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Abstract
Great advancements in semantic, instance, and
panoptic segmentation have been made in recent
years, yet the top-performing models remain vul-
nerable to imperceptible adversarial perturbation.
Current attacks on segmentation primarily focus on
a single task, and these methods typically rely on it-
erative instance-specific strategies, resulting in lim-
ited attack transferability and low efficiency. In this
paper, we propose GenSeg, a Generative paradigm
that creates unified adversaries for Segmentation
tasks. In particular, we propose an intermediate-
level objective to enhance attack transferability, in-
cluding a mutual agreement loss for feature devi-
ation, and a prototype obfuscating loss to disrupt
intra-class and inter-class relationships. Moreover,
GenSeg crafts an adversary in a single forward
pass, significantly boosting the attack efficiency.
Besides, we unify multiple segmentation tasks to
GenSeg in a novel category-and-mask view, which
makes it possible to attack these segmentation tasks
within this unified framework, and conduct cross-
domain and cross-task attacks as well. Extensive
experiments demonstrate the superiority of GenSeg
in black-box attacks compared with state-of-the-art
attacks. To our best knowledge, GenSeg is the first
approach capable of conducting cross-domain and
cross-task attacks on segmentation tasks, which are
closer to real-world scenarios.

1 Introduction
Deep neural networks have excelled in diverse domains, how-
ever, their vulnerability to quasi-imperceptible adversarial
perturbations remains a challenge [Goodfellow et al., 2014b;
Szegedy et al., 2014]. Efforts to address this issue have pre-
dominantly focused on image classification tasks [Dong et
al., 2018; Ilyas et al., 2018; Zhang et al., 2022a], leaving a
gap in understanding adversarial robustness in segmentation
models. Given the broader applications of segmentation tasks
(such as in autonomous driving and medical image analysis),
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Figure 1: Semantic, instance, and panoptic segmentation models ex-
hibit vulnerability to adversarial examples. The first row is the clean
image, with its corresponding predictions exhibited in the second
row. Upon the introduction of imperceptible adversarial noise, the
predictions in the third row become totally different.

there is an urgent need to develop effective strategies of ad-
versarial attack and defense for them.

Predominant adversarial attacks on segmentation tasks, to
date, have faced two main challenges: 1) Transferability:
Dense-prediction tasks are more complicated than classifica-
tion tasks, leading to the difficulty in designing a strong at-
tack. Although progress has been made [Hendrik Metzen et
al., 2017; Xie et al., 2017; Xu et al., 2021], existing meth-
ods still exhibit limited transferability across different mod-
els due to their instance-specific strategies, relying too much
on specific source models. 2) Efficiency: Current instance-
specific attacks [Gu et al., 2022; Agnihotri and Keuper, 2023;
Rony et al., 2023] typically employ an iterative gradient-
based paradigm, which is time-consuming. However, insuffi-
cient iterations to reduce time consumption will decrease the
effectiveness and further reduce attack transferability. There-
fore, enhancing attack transferability and efficiency remains
challenging at the same time. Additionally, existing ap-
proaches primarily focus on adversarial attacks in semantic
segmentation (SS) [Bar et al., 2020; Rossolini et al., 2023],
neglecting other segmentation tasks such as instance segmen-
tation (IS) and panoptic segmentation (PS). However, these
tasks are typically vulnerable to adversarial attacks, as illus-
trated in Figure 1.

The above challenges prompt two intriguing questions: 1)
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How can we improve both attack transferability and efficiency
of adversarial attacks at the same time? 2) Is it possible to
devise a unified attack paradigm that is applicable across di-
verse segmentation tasks?

To address these two questions, we propose a pipeline
to generate unified adversaries for segmentation tasks based
on a generative model [Goodfellow et al., 2014a], termed
GenSeg. For the first question, contrasting to the iterative
instance-specific methods, GenSeg crafts an adversary in a
single forward pass, showcasing its high efficiency. To en-
hance attack transferability, we introduce an intermediate-
level attack catering to segmentation tasks for optimizing the
generator. Such an attack contains two objectives, i.e., a mu-
tual agreement loss and a prototype obfuscating loss. The for-
mer aims to deviate the adversarial features from the benign
features. As our goal is to deceive as many pixels as possi-
ble, we incorporate a dynamic weight strategy to punish the
insufficient-perturbed pixels. The latter focuses on damaging
the intra-class and inter-class prototype relationships [Zhang
et al., 2023b], which contributes to a stronger ambiguity in
the latent space.

As to the second question, given the shared structure in
different segmentation tasks (involving a backbone for feature
extraction and a head network for prediction), we introduce
a category-and-mask view to unify segmentation tasks and
make it a uniform paradigm applicable to attack these tasks,
including SS, IS, and PS.

To evaluate the effectiveness of GenSeg, we conduct com-
prehensive experiments on SS, IS, and PS, respectively. We
employ 9 datasets and 15 models in total to validate our
method. Experimental results show that GenSeg performs
a stronger cross-model black-box attack transferability com-
pared with state-of-the-art methods. To our best knowledge,
GenSeg first extensively explores cross-domain and cross-
task attacks in segmentation tasks, and sets a baseline.

