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Abstract
Compositional Zero-Shot Learning (CZSL) aims to
recognize unseen compositions with the knowledge
learned from seen compositions, where each com-
position is composed of two primitives (attribute
and object). However, existing CZSL methods are
designed to learn compositions from fixed primi-
tive set, which cannot handle the continually ex-
panding primitive set in real-world applications.
In this paper, we propose a new CZSL setting,
named Continual Compositional Zero-Shot Learn-
ing (CCZSL), which requires the model to rec-
ognize unseen compositions composed of learned
primitive set while continually increasing the size
of learned primitive set. Contextuality and catas-
trophic forgetting are the main issues to be ad-
dressed in this setting. Specifically, we capture sim-
ilar contextuality in compositions through several
learnable Super-Primitives that can modify the in-
variant primitive embedding to better adapt the con-
textuality in the corresponding composition. Then
we introduce a dual knowledge distillation loss
which aims at maintaining old knowledge learned
from previous sessions and avoiding overfitting of
new session. We design the CCZSL evaluation pro-
tocol and conduct extensive experiments on widely
used benchmarks, demonstrating the superiority of
our method compared to the state-of-the-art CZSL
methods.

1 Introduction
Human beings can decompose observations into primitive
concepts and recombine these primitive concepts to general-
ize to unseen compositions. Compositional Zero-Shot Learn-
ing (CZSL) [Misra et al., 2017] is proposed to mimic the
way humans recognize unseen compositions which is often
regarded as a hallmark of intelligence [Atzmon et al., 2016],
[Lake et al., 2017], [Li et al., 2023]. Generally, CZSL meth-
ods are trained on seen compositions and deployed to rec-
ognize unseen compositions, both of which are composed of
two primitives (attribute and object) in the fixed set. Such
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Figure 1: An illustration of our CCZSL setting. We require the
model to recognize unseen compositions across multiple incremen-
tal sessions, where each session introduces at least one new primi-
tive.

methods are infeasible for many real-world applications as
they cannot continually learn and accumulate knowledge of
new primitives that might emerge after training. On the con-
trary, humans can not only recognize unseen compositions,
but also learn new concepts incrementally throughout their
whole lives.

In recent years, sporadic researches have emerged in Con-
tinual Generalized Zero-Shot Learning (CGZSL) that require
model to continually recognize new unseen categories. [Wei
et al., 2020] considers each GZSL dataset as an incremen-
tal session and accumulate different attribute knowledge from
multiple datasets. However, this method needs task-id during
testing phase and only test on individual GZSL dataset, which
is difficult to meet in realistic scenarios. Then, [Wu et al.,
2023b], [Skorokhodov and Elhoseiny, 2020] and [Gautam et
al., 2020] divide a dataset into multiple subsets in different
ways to simulate the continual learning process. Although
these methods propose various reasonable ways to divide the
dataset, compared to the first method, these methods only fo-
cus on continual learning of categories and ignore continual
learning of attributes. That is to say, the above incremental
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sessions may not bring new attribute knowledge to the model.
As the categories all come from the same attribute set and
there are no explicit constraints on attribute increments for
each incremental session.

Drawing on the experience of CGZSL mentioned above,
we propose a new Continual Compositional Zero-Shot Learn-
ing (CCZSL) setting. This setting requires the model to rec-
ognize unseen compositions composed of learned primitive
set while continually increasing the size of this set. As illus-
trated in Figure 1, we set up multiple incremental sessions
to bring new primitives step by step. Concretely, the model
learns new primitives through new seen compositions in each
incremental session and is ready to recognize unseen com-
positions composed of primitives in the expanded set, that
is, unseen compositions of all sessions up to the current ses-
sion. From another perspective, we split the standard CZSL
into multiple CZSL sub-tasks, as newly added primitives and
old primitives are combined into several seen compositions
and unseen composition like standard CZSL. After learning
the last incremental session, the model learns the same num-
ber of attributes, objects and compositions in standard CZSL
dataset. Next, we will introduce two challenges in this setting,
1) Contextuality and 2) Catastrophic Forgetting, and their cor-
responding solutions.

