthText [Gupta
et al., 2016] as training data. The training data consists of
16M synthetic text images. We evaluate the model on 6
common benchmarks containing IIIT [Mishra et al., 2012],
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Models [C1, C2, C3] [N1, N2, N3] Heads C Decay Order Params(M)
CFE-Tiny [64, 128, 256] [3,6,3] [2,4,8] 128 6-6 4.5
CFE-Small [96, 192, 256] [3,6,6] [3,6,8] 192 8-7 9.2
CFE-Base [128, 256, 384] [3,6,9] [4,8,12] 256 8-10 23.9

Table 1: Various configurations of our CFE. Heads denote the number of attention heads used in each stage. For Decay Order x-y, x signifies
using D in the first x blocks, while y denotes not using D in the last y blocks. Params(M) indicates the trainable parameters of the model.

Method
Common Benchmarks Union14M-Benchmark P

IC13 SVT IIIT IC15 SVTP CT WAVG Cur M-O Art Con Sal M-W Gen AVG (M)

RobustScanner∗ [Yue et al., 2020] 94.8 88.1 95.3 77.1 79.5 90.3 88.4 43.6 7.9 41.2 42.6 44.9 46.9 39.5 38.1 -
PARSeq#A [Bautista and Atienza, 2022] 97.0 93.6 97.0 86.5 88.9 92.3 93.3 58.2 17.2 54.2 59.4 67.7 55.8 61.1 53.4 23.8
SVTR∗ [Du et al., 2022] 97.1 91.5 96.0 85.2 89.9 91.7 92.3 63.0 32.1 37.9 44.2 67.5 49.1 52.8 49.5 24.6
CLIP-OCR† [Wang et al., 2023] 97.7 94.7 97.3 87.2 89.9 93.1 93.8 59.4 15.9 57.6 59.2 69.2 62.6 62.3 55.2 31.1
VisionLAN∗ [Wang et al., 2021] 95.7 91.7 95.8 83.7 86.0 88.5 91.2 57.7 14.2 47.8 48.0 64.0 47.9 52.1 47.4 32.8
ABINet∗ [Fang et al., 2021] 97.4 93.5 96.2 86.0 89.3 89.2 92.3 59.5 12.7 43.3 38.3 62.0 50.8 55.6 46.0 36.7
MATRN∗ [Na et al., 2022] 97.9 95.0 96.6 86.6 90.6 93.5 93.5 63.1 13.4 43.8 41.9 66.4 53.2 57.0 48.4 44.2
SRN∗ [Yu et al., 2020] 95.5 91.5 94.8 82.7 85.1 87.8 90.4 63.4 25.3 34.1 28.7 56.5 26.7 46.3 39.6 54.7
MGP-Base† [Wang et al., 2022] 97.3 94.7 96.4 87.2 91.0 90.3 93.3 55.2 14.0 52.8 48.4 65.1 48.1 59.0 48.9 148.0

LPV-Tiny† [Zhang et al., 2023] 96.7 92.9 96.3 86.4 86.7 90.6 92.5 55.0 11.7 51.4 53.9 65.6 52.1 58.1 49.7 8.1
LPV-Small† [Zhang et al., 2023] 96.8 93.7 96.7 87.1 89.8 92.4 93.3 61.5 15.7 55.9 58.8 69.0 62.1 60.3 54.8 14.0
LPV-Base† [Zhang et al., 2023] 97.6 94.6 97.3 87.5 90.9 94.8 94.0 68.3 21.0 59.6 65.1 76.2 63.6 62.0 59.4 35.1

LISTER-Tiny† [Cheng et al., 2023] 97.7 93.5 96.5 86.5 87.8 87.9 92.8 49.3 13.2 49.1 58.2 58.2 64.2 60.8 50.4 19.9
LISTER-Base† [Cheng et al., 2023] 97.9 93.8 96.9 87.5 89.6 90.6 93.5 54.8 17.2 51.3 61.5 62.6 61.3 62.9 53.1 49.9

CFE-Tiny(Ours) 96.7 93.5 96.9 85.7 86.8 91.7 92.7 56.6 14.0 53.6 64.7 67.0 63.6 61.4 54.4 4.5
CFE-Small(Ours) 96.7 93.7 97.2 86.8 89.9 93.1 93.4 63.4 17.3 57.5 71.5 73.2 64.2 63.8 58.7 9.2
CFE-Base(Ours) 97.6 94.3 97.9 86.9 91.8 95.5 94.1 70.0 20.8 62.4 72.0 75.2 65.7 65.1 61.6 23.9

Table 2: Performance of models trained on synthetic datasets. * means the results on Union14M-Benchmark is from MAERec [Jiang et al.,
2023]. † signifies we use the released checkpoints to test Union14M-Benchmark. # implies we retrain the model on the synthetic datasets
and then test the result on Union14M-Benchmark. Cur, M-O, Art, Ctl, Sal, M-W, and Gen respectively represent Curve, Multi-Oriented,
Artistic, Contextless, Salient, Multi-Words, and General. For simplicity, they have the same meaning in the following. P(M) indicates the
trainable parameters. Bold values denote the first accuracy in each column.