We briefly summarize our contributions as follows:

• We propose GenSeg, a unified generative paradigm to at-
tack diverse segmentation tasks, including semantic seg-
mentation, instance segmentation, and panoptic segmen-
tation.

• We design an intermediate-level objective for segmen-
tation, including a mutual agreement attack to distance
the feature space and a prototype obfuscating attack to
disrupt the intra-class and inter-class relationships.

• Extensive experiments show GenSeg’s superior attack
capability on three tasks, encompassing 9 datasets and
15 models in total. GenSeg also pioneers the exploration
of cross-domain and cross-task attacks in segmentation.

2 Related Work
2.1 Adversarial Attack in Classification
The pioneered work [Goodfellow et al., 2014b] highlights
the vulnerability of neural networks, leading to numerous
approaches using iterative gradient-based optimization for
generating instance-specific adversaries [Madry et al., 2017;
Dong et al., 2018; Xie et al., 2019; Shi et al., 2021]. How-
ever, these methods are time-consuming and lack transfer-

ability across models or domains due to their reliance on the
output score of a specific source model [Liu et al., 2016;
Naseer et al., 2021; Shi et al., 2022; Multimedia, 2023]. In
contrast, universal perturbations aim to deceive models us-
ing global patterns, yet their effectiveness is relatively limited
[Moosavi-Dezfooli et al., 2017; Li et al., 2022]. More re-
cently, generative perturbations have been proven to be more
effective than directly optimizing the universal perturbations
[Feng et al., 2023; Yang et al., 2022; Naseer et al., 2021].
Our method follows the concept of generative perturbations,
crafting adversaries in a single forward pass. Unlike previ-
ous approaches, we focus on designing a generator tailored
to generating adversaries for segmentation tasks, targeting the
deception of as many pixels as possible.

2.2 Adversarial Attack in Segmentation
Current adversarial attacks in segmentation primarily focus
on SS. [Arnab et al., 2018] transfers the attacks in clas-
sification to assess the adversarial robustness on segmen-
tation models. [Hendrik Metzen et al., 2017] optimizes a
universal perturbation to fool the majority of test images
in SS, while the performance is unsatisfactory. For de-
ceiving as many pixels as possible, approaches like DAG
[Xie et al., 2017], SegPGD [Gu et al., 2022], and CosPGD
[Agnihotri and Keuper, 2023] pay more attention to attack-
ing benign pixels. [Rony et al., 2023] proposes a white-
box attack to reduce the perturbation budget. In addition,
there are a few works [Zhang et al., 2022b; Li et al., 2018;
Lang et al., 2022] on adversarial attacks in IS. However, most
of these approaches treat IS as a detect-then-segment method,
while one-stage and query-based approaches have become
the mainstream paradigm. Furthermore, only [Daza et al.,
2022] delves into adversarial attack exploration in PS, to the
best of our knowledge.

Despite their advancements, current methods are still lim-
ited by 1) their focus on a single task, 2) the poor transferabil-
ity to other target models, and 3) low efficiency with the iter-
ative strategies. To address these issues, we design GenSeg, a
unified attack framework applicable to multiple segmentation
tasks, motivated by MaskFormer series [Cheng et al., 2021;
Cheng et al., 2022]. Moreover, GenSeg also performs higher
attack transferability and efficiency compared with iterative
instance-specific attacks.

3 Methodology
3.1 General Formulation of Segmentation
We start by providing a unified formulation for segmentation
tasks in a category-and-mask view. Despite the apparent di-
versity of SS, IS, and PS, current solutions share a common
structure, a backbone for feature extraction and a head net-
work for prediction. Given an image I ∈ RH×W×3, we de-
rive the intermediate feature F using the backbone. Subse-
quently, F is input into the head network to predict an in-
stance mask set Ŝc = {ŷci }

N̂c
i=1 for each category c ∈ C, ap-

proximating the ground-truth Sc = {yci }
Nc
i=1. Here, yci ∈

{0, 1}H×W denotes the binary mask of the i-th instance for
category c and Nc is the total mask count for category c.
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Figure 2: Overview of GenSeg. During training, GenSeg first employs Gθ to generate the adversaries of the clean image and its augmentation.
Then Dϕ extracts the features of both adversaries and the clean image to establish the objective for training Gθ , which consists of a mutual
agreement loss and a prototype obfuscating loss.

Note that, C varies across different tasks. As to the image
segmentation tasks, C typically comprises two subsets: stuff
and thing, which are denoted as CSt and CTh, respectively,
and CSt ∩ CTh = ∅. Stuff segmentation involves segmenting
uncountable regions that do not correspond to individual ob-
jects, e.g., sky, grass, and wall. Thing segmentation focuses
on identifying each separate object, e.g., car, bus, and person.

In SS, we do not need to distinguish different thing objects.
That is, we treat the countable thing equal to the uncountable
stuff. Therefore, the segmented category C = CSt ∪ CTh

and Nc = {0, 1} for each category c ∈ C. Given the
ground-truth mask set Sc = {yci }

Nc
i=1 for c ∈ C, we have∑

c∈C
∑Nc

i=1 ||yci ||1 = H ×W .
In IS, we only care about thing segmentation. Thus C =
CTh. As IS aims to distinguish intra-class objects, we have
Nc ∈ N for c ∈ C. Note that, the different masks may have
an intersection, since the initial masks are typically encoded
as a polygon. Thus we cannot determine which one is greater
between

∑
c∈C

∑Nc

i=1 ||yci ||1 and H ×W . However, this does
not influence the unified attack objective.