Specifically, contextuality indicates that the appearance
of the same attribute (object) undergoes significant changes
when combined with different objects (attributes). For exam-
ple, the same attribute “old” depicts retro style for object
“car” but aged appearance for object “dog”. The same ob-
ject “church” exhibits a complete structure in composition
“new church”, yet only damaged structure and debris are
bespoke in “burnt church”. [Zhang et al., 2022] ignores
the contextuality and aims to learn generic primitive embed-
dings, which are then used to predict the corresponding prim-
itives in all compositions. [Hu and Wang, 2023] learns multi-
ple embeddings for each primitive according to compositions,
but is hard to achieve due to data scarcity. Unlike the meth-
ods mentioned above, we propose to additionally learn mul-
tiple super-primitives which can modify the invariant primi-
tive embedding to better fit contextuality in the current com-
position. We found that although contextuality significantly
varies appearances of primitives, there are still consensuses
in these variations. For example, the super-object “mammal”
beyond “dog”, “cat” and “elephant” has the similar
contextuality, like dull fur and sagging skin, when combine
with attribute “old”. In the same way, the super-attribute
“fragmented” beyond “broken” and “sliced” tends to
change appearance of object by breaking object into multiple
small pieces. Therefore, we propose to learn super-primitives
from original primitives, which encapsulate primitives with
similar contextuality in compositions. During the inference
phase, we recognize attribute (object) by introducing super-
object (super-attribute), which can be utilized to simulate
contextuality in the current composition and modify the in-
variant attribute (object) embedding.

Only using samples of new categories to train model will
cause forgetting of old knowledge, resulting in a decrease in

overall performance, which is known as catastrophic forget-
ting [Kirkpatrick et al., 2017]. In this setting, as the learned
primitives emerge in new compositions with fresh contextu-
ality during subsequent incremental sessions, the model ex-
periences catastrophic forgetting when attempting to relearn
these primitives in the new compositions. To be specific, in-
troducing new primitives in incremental sessions leads to the
creation of new compositions that incorporate both the new
and old primitives. The newfound contextuality within these
compositions changes visual appearances of the old primi-
tives, which are distinct from those observed in previous ses-
sions. Learning from the above new compositions will lead to
the forgetting of the old primitive characteristics. Data regu-
larization is a popular and concise solution in continual learn-
ing, which aims to minimize the impact of new incremental
sessions on weights important for previous sessions. In this
paper, we propose to utilize knowledge distillation to keep
the learned embedding of previous primitives from drifting
too much. To maintain the characteristics of networks learned
from previous sessions, we adjust the scope of knowledge dis-
tillation, introducing constraints on predicting new categories
as well.

The main contributions of our work are summarized as fol-
lows:

• To the best of our knowledge, we are the first to pro-
pose and tackle CCZSL. This setting holds great signifi-
cance and practicality for real-world applications. Addi-
tionally, we design the evaluation protocols and conduct
comprehensive experiments.

• We propose to address the issue of contextuality by
learning multiple super-primitives corresponding to sim-
ilar contextuality. Then, we propose a dual knowledge
distillation loss to keep old primitive knowledge from
catastrophic forgetting and mitigate overfitting on new
primitives.

• Experiments and ablation studies affirm the effective-
ness of our proposed method.