IC13 [Karatzas et al., 2013], IC15 [Karatzas et al., 2015],
SVT [Wang et al., 2011], SVTP [Phan et al., 2013] and
CT [Risnumawan et al., 2014]. To further valid the effective-
ness of our CFE, we extra test performance on Union14M-
Benchmark [Jiang et al., 2023], ArT [Chng et al., 2019],
COCO-Text [Veit et al., 2016], Uber-Text [Zhang et al.,
2017], and WordArt [Xie et al., 2022]. Beyond that, we also
supply a few experiments trained on Union14M-L.

4.2 Implementation Details
To balance the accuracy and speed, we develop three varia-
tions with varying numbers of parameters similar to SVTR
and LPV [Zhang et al., 2023]. The specific network con-
figurations are detailed in Table 1. The images are resized
to 32 × 128. For data augmentation, we follow the random
data augmentation methods [Bautista and Atienza, 2022] in-
cluding Invert, GaussianBlur, Sharpness, and PoissonNoise.
The vocabulary size V is 96, which comprises mixed-case
alphanumeric characters, punctuation marks, [BOS] for the
beginning symbol, and [EOS] for the ending symbol. The
maximum label length T is set to 25. We train 20 epochs
with a warm-up of 1.5 epochs, utilizing the Adam opti-
mizer [Kingma and Ba, 2014] with a learning rate of 5e-4. We
add Lcl in the last 25% time of the training process. By this

point, the model has already demonstrated convincing recog-
nition capabilities, allowing more accurate learning for mem-
ory units and clustering. We use the Transformer Decoder
with 1 layer as the recognition decoder and adopt autoregres-
sive decoding for training. The experiments are conducted on
4 NVIDIA 4090 GPUs with a batch size of 384.

4.3 Evaluation Metric
For validation, we configure the vocabulary size to 36, en-
compassing 0-9 and a-z. We employ the word accuracy as
the evaluation metric. Consistent with [Baek et al., 2021],
we record the weighted average score (WAVG) on com-
mon benchmarks based on the number of samples. As for
Union14M-Benchmark, we report the average score (AVG)
like [Jiang et al., 2023].

4.4 Comparisons with State-of-the-Arts
In Table 2, we compare our CFE with multiple recent state-
of-the-art methods on common benchmarks. All the meth-
ods are trained by synthetic image texts for fair compari-
son. CFE-Base shows significant performance, especially
in datasets of regular IIIT and irregular SVTP and CT. It
achieves SOTA accuracy of 94.1% while keeping low param-
eters (23.9M) compared to other STR models. Further, CFE-
Tiny outperforms LPV-Tiny with only 4.5M parameters, and
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Method ArT COCO Uber WordArt

ABINet† [Fang et al., 2021] 65.4 57.1 34.9 67.4
PARSeqA [Bautista and Atienza, 2022] 70.7 64.4 42.0 -

ConnerTransfomer [Xie et al., 2022] - - - 70.8
MGP-Base† [Wang et al., 2022] 69.0 65.4 40.7 72.4

LISTER-Tiny† [Cheng et al., 2023] 69.0 64.1 48.0 67.6
LISTER-Base† [Cheng et al., 2023] 70.1 65.8 49.0 69.8

CLIP-OCR [Wang et al., 2023] 70.5 66.5 42.4 73.9

CFE-Tiny(Ours) 69.8 62.8 42.3 71.0
CFE-Small(Ours) 71.8 64.2 42.8 74.0
CFE-Base (Ours) 72.8 66.3 43.6 75.7

Table 3: Comparison with SOTA methods on challenging datasets.
† means to test performance using open-released model weights.