In PS, we need to not only segment stuff category, but also
identify different objects in thing category. Accordingly, we
have C = CSt ∪ CTh, Nc = {0, 1} for c ∈ CSt, and Nc ∈ N
for c ∈ CTh. It is worth noting that the masks are not allowed
to have intersections in PS, which is different from IS. Thus
we draw that

∑
c∈C
∑Nc

i=1 ||yci ||1 = H ×W .
Despite their differences, we are able to unify them into

this category-and-mask formulation. This formulation en-
ables the development of a unified objective in the genera-
tive network, providing a seamless approach to attack various
segmentation tasks.

3.2 Overview of GenSeg
The overall procedure of GenSeg is illustrated in Figure 2.
Such a pipeline contains two key networks, i.e., a generator
Gθ and a discriminatorDϕ, which are parameterized by θ and
ϕ, respectively. Given a clean image I , we first create an

augmented copy Ĩ , aiming to enhance attack transferability
[Naseer et al., 2021]. After that, I and Ĩ are input into Gθ to
produce unrestricted adversaries. As the perturbation should
be imperceptible, we strictly constrain the adversary into an
ε-ball with l∞-norm. This is guaranteed by a differentiable
projecting operation, which is formulated as:

I ′ = Clip{min(I + ε,max(W ∗ (Gθ(I)), I − ε)} (1)

where ε is the perturbation budget andW is a smoothing oper-
ator with fixed weights [Feng et al., 2023]. Such a projection
tightly bounds the output of Gθ within l∞-norm. Meanwhile,
with the smooth operationW , the generator is guided to avoid
redundant high frequencies during training, making Gθ con-
verge to a reasonable solution. Clip is a clipping operation.

Subsequently, we put adversary I ′, augmented adversary
Ĩ ′, and clean image I into Dϕ for feature extraction. Ac-
cordingly, we obtain the feature F ′, F̃ ′, and F ∈ RH×W×D,
respectively, where D is the dimension of the latent space.
Then the features are employed to calculate an intermediate-
level objective for optimizing Gθ, which is formulated as:

Ltotal = λ1LMA + λ2LPO (2)

where λ1 and λ2 are two balanced weights, and we set λ1 =
λ2 = 0.5 empirically. The mutual agreement loss LMA aims
to distance the feature of the adversary and its benign state,
and the prototype obfuscating loss LPO further leverages the
intra-class and inter-class prototype relationships to enhance
the intermediate-level attack. We will present the details of
both losses in the following subsections.

Accordingly, during the training period, we employ Ltotal
to optimize the parameter θ of the generator, which guides Gθ
to produce an adversary whose feature is deviated from the
expected one. During inference, we solely apply Gθ and a
clip operation to craft an adversary in a single forward pass.
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3.3 Mutual Agreement Attack
Intuitively, if the adversarial feature F ′ is totally different
from the benign feature F , it would mislead the subsequent
classifier to conduct false predictions. Given this, our at-
tack design is to pull the distribution of adversarial features
away from the benign distribution. To achieve this goal in the
dense-prediction task, we take Kullback Leibler (KL) diver-
gence [Kullback and Leibler, 1951] to measure the pixel-wise
mutual agreement between F ′ and F , which is calculated by:

DKL(F ′j ||Fj) =
D∑
d=1

σ(F ′j)dlog
σ(F ′j)d
σ(Fj)d

(3)

where j represents the 2D spatial location, d stands for the d-
th dimension of the latent space, and σ denotes a softmax op-
eration for normalization. In short, KL divergence measures
the pixel-level differences between F and F ′. It is worth not-
ing that, KL divergence is asymmetric, i.e., DKL(F ′j ||Fj) 6=
DKL(Fj ||F ′j), and the value is not normalized. Thus we
employ Jensen Shannon (JS) divergence [Goodfellow et al.,
2014a] to achieve both symmetry and normalization, which
is formulated by:

DJS(F ′j ||Fj) =
1

2
DKL(F ′j ||F̄j) +

1

2
DKL(Fj ||F̄j) (4)

where F̄j =
Fj+F

′
j

2 denotes the average of Fj and F ′j .
Inspired by [Gu et al., 2022], a strong attack can deceive

as many pixels as possible in segmentation tasks. Therefore,
paying equal attention to all pixels is less effective. In par-
ticular, the pixels in F ′ with a higher similarity to F are
supposed to be highlighted. Accordingly, we introduce a dy-
namic weight to each pixel, calculated by: Wj =

Fj ·F ′
j

||Fj ||·||F ′
j ||

,
and we focus on reducing the original mutual agreement loss
between F and F ′ by:

LoriMA =
1

H ×W

H×W∑
j=1

Wj · (1−DJS(F ′j ||Fj)) (5)

If F ′j is close to Fj , we have DJS(F ′j ||Fj) → 0. Thus we
assign a large weightWj to punish this high alignment, which
contributes to the deception of more pixels.