2 Related Work
2.1 Compositional Zero-Shot Learning
Zero-Shot Learning (ZSL) [Palatucci et al., 2009][Zhang and
Feng, 2023][Tang et al., 2020] is a popular research topic that
provides model with shared semantic knowledge (attribute
knowledge) between seen and unseen classes, enabling them
to recognize unseen classes without any training data. CZSL
is a sub-topic of ZSL, which requires model to recognize un-
seen compositions with the shared primitive knowledge. In
the early attempts at CZSL, methods try to directly learn the
classifiers of compositions by transforming the paired prim-
itive embeddings into composition embedding. For exam-
ple, [Misra et al., 2017] projects the image representations
and paired primitives into a common space, and then pre-
dicts unseen compositions in the common space. [Nagara-
jan and Grauman, 2018] and [Li et al., 2020] treat attributes
as operators which change original objects into composi-
tions. [Naeem et al., 2021] tries to exploit the dependency
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between attributes, objects and their compositions within a
graph structure to transfer the relevant knowledge from seen
to unseen. Recent mainstream works disentangle visual rep-
resentations of primitives and learn corresponding embed-
dings respectively. [Li et al., 2022] leverages contrastive loss
to excavate discriminative embeddings of primitives. [Zhang
et al., 2022] considers CZSL as a Out-Of-Distribution prob-
lem and learns invariant primitive embeddings. [Saini et al.,
2022] and [Hao et al., 2023] implement cross-attention be-
tween two samples sharing the same primitive to disentangle
the corresponding representation of this primitive. [Wang et
al., 2023] proposes to learn attribute embeddings that rely on
objects and images. [Kim et al., 2023] disentangles attribute
representation from feature map with the guidance of object
visual representation.

2.2 Continual Generalized Zero-Shot Learning
Continual Generalized Zero-Shot Learning (CGZSL) is the
most related work to ours. [Wei et al., 2020] is the first work
to investigate GZSL in continual learning scenario. They
construct a sequence of tasks by assembling existing GZSL
benchmarks and the performance is reported for each bench-
mark individually. However, this setting requires a task-level
supervision in the form of task-ids at test time which is hard
to achieve. Subsequently, some follow works propose new
CGZSL settings, such as [Skorokhodov and Elhoseiny, 2020]
and [Gautam et al., 2020]. The former randomly divides indi-
vidual dataset into T tasks and assumes all previously encoun-
tered tasks as seen classes and future tasks as unseen classes.
The latter equips an exclusive set of seen and unseen classes
for each task and the model can accommodate any number
of tasks. Due to the popularity of generative methods [Xian
et al., 2018][Tang et al., 2022] in GZSL, generative replay
is the mainstream technique for mitigating catastrophic for-
getting in the above CGZSL. Although the recent CGZSL
settings are more practical, the construction of incremental
sessions still has flaws. As attribute plays a important role
in GZSL, dividing the dataset based on attribute knowledge
is better than random splitting. That is, introducing new at-
tributes for each session, and the new categories are naturally
selected from the dataset based on the new attributes.

2.3 Knowledge Distillation
Knowledge distillation (KD) [Hinton et al., 2015] was origi-
nally designed to learn a more compact student network from
a larger teacher network. Then, it became a major tech-
nique for data regularization methods in continual learning.
[Li and Hoiem, 2017] first leverages this technique by con-
structing a cross-entropy loss, known as learning without for-
getting loss, to keep representations of previous data from
drifting too much while learning new task. This loss was ini-
tially employed in task-incremental learning (task-IL) meth-
ods [Titsias et al., 2019]. Subsequently, owning to numerous
studies observing its effectiveness in settings with small do-
main shifts between tasks, such as class-incremental learning
(class-IL)[Chi et al., 2022], [Wu et al., 2023a], the loss has
become a crucial component in many class-IL methods, such
as [Dhar et al., 2019] and [Zhang et al., 2020]. It is worthy
noting that, as reported in [Masana et al., 2022], continual

learning and class-IL are mostly the same.

3 Methodology
3.1 Problem Formulation
CCZSL requires the model to recognize unseen compositions
composed of learned primitive set while continually increas-
ing the size of learned primitive set. To simulate the contin-
ual learning scenario, we split the original CZSL dataset into
T+1 sessions {D0,D1, ...,DT}, where each session consists
of a training set Di

tr and a testing set Di
ts. Specifically, let

Di
tr = {(x, a, o, c)|x ∈ X i

tr, a ∈ Ai
tr, o ∈ Oi

tr, c ∈ Ci
tr}, x

denotes the image in the sample space of i-th session X i
tr and

c is the composition label in the label space of i-th session
Ci
tr, each label c is composed of the attribute a and the object