Method Cur M-O Art Con
Sal M-W Gen AVG

MGP-Base# [Wang et al., 2022] 78.8 74.3 67.7 68.7
75.7 60.0 80.1 72.2

LPV-Base# [Zhang et al., 2023] 85.2 75.9 74.8 80.5
83.3 82.2 82.8 80.7

CLIP-OCR# [Wang et al., 2023] 84.6 83.1 76.3 80.0
81.3 81.8 83.9 81.6

LISTER-Base# [Cheng et al., 2023] 70.9 51.1 65.4 73.3
66.9 77.6 77.9 69.0

MAERec-Base [Jiang et al., 2023] 76.5 67.5 65.7 75.5
74.6 77.7 81.8 74.2

CFE-Tiny 77.3 62.1 69.6 79.1
74.2 77.9 79.9 74.3

CFE-Small 84.4 73.4 75.4 84.7
81.3 83.3 82.8 80.8

CFE-Base 86.8 80.4 77.5 85.5
83.5 85.9 84.4 83.4

Table 4: Performance on models trained on Union14M-L. # implies
we retrain the model on Union14M-L and then test on Union14M-
Benchmark.

CACE I2CL Cur M-O Art Ctl Sal M-W Gen AVG

- - 68.5 20.2 58.6 66.9 74.4 65.4 64.7 59.8
✓ - 68.3 21.4 59.8 70.1 74.8 66.1 64.9 60.8
- ✓ 67.6 20.7 59.4 71.4 76.0 64.2 65.2 60.6
✓ ✓ 70.0 20.8 62.4 72.0 75.2 65.7 65.1 61.6

Table 5: The effectiveness of CACE and I2CL.

CFE-Small acquires a good performance of 93.4% with 9.2M
parameters. Besides, CFE-Base achieves SOTA performance
on Union14M-Benchmark, with an average score of 61.6%.
For challenging datasets in Table 3, although CFE-Base at-
tains first or second accuracy, there remains a large gap with
LISTER-Base on the Uber-Text dataset which contains many
vertical texts. This is because LISTER-Base performs a rota-
tion operation based on the original aspect ratio of the images,
enhancing its ability to recognize vertical texts.

The performance trained on Union14M-L is shown in Ta-
ble 4. Compared to the recent methods with additional lin-
guistic information, our CFE-Base can continue to keep the
best accuracy on most datasets of Union14M-Benchmark.
These results all imply that our CFE is effective in enhancing
the discriminative character features for solving challenging
scene text recognition and can maintain superior performance
in recognizing simple texts.

Method Cur M-O Art Ctl Sal M-W Gen AVG

- 68.3 21.4 59.8 70.1 74.8 66.1 64.9 60.8
CC loss 66.4 19.1 58.0 69.2 73.6 68.0 64.8 59.9

I2CL 70.0 20.8 62.4 72.0 75.2 65.7 65.1 61.6

Table 6: Comparision with other contrastive loss.

D M-S Cur M-O Art Ctl Sal M-W Gen AVG

- - 67.6 20.7 59.4 71.4 76.0 64.2 65.2 60.6
✓ - 68.0 20.7 58.5 73.3 75.5 66.6 65.2 61.1
- ✓ 66.3 18.9 58.8 70.7 73.2 68.7 64.7 60.2
✓ ✓ 70.0 20.8 62.4 72.0 75.2 65.7 65.1 61.6

Table 7: The effectiveness of decay matrix D and multi-scale fusion
in CACE. M-S represents the multi-scale fusion.

4.5 Ablation Study
The Effectiveness of CACE and I2CL
To investigate the effectiveness of CACE and I2CL, we con-
duct experiments in Table 5. The baseline refers to not using
CACE and I2CL which achieves an accuracy of 59.8%. After
adding CACE to guide the encoder to perceive the morpho-
logical information and character region, we can get an aver-
age accuracy of 60.8% (+1.0%). This improvement implies
that the encoder can model the local patterns of each char-
acter by using D and multi-scale fusion. On the other hand,
only adopting I2CL obtains the accuracy of 60.6% (+0.8%)
which means learning long-term memory units is effective for
solving LISV and SICV. When employing them together, we
further improve the performance to 61.6% (+1.8%). These
results demonstrate that our CFE can utilize the enriched fea-
tures to enhance the discriminability of characters and that
CACE and I2CL can cooperate well to optimize our model.

Moreover, Table 6 compares our I2CL with the Character
Contrastive loss (CC loss) designed by CornerTransformer.
The result indicates that our I2CL surpasses the conventional
contrastive learning method CC loss. Compared to the perfor-
mance without contrastive learning loss, the introduction of
CC loss leads to a decrease of 0.9% (59.9%). We argue that
achieving small intra-class differences and large inter-class
differences is impractical by clustering characters only within
a batch. Hence, CC loss fails to learn the global feature dis-
tribution of each category. In contrast, our I2CL employs the
trainable long-term memory units to represent the global dis-
tribution of each category, aiding the model in better achiev-
ing intra-class compactness and inter-class separability. This
verifies that our I2CL can enhance the global character fea-
ture distribution for solving challenging STR.