Besides, to enhance attack transferability, we employ an
augmented copy, which guides the generator to produce an
adversary that is robust to the input transformation. Simi-
larly, we reduce the feature similarity between F and F̃ by
the augmented mutual agreement loss:

LaugMA =
1

H ×W

H×W∑
j=1

W̃j · (1−DJS(F̃ ′j ||Fj)) (6)

where W̃j =
Fj ·F̃ ′

j

||Fj ||·||F̃ ′
j ||

is a dynamic weight.

Finally, the total mutual agreement loss is calculated by:

LMA = LoriMA + LaugMA (7)

3.4 Prototype Obfuscating Attack
With segmentation masks, the intermediate feature map of-
fers a greater interpretability compared with classification
tasks. This allows us to improve intermediate-level attacks
guided by the ground-truth masks. Specifically, we employ
a global descriptor known as a prototype to represent the
average feature of each category. The prototype is widely
used in numerous segmentation tasks [Wang et al., 2019;
Zhang et al., 2023a; Xu et al., 2022]. Damaging the prototype
relationship for each category will enhance the intermediate-
level attack capability.

On the one hand, the intra-class features share a high sim-
ilarity, which is the foundation for utilizing a prototype to
represent each specific category. Given an image I and its
intermediate feature F , we divide F into category-specific
regions based on the ground-truth mask set Sc = {yci }

Nc
i=1 for

∀c ∈ Cseg , where Cseg = {c|N c ≥ 1, ∀c ∈ C} denotes the
set of categories that appears in the ground-truth mask. Then,
the prototype pc ∈ Rd of category c is calculated by a masked
average pooling operation:

pc =

∑Nc

i=1

∑H×W
j=1 (F � 1[τ(yci ) = 1])j∑Nc

i=1

∑H×W
j=1 1[(yci )j = 1]

(8)

where � and 1 denote a Hadamard product and an indicator
function, respectively. i represents the i-th mask of category
c, and j is the 2D spatial index. Besides, τ(yci ) stands for
the dimension expansion of yci (from RH×W to RH×W×D),
which aims to align the dimension of F .

After obtaining the prototype for each segmented category,
we make all the pixel-wise representations deviated from
their original cluster center. Therefore, the intra-class attack
objective of category c can be formulated as:

Lcintra =

∑Nc

i=1

∑H×W
j=1 cosSim(Fj , p

c)1[(yci )j = 1]∑Nc

i=1

∑H×W
j=1 1[(yci )j = 1]

(9)

where cosSim(·, ·) denotes cosine similarity. The total intra-
class objective considering all categories is computed by:

Lintra =
1

|Cseg|
∑
c∈Cseg

Lcintra (10)

Our attack goal is to minimize Lintra, thereby reducing
the similarity between the pixel-wise representation and its
corresponding prototype. This approach dilates the feature
space of each segmented category, consequently misleading
the head network to conduct false predictions.

On the other hand, the inter-class feature spaces is sup-
posed to be discernible. In particular, a substantial margin be-
tween feature clusters of distinct categories enhances the sep-
aration performance, resulting in a distinct decision boundary.
Hence, our attack is aimed at blurring the decision boundary,
and the objective for inter-class attack is formulated as:

Linter = 1− 1

K

∑
c1,c2∈Cseg

cosSim(pc1 , pc2)1[c1 6= c2]

(11)
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where K = 2
(|Cseg|

2

)
denotes the number of pair-wise proto-

type permutations.
After obtaining the above two attack objectives, we formu-

late the overall prototype obfuscating loss by:

LPO = Lintra + Linter (12)

4 Experiments
Dataset. To evaluate the attack effectiveness of GenSeg, we
employ the commonly used Pascal VOC (20 classes) [Ever-
ingham et al., 2010], Cityscapes (19 classes) [Cordts et al.,
2016], and ADE20K (150 classes) [Zhou et al., 2017] for SS.
For IS, we use the widely used CityScapes (8 things), COCO
(80 things) [Lin et al., 2014], and ADE20K (100 things). As
to PS, we adopt COCO (80 things and 53 stuff ), Cityscapes (8
things and 11 stuff ), and ADE20K (100 things and 50 stuff ).
Please see Appendix B for detailed descriptions of all datasets
used in experiments.
Evaluation metrics. For SS, we use the metric of mean
Intersection-over-Union (mIoU) for evaluation. For IS, we
report the standard average precision (AP) metric. For PS,
we employ the panoptic quality (PQ) metric. The drop score
of each metric correlates directly with the attack capability.

4.1 Implementation Detail
We utilize the widely-adopted ResNet-based model [He et al.,
2016] in [Naseer et al., 2019] for generator Gθ, producing
adversaries that match the input size. The discriminator Dϕ
employs a pre-trained ResNet50 to generate a multi-scale hy-
brid feature map. During training, Dϕ remains frozen while
optimizing Gθ. We use the Adam optimizer with a learning
rate of 5e-3 (β1 = .5, β2 = .999) for 100 epochs. For each
segmentation task, we train an individual generator on each
separate dataset, allowing the evaluation of both intra-domain
and cross-domain attacks. We set the perturbation budget ε to
the typical value of 8/255. Additionally, our smooth operator
W is a differentiable Gaussian kernel specified in [Naseer et
al., 2021]. After training, the generator creates adversaries
without any augmentation. Subsequently, we conduct attacks
across various models and domains to thoroughly evaluate the
effectiveness of GenSeg.