o in the tuple respectively, i.e., c = (a, o). In the same way,
the testing set is defined as follows Di

ts = {(x, a, o, c)|x ∈
X i

ts, a ∈ Ai
ts, o ∈ Oi

ts, c ∈ Ci
ts}. From the perspective of in-

creasing sessions, the label spaces of the training set in differ-
ent sessions are disjoint, i.e., Ci

tr∩C
j
tr = ∅, but the label space

of the testing set in current session are the summary of label
spaces from all previous sessions, i.e., ∀i < j, Ci

ts ⊂ Cj
ts.

The primitive set follows the same pattern mentioned above
in both training and testing set, i.e., ∀i < j, Pi

tr/ts ⊂ Pj
tr/ts,

P = {A,O}.

3.2 Preliminary
We first outline the fundamental pipeline of the recent main-
stream methods. When provided with an image x, these
methods initially utilize a backbone network, i.e., ResNet18,
to extract its high-level visual features denoted as X . Subse-
quently, three feature encoders are respectively employed to
disentangle the corresponding attribute, object, and composi-
tion representations, which are defined as follows:

va = Ea(X), vo = Eo(X), vc = Ec(X). (1)

To train a model capable of understanding primitives and
composing them to recognize unseen compositions, a com-
mon approach is to directly maximize the similarity scores,
such as cosine similarity, between these extracted representa-
tions and corresponding embeddings. The function s(·) cal-
culates the similarity scores as follows:

s(vp, p) =
vTp
||vp||

· ep
||ep||

, (2)

s(vc, (a, o))) =
vTc
||vc||

· φc(ea, eo)

||φc(ea, eo)||
, (3)

where p = {a, o}. vp and ep are the corresponding repre-
sentation and embedding. vc refers to composition represen-
tation. φc(·) is the transformation network that transforms
paired primitive embeddings into composition embedding.

3.3 Capturing Contextuality by Super-Primitives
Generally, relying on contextuality-free and invariant prim-
itive embeddings to recognize the diverse primitive repre-
sentations in different compositions is evidently insufficient.
Therefore, we propose to learn K super-primitives to capture
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Figure 2: Method overview. (a) The main pipeline of our CCZSL model. Our model can be divided into three components, namely V , T
and P . V refers to the primitive representations extraction module, T indicates the transformation module and P includes all the primitive
embeddings. Specifically, in V , there are three encoders Ea, Eo and Ec which are used to extract attribute, object and composition represen-
tation, i.e., va, vo and vc. Fa and Fo are super-primitive selection module which select appropriate super-primitive, i.e., sa and so, based
on the extracted primitive representation. In T , we have three transformation networks φa, φo and φc, which incorporate contextuality into
primitive embeddings, ea and eo, to obtain the final primitive embeddings, v̂a, v̂o and v̂c. We finally compute the cross entropy losses of
the extracted representations with learned embeddings. Besides, we also propose a diversity loss to assist model in learning super-primitives.
(b) Illustration of knowledge distillation in t-th. The solid black line represents forward propagation, and the dashed orange line represents
back propagation. Notably, we copy new primitive embeddings to previous model and perform knowledge distillation on new categories. All
parameters in the previous model will not update with the gradient.

the similar contextuality, where K is smaller than the number
of original primitives. Taking the recognition of attribute as
an example, by combining the original attribute embedding
with the super-object embedding, we can modify the original
attribute embedding based on the contextuality provided by
super-object embedding. Similarly, the process of leveraging
super-attribute to recognize objects follows a similar way.

