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Abstract
Adversarial robustness and interpretability are
longstanding challenges of computer vision. Deep
neural networks are vulnerable to adversarial per-
turbations that are incomprehensible and imper-
ceptible to humans. However, the opaqueness
of networks prevents one from theoretically ad-
dressing adversarial robustness. As a human-
comprehensible approach, the frequency perspec-
tive has been adopted in recent works to investi-
gate the properties of neural networks and adversar-
ial examples. In this paper, we investigate the fre-
quency properties of feature extraction and analyze
the stability of different frequency features when
attacking different frequencies. Therefore, we pro-
pose an attack method, F -PGD, based on the pro-
jected gradient descent to attack the specified fre-
quency bands. Utilizing this method, we find many
intriguing properties of neural networks and adver-
sarial perturbations. We experimentally show that
contrary to the low-frequency bias of neural net-
works, the effective features of the same class are
distributed across all frequency bands. Meanwhile,
the high-frequency features often dominate when
the neural networks make conflicting decisions on
different frequency features. Furthermore, the at-
tack experiments show that the low-frequency fea-
tures are more robust to the attacks on different fre-
quencies, but the interference to the high frequen-
cies makes the network unable to make the right de-
cision. These properties indicate that the decision-
making process of neural networks tends to use as
few low-frequency features as possible and cannot
integrate features of different frequencies.

1 Introduction
Although deep neural networks (DNNs) have shown consid-
erable promises in various visual applications, these neural
networks are actually quite brittle. In particular, the models
trained using standard methods are vulnerable to adversar-
ial perturbations [Szegedy et al., 2014; Goodfellow et al.,
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Figure 1: (a) The standard trained neural networks have a low-
frequency bias, but the retrained networks indicate that all frequency
bands have rich effective features. (b) 1: original sample; 2: pertur-
bations on frequency domain; 3: adversarial perturbations; 4: ad-
versarial example. (c) PGD attacks on sample-(b). (d) Attacks on
different frequency bands. The low-frequency features are more ro-
bust to attacks on different frequencies, but attacks at all frequencies
can seriously affect high-frequency features.

2015]. However, the lack of interpretability of neural net-
works leads to the inability to address these drawbacks theo-
retically, which makes us eager to understand their feature ex-
traction and decision-making processes. Although many spe-
cialized methods have been proposed to find the decision ba-
sis of neural networks in recent years, such as feature visual-
ization [Erhan et al., 2009; Yosinski et al., 2015] and attribu-
tion methods [Zeiler and Fergus, 2014; Simonyan et al., 2014;
Springenberg et al., 2015; Smilkov et al., 2017], there is still a
huge gap in understanding the feature extraction and decision
process.

Besides, data augmentation [Cubuk et al., 2019; Zhong et
al., 2020] can improve the robustness of neural networks in
many aspects, but these methods are not defensive against ad-
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versarial attack methods. In practice, one can often generate
imperceptible perturbations of the input images and cause the
model to make highly-confident but erroneous predictions.
The vulnerability of models trained using standard methods
to adversarial perturbations makes it clear that the paradigm
of adversarially robust learning differs from the classic learn-
ing setting. Consequently, various adversarial defense meth-
ods have been proposed, among which adversarial training
has proven to be the most effective means of adversarial de-
fense. However, adversarial training consumes considerable
computational resources and can not fully address adversarial
robustness.