4.2 Attack Scenarios and Results
We assess untargeted black-box attacks of GenSeg in the fol-
lowing two scenarios: 1) Cross-model Intra-domain: The at-
tacker lacks access to the target model, while both the source
and target models are trained within the same domain. 2)
Cross-model Cross-domain: The attacker is unaware of the
target model’s architecture. Moreover, the source and target
models are trained on different domains. This scenario more
closely reflects real-world conditions.

Cross-model Intra-domain Attack
In this scenario, GenSeg is trained on the same dataset as the
target models. Then we assess the attack transferability of
GenSeg in comparison to other transfer-based attacks.

Semantic Segmentation: We evaluate the black-box at-
tack capability of GenSeg by comparing it with sev-
eral top-performing attacks, i.e., DAG [Xie et al., 2017],
SegPGD [Gu et al., 2022], CosPGD [Agnihotri and Ke-
uper, 2023], and Prox [Rony et al., 2023]. Since most
attacks are iterative instance-specific methods, we desig-
nate three source models, i.e., PSPNet-R50 (PSP-R50)
[Zhao et al., 2017; He et al., 2016], DeepLabv3-R101
(DLv3-R101) [Chen et al., 2017], and Mask2Former-
Swin-S (M2F-Swin-S) [Cheng et al., 2022; Liu et al.,
2021] for these attacks to generate adversaries and con-
duct transfer-based attacks. As to the victim target models,
we use PSPNet-R50 (PSP-R50), PSPNet-R101 (PSP-R101),
DeepLabv3-R50 (DLv3-R50), DeepLabv3-R101 (DLv3-
R101), Mask2Former-R101 (M2F-R101), Mask2Former-
Swin-T (M2F-Swin-T), and Mask2Former-Swin-S (M2F-
Swin-S) for comprehensive evaluations. Both source and tar-
get models are well-trained within the same domain.

To ensure a fair comparison across these attacks, we reim-
plement them using the setting of the step size 3/255 and the
perturbation budget 8/255. Besides, we set attack iteration to
5, striking a balance between attack capability and efficiency.
Note that, unless otherwise specified, this setting generally
applies to the iterative attacks mentioned later in this paper.

The results on Pascal VOC are summarized in Table 1.
GenSeg demonstrates a strong attack capability across mul-
tiple SS models, showcasing its effective transferability. Al-
though existing adversaries successfully deceive the source
model (results in red in the table), their transferability to
other target models remains limited. This limitation stems
from instance-specific attacks heavily relying on the decision
boundary of the specific source model. In contrast, GenSeg
operates independently of the source model and employs an
intermediate-level attack, which helps to enhance its attack
transferability. Furthermore, the efficiency of GenSeg stands
out as it generates adversaries in a single forward pass, pre-
senting a more streamlined approach compared with the iter-
ative attacks. For more details, please refer to Appendix F.

We also conduct experiments on Cityscapes and ADE20K,
respectively. For detailed results, please refer to Appendix C.
The results show that the adversaries generated by GenSeg
effectively deceive a range of top-performing SS models, ex-
hibiting the highlighted attack transferability of GenSeg.
Instance Segmentation: We explore the attack efficacy of
GenSeg on IS, compared with the popular methods MIM
[Dong et al., 2018], Improved PGD (I-PGD) [Zhang et al.,
2022b], and DIM [Xie et al., 2019]. As to the selection
of source and target models, we choose Mask-RCNN (M-
RCNN) [He et al., 2017], Yolact [Bolya et al., 2019], Po-
larMask [Xie et al., 2020], and Mask2Former (M2F) [Cheng
et al., 2022]. These models represent four diverse solutions
for IS: top-down, one-stage, contour-based, and query-based,
respectively. As their structures are totally different, we use
the same backbone ResNet50 for each model.

The results on Cityscapes are presented in Table 2, and the
results on COCO and ADE20K are provided in Appendix
C. Similar to SS, although iterative attacks own high effi-
cacy in white-box attack cases, their transferability to dif-
ferent target models remains deficient. Note that, this defi-
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Source Model Attack Target Model
PSP-R50 PSP-R101 DLv3-R50 DLv3-R101 M2F-R101 M2F-Swin-T M2F-Swin-S

N/A Clean 76.7 78.4 76.1 78.7 80.4 82.1 82.5

PSP-R50

DAG 64.1 18.4 23.5 15.7 16.2 11.9 8.2
SegPGD 68.0 21.9 26.3 16.8 19.7 12.9 11.4
CosPGD 66.7 23.5 24.0 18.1 23.5 15.0 14.4

Prox 48.2 11.7 16.3 12.2 10.3 8.6 9.5

DLv3-R101

DAG 22.7 26.7 24.2 67.4 20.5 12.0 10.9
SegPGD 27.4 30.4 30.5 71.1 18.1 14.7 11.5
CosPGD 26.5 24.1 25.4 70.7 22.9 15.5 14.8

Prox 10.4 12.1 10.2 44.3 7.3 8.2 8.7

M2F-Swin-S

DAG 28.7 17.6 22.9 18.0 25.7 29.5 72.5
SegPGD 27.1 23.3 28.2 26.1 27.7 35.9 74.8
CosPGD 32.8 34.0 29.9 23.6 28.6 31.6 71.6

Prox 14.6 13.8 16.1 13.0 16.1 18.3 50.8
N/A GenSeg 53.5 47.9 53.3 51.8 46.0 56.2 50.1

Table 1: Performances of cross-model intra-domain attacks on Pascal VOC for SS. Source models and target models are both well trained on
Pascal VOC. The row in green represents the original mIoU for each target model without any attack. Subsequent rows exhibit mIoU drop
after attacks. Red regions indicate the results of white-box attacks. The most effective attack is highlighted in bold, while results inferior only
to white-box attack are underlined. GenSeg shows a strong capability to attack a wide range of SS models.