Actually, when recognizing a single primitive, we cannot
know in advance the super-primitive which another primitive
in the current composition belongs to. Therefore, we utilize
a super-primitive selection module to determine which super-
primitive the another primitive should belongs to. First, we
can calculate the correlations between the primitive and all
the super-primitives in the latent space as follows:

wp = softmax(f1(vp) · f2(Sp)
T ), (4)

where f1(·) and f2(·) are the projection layers which project
them into a latent space. Subsequently, we utilize the corre-
lation coefficient wp to obtain the final super-primitive:

sp = wp · Sp (5)

However, when the module is equipped with the ability to
select among K super-primitives, the model could potentially
learn to use only a subset of super-primitives for prediction.
Inspired by [Huynh and Elhamifar, 2020], we introduce a loss

function Ldiv to ensure that each of the K super-primitive
will be used for prediction:

Ldiv =
∑
k

(
∑
i

wi
k)

2, (6)

where the term k in the first sum indicates the correlation
coefficient between primitive representation and k-th super-
primitive. The term i in the second sum pertains the i-th sam-
ple in the current batch. This loss encourages the module F
to distribute its focus across all super-primitives.

With the assistance of super-primitives, we can reformulate
the calculation of similarity scores for primitives as follows:

s(va, (ea, so)) =
vTa
||va||

· φa(ea, so)

||φa(ea, so)||
, (7)

s(vo, (eo, sa)) =
vTo
||vo||

· φo(eo, sa)

||φo(eo, sa)||
, (8)

where sa and so represent the selected super-primitives.
φa(·) and φo(·) are the transformation networks for each
primitive, which transform the original primitive embedding
and the corresponding super-primitive embedding into the fi-
nal primitive embedding with the information of contextual-
ity.
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To learn super-primitives, we utilize cross-entropy loss to
guide the transformed primitive embeddings towards the cor-
responding primitive representation:

La = −
∑

a∈Ai
tr

log
exp(s(va, (ea, so))/τ)∑

a′∈Ai
tr
exp(s(va, (ea′ , so))/τ)

, (9)

Lo = −
∑

o∈Oi
tr

log
exp(s(vo, (eo, sa))/τ)∑

o′∈Oi
tr
exp(s(vo, (eo′ , sa))/τ)

. (10)

Additionally, we deploy the cross-entropy loss for recogniz-
ing composition:

Lc = −
∑

(a,o)∈Ci
tr

log
exp(s(vc, (ea, eo))/τ)∑

(a′,o′)∈Ci
tr
exp(s(vc, (ea′ , eo′))/τ)

,

(11)
where τ is the temperature. Ai

tr, Oi
tr and Ci

tr denote the la-
bel space of attribute, object and composition in the training
set from the i-th session respectively. Notably, Ci

tr only in-
cludes new compositions, while Ai

tr and Oi
tr encompass all

the primitives learned so far. Although jointly optimizing all
categories is often associated with error propagation, it may
even bring a slight improvement in this issue.

3.4 Mitigating Catastrophic Forgetting by Dual
Knowledge Distillation

We now introduce the first application of knowledge distil-
lation (KD) in continual learning, namely Learning without
Forgetting (LwF) [Li and Hoiem, 2017]. In brief, LwF takes
the model trained from the previous sessions to generate soft
labels exclusively for the old categories of the new data, and
these soft labels are then used as supervision for the current
model. The LwF loss is defined as follows:

LLwF =
Nt−1∑
n=1

πt−1
n (x) log πt

n(x), (12)

where N t−1 indicates all the categories before t-th session.
πt−1 and πt are the predictions made by the previous model
and the current model.

An illustration of KD between the model trained in previ-
ous sessions and the model trained in current session is shown
in Fig.2b. In this paper, we propose a dual knowledge distil-
lation which simultaneously mitigates catastrophic forgetting
and overfitting. Different from the LwF loss, we also apply
KD on the new categories. The reason lies in that, after train-
ing on new data, the parameters of main components tend to
bias towards the new categories. The dual KD can help the
model preserves old primitive embeddings while avoiding the
bias of old components towards the new categories. Here, we
introduce more details about the dual KD loss:

LKD =
Nt∑
n=1

ŷn log pn, (13)

where N t indicates the number of all categories up to t-th cur-
rent session, which can be attributes, objects or compositions.
pn denotes the prediction of the n-th category generated by

Algorithm 1 The optimization procedure of CCZSL.