Many works have interpreted the adversarial examples
from aspects such as networks themselves or datasets to un-
derstand them deeply. Goodfellow et al. [2015] argue that ad-
versarial examples are due to the high-dimensional linear na-
ture of neural networks. Ilyas et al. [2019] thought that adver-
sarial examples are non-robust features, the models can still
have good performance and generalizations by only learning
the non-robust features but will become vulnerable to vari-
ous attacks. Furthermore, the frequency perspective has been
adopted in recent works to investigate their properties. Some
works [Rahaman et al., 2019; Xu et al., 2019; Yin et al., 2019;
Xu and Zhou, 2021] found that DNNs favor low frequencies
and learn them first. Moreover, Wang et al. [2020] thought
that DNNs also could exploit the high-frequency components
that are not perceivable to humans, and these high-frequency
features would improve the generalization of the network.
While it is a consensus that adversarial perturbations are high-
frequency noise, the recent work [Maiya et al., 2021] shows
that adversarial examples are neither in high-frequency nor in
low-frequency components, but are simply dataset dependent.
These beg a natural question:

How do neural networks make classification decisions us-
ing features of different frequencies, and will robust low-
frequency features improve the adversarial robustness?

Consequently, we investigate the frequency properties of
feature extraction and analyze the stability of different fre-
quency features when attacking different frequencies. There-
fore, we propose an attack method based on the projected gra-
dient descent to attack the specified frequency bands. Our
experiments are mainly conducted on the ImageNet dataset
[Deng et al., 2009], which has a wider frequency range and is
closer to the real world observed by human eyes than MNIST
and CIFAR10 datasets. Our major contributions are:

• The information contained in different frequency bands
of images has no essential difference, and the accuracies
of most classes in different frequency bands are almost
similar to that of the full frequency band;

• For the standard training network, low-frequency fea-
tures are the basis for classification decisions. When the
networks can not make a decision using low-frequency
features, it will progressively use higher-frequency fea-
tures;

• When the low-frequency feature and high-frequency
feature conflict, the high-frequency feature will play a
dominant role;

• The low-frequency features have high adversarial ro-
bustness, but the attacks of all frequencies will cause
great interference to the high-frequency features, so the
network cannot show adversarial robustness.

2 Related Work
2.1 Robustness
Robustness is a long-standing and challenging goal of com-
puter vision. Although data augmentation can improve the
robustness of neural networks in many aspects, it cannot de-
fend against adversarial examples. Recent works have proven
that adversarial training is an effective method of defending
against adversarial attacks.

Adversarial Robustness. Szegedy et al. [2014] discover
neural networks are vulnerable to adversarial examples, var-
ious adversarial attack algorithms [Goodfellow et al., 2015;
Carlini and Wagner, 2017; Madry et al., 2018; Guo et al.,
2019b; Su et al., 2019; Croce and Hein, 2020] have been
proposed to investigate the vulnerability of machine learning
models. Adversarial perturbations are almost imperceptible
changes to the input that cause neural networks to make er-
roneous predictions. Goodfellow et al. [2015] proposed the
Fast Gradient Sign Method (FGSM) to generate perturbations
with a single gradient step. It is an attack for an l∞-bounded
adversary and computes an adversarial example as

x+ ϵ · sign (∇xL(x, y;θ)) , (1)

where sign operation makes perturbations meet the l∞-norm
bound as soon as possible.

The more powerful adversary is the multi-step variant,
which is essentially Projected Gradient Descent (PGD) [Car-
lini and Wagner, 2017] on the negative loss function

xt+1 = clipxt,ϵ

(
xt + α · sign (∇xL(x, y;θ))

)
, (2)

where

clipx,ϵ(·) = min (max (·,x− ϵ) ,x+ ϵ) . (3)

PGD is a very stable and widely used adversarial attack
method, and our subsequent analyses are based on PGD-style
attacks.