Source Model Attack Target Model
M-RCNN Yolact PolarMask M2F

N/A Clean 26.6 24.9 24.7 37.4

M-RCNN
MIM 19.8 4.7 3.0 7.4

I-PGD 22.4 5.3 5.9 6.2
DIM 19.2 6.2 5.7 8.2

Yolact
MIM 5.6 20.1 4.3 7.5

I-PGD 5.1 21.4 6.0 7.1
DIM 7.9 18.3 5.8 10.2

PolarMask
MIM 1.7 0.9 19.6 3.1

I-PGD 3.2 3.1 21.4 4.8
DIM 1.4 2.3 22.6 3.7

M2F
MIM 4.5 6.0 4.0 35.1

I-PGD 5.7 7.1 3.4 33.2
DIM 5.6 5.2 4.3 28.0

N/A GenSeg 17.1 17.6 16.3 24.9

Table 2: Performance of cross-model intra-domain attacks on
Cityscapes for IS. Source model and target model are well trained
on Cityscapes. Results in green represent the original AP for each
target model without attack, while others stand for AP drop after at-
tacks. Red regions indicate the results of white-box attacks. GenSeg
demonstrates a strong capability to attack a wide range of IS models.

ciency is more pronounced in comparison to SS, as the huge
divergence among different IS models exacerbates the chal-
lenge. In contrast, GenSeg demonstrates robust transferabil-
ity across diverse models as it is detached from any source
model. Moreover, the intermediate-level attack is applicable
to all solutions. Once the feature space is corrupted, all the
subsequent head networks will be misled.

Panoptic Segmentation: We also explore the attack trans-
ferability of GenSeg on PS. To compare GenSeg with other
top-performing iterative attacks (PGD [Madry et al., 2017]
and AutoPGD [Daza et al., 2022]), we select four end-to-end
PS models, i.e., DETR [Carion et al., 2020], MaskFormer
(MF) [Cheng et al., 2021], Mask2Former (M2F) [Cheng et
al., 2022], and kMax-DeepLab (kMDL) [Yu et al., 2022].
The backbone is selected to be ResNet50 for each model.

The results on Cityscapes are shown in Table 3, and the
results of COCO and ADE20K are depicted in Appendix C.
GenSeg performs a good transferability to attack a diversity
of models across different datasets, which is superior to ex-

Source Model Attack Target Model
DETR MF M2F kMDL

N/A Clean 54.7 58.9 62.1 64.3

DETR PGD 38.5 8.7 11.0 6.5
AutoPGD 41.4 7.3 10.9 9.7

MF PGD 7.8 43.8 12.1 10.5
AutoPGD 7.9 50.1 9.4 7.1

M2F PGD 7.7 9.3 47.0 15.2
AutoPGD 8.0 13.9 53.6 11.2

kMDL PGD 6.6 8.9 8.4 47.3
AutoPGD 7.8 10.5 7.6 50.5

N/A GenSeg 31.7 39.1 37.6 42.9

Table 3: Performance of cross-model intra-domain attacks on
Cityscapes for PS. Source models and target models are both well
trained on Cityscapes with panoptic masks. Results in green repre-
sent the original PQ for each target model without any attack, while
others stand for PQ drop after attacks. Red regions indicate the re-
sults of white-box attacks. GenSeg demonstrates a strong capability
to attack a wide range of PS models.

isting instance-specific approaches.

Cross-model Cross-domain Attack
This scenario is more practical in the real world, as we have
no access to either the deployed model structure or the tar-
get domain. Considering that we have no knowledge about
the target domain and the guidance of the ground-truth mask,
current iterative instance-specific attacks are unable to gener-
ate adversaries for unknown domains, as the misalignment of
output dimension and ground-truth mask missing. However,
as only one input image is required for GenSeg, it can be
technically applied to generate adversaries for any unknown
target domain.

We evaluate the cross-model cross-domain attack capabil-
ity of GenSeg. For SS, we leverage GenSeg trained on source
domains to generate adversaries to attack victim models that
are trained on different target domains. We utilize Pascal
VOC, Cityscapes, and ADE20K datasets to explore the cross-
domain attack transferability. As to the victim target mod-
els, we select PSPNet-R50 (PSP-R50) [Zhao et al., 2017;
He et al., 2016] and DeepLabv3-R50 (DLv3-R50) [Li et al.,
2018] to test their mIoU results. The results of mIoU drop are
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Source Domain Victim Model Target Domain
Pascal VOC Cityscapes ADE20K

Pascal VOC PSP-R50 - 23.3 (↓ 29.9%) 13.1 (↓ 31.8%)
DLv3-R50 - 26.1 (↓ 33.0%) 14.4 (↓ 33.9%)

Cityscapes PSP-R50 21.9(↓ 28.5%) - 11.7(↓ 28.4%)
DLv3-R50 27.3(↓ 35.8%) - 12.5(↓ 29.4%)

ADE20K PSP-R50 34.4(↓ 44.9%) 35.6(↓ 45.7%) -
DLv3-R50 29.7(↓ 39.0%) 33.8(↓ 42.7%) -

Table 4: Performance of mIoU drop under cross-domain attacks in
SS. The adversaries are generated by GenSeg, which is well trained
on the source domain, and attack the victim models that are trained
on other target domains.