Input: training sequence {D0
tr,D1

tr, . . . ,DT
tr},

learning rate γ,weight λ
Output: θ = {θE , θF , θφ, θS , θP }

1: randomly initialize parameters θ
2: for each session t ∈ [0, T ] do
3: if t > 0 then
4: copy old parameters as θold
5: add new primitive embeddings to θP
6: while not converaged do
7: copy new primitive embeddings from θP to θoldP
8: θ = θ − γ∇θ(LCZSL(Dt

tr; θ) +
λLKD(Dt

tr; θ
old, θ))

9: end while
10: else
11: while not converaged do
12: θ = θ − γ∇θLCZSL(Di

tr; θ)
13: end while
14: end if
15: end for
16: return θ = {θE , θF , θφ, θS , θP }

the model trained in the current session, and ŷn represents
the soft labels generated from the previous model:

ŷn =


δ(s(Vt−1, Tt−1(Pt−1))), 1 ≤ n ≤ N t−1

δ(s(Vt−1, Tt−1(Pt))), N t−1 < n ≤ N t

, (14)

where δ(·) represents softmax operator. For convenience, we
simplify the process of obtaining soft labels from previous
model into three components Vt−1(·), Tt−1(·) and Pt−1, as
shown in the Figure 2b. The subscript t− 1 indicates that the
component comes from the model trained after the (t− 1)-th
session. It is worth noting that when generating soft labels for
new categories, we use the primitive embeddings in the cur-
rent model and keep updating the new primitive embeddings.

3.5 Training and Inference
At the training phase, we formulate our final loss as follows:

LCZSL = (La + Lo) ∗ 0.5 + Lc + Ldiv, (15)

L = LCZSL + λLKD, (16)

During the inference phase, we gather the predictions of
primitives and compositions to obtain the final prediction:

c = argmax
c∈C

{s(va, (ea, so)) · s(vo, (eo, sa))

+s(vc, (ea, eo))}.
(17)

4 Experiments
4.1 Experiment Setting
Datasets. We conduct experiments on two widely adopted
datasets in CZSL, which are UT-Zappos [Yu and Grauman,
2014] and C-GQA [Naeem et al., 2021]. UT-Zappos is a fine-
grained shoes dataset which contains 50,025 images, with 16
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Method UT-Zappos (Session Number) C-GQA (Session Number)

0 1 2 Avg Final 0 1 2 3 4 5 Avg Final

AoP 42.21 20.34 16.25 26.27 +4.19 2.52 1.32 0.97 0.50 0.34 0.27 0.99 +2.30
SymNet 41.93 13.58 9.46 21.66 +8.80 3.42 2.28 1.15 0.65 0.63 0.52 1.44 +1.85

VisProdNN 43.59 17.65 2.78 21.34 +9.12 4.18 0.40 1.19 0.44 0.24 0.15 1.10 +2.19
SCEN 41.39 15.61 8.74 21.91 +8.55 3.43 0.64 0.75 0.26 0.11 0.11 0.88 +2.41
CANet 45.48 19.89 5.05 23.47 +6.99 5.17 2.49 1.90 1.17 1.27 1.00 2.17 +1.12

CCZSL 47.70 24.73 18.96 30.46 5.07 3.89 3.88 2.74 2.32 1.83 3.29

Table 1: Performance comparisons with state-of-the-art CZSL methods across UT-Zappos and C-GQA datasets. We reported the AUC in
each sessions, the average AUC across all the sessions and final improvement compared to other methods.

Dataset Session attr obj tr vl ts

UT-Zappos
0 8 6 24 7 9
1 4 3 27 10 14
2 4 3 32 13 13

C-GQA

0 233 363 2392 958 730
1 35 58 491 168 172
2 32 67 772 358 265
3 36 64 836 366 275
4 39 62 562 225 166
5 38 60 539 217 203

Table 2: Session splitting of UT-Zappos and C-GQA.

attributes and 12 objects. It comprises 83 seen compositions
and 15/18 (validation/test) unseen compositions. C-GQA is
a natural image dataset which contains 39,298 images, with
413 attributes and 764 objects. It includes 5,592 seen compo-
sitions and 1,040/923 (validation/test) unseen compositions.