The Components of CACE
To evaluate CACE, we compare the results with decay matrix
D or multi-scale fusion in Table 7. The first row which only
relies on Lcl for training, obtains a performance of 60.6%.
When introducing D in the block, the model exhibits 0.5%
(61.1%) improvement. The inclusion of D enables the en-
coder to perceive the local patterns within the character and
generate discriminative features for recognizing characters.
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Option Cur M-O Art Ctl Sal M-W Gen AVG

1 67.1 19.6 59.8 71.6 75.4 71.2 65.0 61.4
2 70.0 20.8 62.4 72.0 75.2 65.7 65.1 61.6
3 68.3 19.8 56.8 69.2 74.3 67.2 64.4 60.0

Table 8: Different options of decay matrix.

disnep disney

jalley valley

tolt toit

reg rec

alphegl alghega

Original Image Baseline Ours

Figure 4: Visualization of attention maps in CACE. In the first col-
umn, the red point in each image is the query token. The second
column images imply we use the baseline to calculate the attention
scores between the red point and all points. The third column im-
ages mean CFE is used to calculate the attention scores.

(b)  With I2CL(a)  Without I2CL

Figure 5: Visualization of character feature distribution. The feature
points in the red rectangle mean the mixture distribution. Zoom in
for better visualization.

However, when only adding multi-scale fusion, CFE-Base
experiences a decrease of 0.4% (60.2%). We argue that re-
lying solely on multi-scale fusion leads the model to ignore
the local character-level features, decreasing performance on
challenging datasets. A total improvement of 1.0% (61.6%)
is achieved when employing them together. We attribute the
improvement to two reasons: 1) Decay matrix allows the en-
coder to perceive the morphological information at character
level, helping to distinguish the characters with different ap-
pearances. 2) Multi-scale fusion provides diverse character
features by integrating the features from the three stages.

The Different Options of Decay Matrix D

In Table 8, we study different options of yielding D and find
that option 2 achieves the best performance. When consider-
ing the tokens i and j are components of a character, option

2 generates a larger Di,j . So option 2 can focus more on the
character region than option 1. The accuracy rates of option 2
is 61.6%, slightly higher than that of option 1 (61.4%). How-
ever, option 3 performs less competitively than options 1 and
2 with 60.0% accuracy. The reason is that dynamic decay will
generate more precise attention region for each token.

4.6 Visualization and Analysis
The Visualization of CACE
From the perspective of understanding how to focus on the
character region, we visualize the self-attention scores in Fig-
ure 4. Specifically, we use the token that corresponds to the
red point as the query to calculate the attention scores with
all visual tokens and then reshape them to 2D. For the first
three rows, while focusing on the character region, the base-
line also interacts with nearby characters, leading to recog-
nition errors. This problem can be put down to insufficient
exploration of the local patterns. In contrast, CACE recog-
nizes the texts correctly by concentrating exclusively on the
character region. For the last two rows, the baseline is prone
to interference from distant noise, ultimately causing errors.
Conversely, CACE avoids interference from distant noise, en-
suring accurate recognition. Through this, we conclude that
CACE can perceive the region of each character and then
model the components of the character.

The Qualitative Analysis of I2CL
To evaluate the effectiveness of our I2CL and justify its de-
sign, we use t-SNE [Van der Maaten and Hinton, 2008] to
reduce the feature dimension to 2D space for visualization.
Figure 5 illustrates the feature distribution of 9 easily mis-
recognized characters. In Figure 5(a) without I2CL, we ob-
serve that the distribution of different category characters is
severely mixed, as symbolized in the red rectangle. After in-
troducing I2CL, the phenomenon of mixed distribution can
be alleviated. In addition, the distance of characters between
different categories is widened as shown in Figure 5(b). By
training a discrete distribution for long-term memory units,
all characters of different categories can be compactly dis-
tributed around the memory units, while ensuring the separa-
bility between classes. These phenomena prove the effective-
ness of I2CL and are consistent with our design.

5 Conclusion
In this paper, we notice the two problems of Large Intra-Class
Variance (LICV) and Small Inter-Class Variance (SICV) in
challenging texts. To address these issues, a Character Fea-
tures Enriched model (CFE) is proposed to obtain the dis-
criminative features via Character-Aware Constraint Encoder
(CACE) and Intra-Inter Consistency Loss (I2CL). Firstly,
CACE enables visual tokens to perceive character morpho-
logical information by introducing the decay matrix, which
enhances the discriminability of character features. Secondly,
I2CL helps achieve intra-class compactness and inter-class
separability by learning a discrete distribution for long-term
memory units. The experimental results show that CFE can
not only effectively improve the performance on challenging
texts, but also maintain high accuracy on simple texts, taking
a further step toward STR with strong robustness.
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