Group LoriMA LaugMA Lintra Linter mIoU↓ AP↓ PQ↓
(1) X 40.4 14.3 31.5
(2) X X 47.1 15.4 34.8
(3) X X X 47.7 15.7 35.5
(4) X X X 49.5 16.3 35.1
(5) X X 33.0 9.8 20.7
(6) X X X X 55.4 17.6 37.6

Table 5: Ablation results on different combinations of losses.

reported in Table 4. As evident from the table, in the cross-
domain attack scenario, GenSeg induces mIoU drops ranging
from 28.4% to 45.7% for the target models. While this effec-
tiveness is comparatively lower than that in the intra-domain
attack, the substantial absolute value of mIoU drop remains
noteworthy. This indicates that GenSeg possesses the capabil-
ity to transfer and attack victim models trained on unknown
domains without overly relying on the source domain.

Moreover, the settings and results of IS and PS are de-
tailedly demonstrated in Appendix D. It can be observed that
the adversaries produced by GenSeg can decrease the perfor-
mances of victim models trained on other domains by 23%-
47%, which is sufficient to bring potential risks to deceive the
unknown deployed models trained on unknown domains.

4.3 Ablation Study
We conduct thorough ablation experiments to determine the
optimal setting for GenSeg and analyze the potential reasons.
Utilizing GenSeg trained on Cityscapes with SS, IS, and PS
masks, we conduct attacks on corresponding target victim
models. Specifically, we employ each corresponding GenSeg
to attack PSPNet for SS, Yolact for IS, and Mask2Former for
PS. The attack efficacy is measured in terms of the metrics
drops in mIoU, AP, and PQ scores, respectively.
Loss combination: Table 5 illustrates the attack capability
of GenSeg when trained on various loss combinations. Ba-
sically, the amalgamation of LoriMA, LaugMA, Lintra, and Linter
shows the most effective attack across all segmentation tasks,
namely Group (6). By contrast, Groups (1) and (2) indicate
the efficacy of the augmentation in enhancing attack transfer-
ability; Groups (3) and (4) highlight the advantageous use of
Lintra and Linter, respectively, as they obscure the represen-
tation space in a category-specific manner, significantly bol-
stering the overall attack capability; Group (5) underscores
the pivotal role of LoriMA in ensuring a strong attack.

(a) benign (b) with �푀� (c) with �푖푛��� (d) with �푖푛���

Figure 3: Visualization results of the prototypes on each category by
t-SNE with different losses trained on GenSeg.

Augmentation mIoU↓ AP↓ PQ↓
N/A 45.7 13.5 30.5

Gamma Transformation 52.5 17.1 35.4
Pepper Noise 54.7 16.5 37.9

Gaussian Noise 55.4 17.6 37.6

Table 6: Ablation results on augmentation-based training of GenSeg.

To further analyze the impact of each loss, we illustrate
the variations of representation space in Figure 3. These pro-
totypes are obtained based on PSPNet with the guidance of
ground-truth masks on Cityscapes for SS. As shown in the
figure, the intra-class and inter-class prototypes of benign
features are compacted and separate, respectively. With the
introduction of the mutual agreement loss, the feature space
tends to be obfuscated without any regular pattern. However,
with the usage of Lintra, the prototypes within each specific
category tend to be uncompacted, which leads to an ambigu-
ous decision boundary. On the other hand, Linter mixes the
prototypes of different categories together, significantly re-
ducing the margin of the decision boundary. Therefore, the
mutual agreement loss brings a random ambiguity to the la-
tent space, while the intra-class and inter-class losses give a
directional perturbation to damage the category relationships.
We take the advantages of them to formulate the total ob-
jective for GenSeg with a stronger effectiveness. Note that,
Lintra and Linter act as auxiliary objectives to further en-
hance attack ability. As to the reasons, we believe that the
attack directions of Lintra and Linter are related to the proto-
type space ofDϕ, whereas the omnidirectional attack LMA is
model-agnostic. However, none of these attacks are domain-
agnostic, leading to relatively inferior results of cross-domain
attacks.
Augmentation: We investigate the efficacy of the
augmentation-based training strategy. To guarantee pixel-
wise alignment for segmentation tasks, we employ aug-
mentations without spatial transformation, including Gamma
Transformation, Pepper Noise, and Gaussian Noise, com-
pared with the standard training without any augmentation.
As demonstrated in Table 6, Gaussian Noise augmentation
achieves the best results. The augmentations can make
GenSeg robust to slight input transformations and focus
specifically on perturbing the latent space, which significantly
enhances the attack effectiveness.
Mutual agreement: According to Eq. (6), we use JS diver-
gence to distinguish between the features of clean images and
adversaries. We assess alternative metrics like cosine simi-
larity and Euclidean distance as mutual agreement measures.
Table 7 displays the results, indicating JS divergence as the
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Mutual Agreement mIoU↓ AP↓ PQ↓
Euclidean Distance 49.5 14.5 32.3
Cosine Similarity 48.0 15.2 30.9

JS Divergence 55.4 17.6 37.6

Table 7: Ablation results on different mutual agreement measures.