Datasets Split In our CCZSL setting, we assume that intro-
ducing new primitives into each session is a prerequisite, fol-
lowed by the spontaneous introduction of new compositions
through the combination of new and old primitives. Whether
the composition is seen or unseen follows the same setting
as the original dataset. Specifically, We split UT-Zappos into
3 sessions and C-GQA into 6 sessions. Details of splits are
present in Table 2, including number of new attributes, new
objects, new training compositions, new validation composi-
tions and new testing compositions in each session. We al-
locate more primitives for the first session, aiming to let the
model learn a good initialization.

Evaluation Metrics The harmonic mean H between the top-
1 accuracy on seen S and unseen U classes is a widely used
evaluation protocol in GZSL, i.e., H = 2× S ×U/(S +U).
However, due to the model only accessing seen data during
training, there is a bias towards seen data during testing, lead-
ing to a decrease in the harmonic mean. To alleviate this is-
sue, adding a scalar bias to the prediction of unseen compo-
sitions to calibrate the final result has become a widely used
technique in CZSL. In this paper, we use the area under the
curve (AUC) of H with the scalar bias range from −∞ to ∞
to assess the CZSL performance. And we utilize the average
AUC across all the sessions to report the overall performance.

Implementation Details We use ResNet-18 pre-trained on
ImageNet to extract 512 dimensional vector, following pre-
ceding work [Wang et al., 2023]. The three encoder net-
works and transformation networks share the same structure
of two Fully Connected (FC) layers with ReLU, LayerNorm
and Dropout. The super-primitive selection module is imple-
mented with multi-head attention mechanism. The number
of super-primitives K is set to 4 for UT-Zappos and 20 for
C-GQA. The original primitive embeddings are learned from
scratch. For all datasets, we train the model using Adam op-
timizer with a learning rate of 5 × 10−5. The temperature
factor is 0.05 for all datasets.

4.2 Comparing with the State of the Art
Baseline. Since CCZSL is a newly proposed setting in CZSL
field, there does not exist any prior works that can be used
for comparison directly. Therefore, we conduct experiments
and compare our method with the following state-of-the-art
methods in CZSL: 1) AttrAsOp [Nagarajan and Grauman,
2018] views attributes as transformation operations rather
than high-dimensional embeddings. It employs various regu-
larization to optimize these operations. 2) SymNet [Li et al.,
2020] introduces symmetry into the attribute-object transfor-
mation and learns the transformation under the supervision
of group theory. 3) VisProdNN [Karthik et al., 2021] re-
visits visual-only methods and considers CZSL as a multi-
task problem, predicting objects and attributes separately. 4)
SCEN [Li et al., 2022] learns embedding of attributes and
objects in a siamese contrastive space and proposes a State
Transition Module to increase the diversity of training com-
positions. 4) CANet [Wang et al., 2023] proposes to recog-
nize attribute conditioned on objects and designs an attribute
hyper learner to generate flexible attribute embeddings.

Results and Analysis. Table 1 summarizes the results of
all the comparison methods. When comparing the results on
UT-Zappos, our method achieves the best AUC in each ses-
sion. Specifically, we obtain the highest AUC of 45.48%,
24.73% and 18.96% in each session, surpassing the second-
best methods by 2.22%, 4.39% and 2.71% respectively. For
the average AUC over all the sessions, we gain 4.19% im-
provement over the second-best method. Comparing the re-
sults on the more challenging dataset C-GQA, we achieve the
best AUC in the subsequent incremental sessions. Specifi-
cally, our model achieves the best AUC of 3.89%, 3.88%,
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Method UT-Zappos (Session Number) C-GQA (Session Number)
0 1 2 Avg 0 1 2 3 4 5 Avg

Baseline 46.23 19.86 7.33 24.47 4.74 2.58 1.70 1.10 1.16 0.92 2.03
+LKD 45.82 23.71 16.54 28.69 4.78 3.79 3.61 2.72 2.36 1.86 3.19

+Super-Primitive 44.98 24.26 19.37 29.56 4.85 3.95 3.79 2.79 2.43 1.75 3.26
+LDiv 47.70 24.73 18.96 30.46 5.07 3.89 3.88 2.74 2.32 1.83 3.29

Table 3: Ablation analysis on the main contributions of our method.