Weight mIoU ↓ AP ↓ PQ ↓
Equal weight 43.5 12.2 31.1

Dynamic weight 55.4 17.6 37.6

Table 8: Ablation results on the usage of dynamic weight in LMA.

superior metric. Compared with Euclidean distance, JS diver-
gence’s normalized range of 0-1 aids in optimizing the total
loss. Furthermore, compared with cosine similarity, JS diver-
gence avoids redundancy in attacks, as the prototype obfus-
cating loss also employs cosine similarity for intra-class and
inter-class attacks. Moreover, JS divergence, following the
softmax operation, highlights the salient features. Targeting
these features can further deceive the segmentation model, as
they encode crucial image patterns.
Dynamic weight: We explore the results of using dynamic
weight in the mutual agreement loss, compared with the equal
weight on all pixels, and the results are depicted in Table 8.
As shown in the table, the dynamic weight strategy causes
a larger metrics drop compared with the equal weight as-
signment. By assigning larger weights to the inadequate-
perturbative representations, we are able to lead numerous
pixel-wise representations apart from their benign states. This
will impose obstacles on the following head network and in-
directly impact the final predictions.
Discriminator: We use well-trained ResNet50 and Swin-S
as discriminators for feature extraction. For each model, we
extract intermediate features from the output of stages 2, 3, 4,
and a hybrid output [Xie et al., 2021] that incorporates them
together, respectively, as the output of Dϕ. Bilinear interpo-
lation is then applied to match the output size to the input
image. Table 9 shows the results, highlighting the superior
attack based on the hybrid feature. Moreover, the results of
ResNet50 are close to Swin-S. On the one hand, the mutual
agreement loss does not heavily rely on the feature quality, as
it concentrates more on expanding mutual distances. On the
other hand, the prototype establishment depends on semantic
features, and the hybrid feature leverages multi-scale infor-
mation, enhancing the prototype obfuscating attack. Consid-
ering the efficiency, we apply ResNet50 as Dϕ for feature
extraction.

4.4 Generalized Cross-task Attack
The above attacks necessitate training GenSeg for each task
and each dataset separately. However, our ultimate goal is
to train a single GenSeg capable of generating adversaries
across all segmentation tasks. Unlike MaskFormer, achieving
this objective with GenSeg is technically feasible, as it only
requires outputting the common feature map and employing
a unified mask formulation for optimization.

Structure Stage mIoU ↓ AP ↓ PQ ↓

ResNet50

2 44.0 14.2 31.6
3 48.8 17.0 33.2
4 47.3 15.5 33.0

hybrid 55.4 17.6 37.6

Swin-S

2 48.3 16.8 33.8
3 49.8 16.4 35.1
4 44.8 17.3 36.2

hybrid 56.1 17.7 38.8

Table 9: Ablation results on different output features of Dϕ.

Task Victim Model Pascal ADE20K

SS PSP-R50 20.2(↓ 26.3%) 6.6 (↓ 16.0%)
DLv3-R50 16.7 (↓ 21.9%) 7.4 (↓ 17.4%)

Task Victim Model COCO ADE20K

IS Yolact 6.9 (↓ 23.9%) 3.7 (↓ 20.7%)
PolarMask 5.7 (↓ 19.5%) 3.4 (↓ 18.3%)

Table 10: MIoU drop for SS and AP drop for IS (along with per-
centage drop compared with clean results), when using GenSeg
trained on PS to attack SS and IS models on different datasets.

Considering PS as a fusion task of SS and IS, we explore
whether GenSeg trained on PS can generate adversaries to
deceive SS and IS models. Specifically, we train GenSeg
on Cityscapes with panoptic masks. Subsequently, GenSeg
generates adversaries to attack PSPNet-R50 and DeepLabv3-
R50 in SS, as well as Yolact and PolarMask in IS. To simu-
late a general scenario, we employ Pascal VOC and ADE20K
datasets for SS, as well as COCO and ADE20K for IS. The
results, shown in Table 10, reveal that the attacks cause ap-
proximately 16%-26% metric drops. As segmentation mod-
els share similar semantic features, attacks targeting the latent
space affect all subsequent head networks, despite variations
in models, domains, and tasks. Of course, there is still ample
room for enhancing attack efficacy in the cross-task manner.

5 Conclusion
In this paper, we introduced GenSeg, a unified adversar-
ial attack paradigm tailored for multiple segmentation tasks.
GenSeg employs mutual agreement loss and prototype ob-
fuscating loss, showcasing robust attack transferability across
diverse models, domains, and tasks. Moreover, the effective
adversary is generated with a single forward pass. Extensive
experiments demonstrate that the black-box attack capability
of GenSeg outperforms the top-performing iterative instance-
specific attacks across 3 tasks, 9 datasets and 15 models in
total.
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