2.74%, 3.32% and 1.83% in each subsequent incremental ses-
sions respectively. At the same time, we gain improvements
of 1.40%, 1.98%, 1.57%, 1.05% and 0.83% compared to the
second-best methods. For the average AUC over all the ses-
sions, we gain a 1.12% improvement over the second-best
method. We attribute the success of the proposed approach
to the super-primitives and the dual KD. The improvement
in the first session illustrates the effectiveness of our super-
primitives. By introducing contextuality into invariant em-
beddings, we achieve improved recognition of diverse prim-
itives which can further improve the accuracy of predicting
compositions. Subsequent improvements highlight the im-
portance of mitigating catastrophic forgetting in this setting.
Our proposed dual KD can not only preserve old primitive
embeddings, but also maintain the characteristics of old net-
work which can significantly improve the performance.

4.3 Ablation Analysis
Impact of main components. To validate the effective-
ness of our method, we conduct ablation analysis in Table 3.
Specifically, Baseline is a plain pipeline mentioned in Section
3.2. Then we add the dual KD loss LKD to mitigate catas-
trophic forgetting. As we can see, dual KD can effectively
mitigate catastrophic forgetting. To help the model better un-
derstand the contextuality, we introduce super-primitive into
the recognition of primitive which improves the average AUC
on both datasets. At last, we add diversity loss Ldiv to avoid
the model from finding shortcuts, which can further improve
overall performance.

Figure 3: Impact of λ on UT-Zappos and C-GQA.

Impact of λ. The scale of λ can control the balance between
learning new knowledge and keeping old knowledge. We can
observe that the best average AUCs for both UT-Zappos and
C-GQA are achieved when λ equals 0.5 and 1, respectively.
This is mainly because C-GQA contains much more and di-
verse compositions. The significant differences between new
and old compositions results in the need for more constraints

on old knowledge in C-GQA.

UT-Zappos C-GQA
Original KD 27.52 2.56

Our KD 28.69 3.19

Table 4: Impact of dual knowledge distillation.

Impact of dual knowledge distillation. We conduct experi-
ments to examining the effects of original KD and dual KD.
In Table 4, we report the average AUC across all the sessions.
We can observe that dual KD can better prevent the perfor-
mance degradation caused by the model excessively biasing
towards the new categories. But the original KD can only
maintain the knowledge of old primitive embeddings.

Primitives Compositions UT-Zappos C-GQA
× × 23.41 2.00
✓ × 24.47 2.03
✓ ✓ 21.96 1.53
× ✓ 21.05 1.51

Table 5: Impact of joint optimization.

Impact of joint optimization. We report the average AUC
of joint optimizing all primitives or compositions. ✓ indi-
cates the use of joint optimization for the corresponding cate-
gory. We can observe that, jointly optimizing old and new
primitives may enhance discrimination between primitives,
resulting in improved performance. However, the number of
compositions is greater than the number of primitives and the
inter-compositions differences are smaller, which will lead to
error propagation during joint optimization process.

5 Conclusion
In this paper, we propose a practical and challenging setting
called CCZSL, which requires the model to recognize unseen
compositions composed of learned primitive set while con-
tinually increasing the size of learned primitive set. To solve
contextuality issue, we propose to learn super-primitives to
capture the similar contextuality in part of compositions,
which is beneficial for recognizing the various primitives.
Then, we propose a dual knowledge distillation loss to bet-
ter preserve old knowledge by performing knowledge distil-
lation on new categories. Extensive experiments demonstrate
the superiority of our proposed method.
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