Adversarial Training. The adversarial training method has
proven to be an effective method of defending against adver-
sarial attacks. It was first proposed by [Goodfellow et al.,
2015], which is the most successful approach for building ro-
bust models so far for defending adversarial examples. Ad-
versarial training can be formulated as solving a robust opti-
mization problem [Shaham et al., 2015]

min
θ

E
(x,y)∼D

[
max

δ
L(x+ δ, y;θ)

]
, (4)

where L(·, ·; ·) is the chosen loss function and θ denotes the
parameters of the neural network; the data pair (x, y) is sam-
ple from the data distribution D and δ denotes the correspond-
ing adversarial perturbation. The inner maximization is ap-
proximated by adversarial examples generated by various ad-
versarial attack methods.
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2.2 Frequency Perspective
According to the convolution theorem, convolutional neural
networks (CNNs) have the natural ability to separate different
frequency information. And various experiments [Geirhos
et al., 2019; Brendel and Bethge, 2019] have demonstrated
that neural networks have different sensitivities to various
frequency components of the input image, standard CNNs
make their predictions rely on the local textures rather than
long-range dependencies encoded in the shape of objects.
Some works [Rahaman et al., 2019; Xu et al., 2019] find
empirical evidence of a spectral bias that lower frequencies
are learned first and then the higher frequencies are captured
slowly. Zhang et al. [2023] further argue that frequency bias
is also data-dependent. Different classes or samples have dif-
ferent frequency biases, and the bias is related to the scale of
the image classification target.

The frequency perspective has also been employed in
the analysis of adversarial examples. For a long time, it
was thought that adversarial perturbations were mostly high-
frequency perturbations, but recent work [Maiya et al., 2021]
has demonstrated that adversarial perturbations are neither
in high-frequency nor in low-frequency components but are
dataset dependent. Other experiments [Guo et al., 2019a;
Sharma et al., 2019; Tancik et al., 2020; Long et al., 2022]
have found that training methods that improve the robust-
ness of the network, such as data augmentation or adversarial
training, make the neural networks prefer lower frequencies.
And this also leads to the opinion that the robustness of low-
frequency features is higher than that of high-frequency fea-
tures.

3 Preliminaries
Let us consider a standard classification task with an under-
lying data distribution D over pairs of examples x ∈ X
and corresponding labels y ∈ Y . We also assume that we
are given a suitable loss function L(x, y;θ), for instance the
cross-entropy loss for a neural network. As usual, θ is the set
of model parameters. The goal is to find model parameters θ
that minimize the risk

min
θ

E
(x,y)∼D

[L(x, y;θ)] . (5)

3.1 Statistics and Features
Before moving on to the Fourier perspective, let us consider
what information a neural network needs to extract. Accord-
ing to the Information Bottleneck (IB) [Tishby et al., 2000]
neural networks extract relevant information that an input ran-
dom variable X contains about an output random variable Y ,
the relevant information is defined as the mutual information
I(X;Y ). In statistical terms, the relevant information of X
with respect to Y , denoted by T , is a minimal sufficient statis-
tics of X with respect Y . In this case, Y implicitly determines
the relevant and irrelevant features in Y . Since exact min-
imal sufficient statistics only exist for special distributions,
the information bottleneck method [Tishby et al., 2000] re-
laxed this optimization problem by allowing the map to be
stochastic, defined as an encoder P (T |X), and capture as
much as possible of I(X,Y ), not necessarily all of it. Due to

(a) F -PGD, F ∈ [15, 30] (b) F -PGD, F ∈ [90, 105]

(c) F -PGD-L, F ∈ [15, 30] (d) F -PGD-L, F ∈ [90, 105]

Figure 2: Perturbations and their spectrums of Fourier-based PGD
attack. F -PGD always passes information into other frequencies,
but F -PGD-L will not.

the limited capacity of neural networks, P (T |X) will always
compress the information, the Equation 5 will be implicitly
equivalent to the information bottleneck problem. And it is
formulated by the following optimization problem with the
Markov chain: Y → X → T :

min{I(X;T )− βI(T ;Y )} (6)

where the hyperparameter β controls the information loss ra-
tio.

In practice, due to the limited model capability and dataset,
it can only guarantee to extract the statistic T related to the
output Y from the input data, but not to the classified objects
OY in the images. In other words, there are no constraints
to make the networks learn to distinguish between various
statistics and human-comprehensible robust features (or con-
cepts) and tends to learn to use less information for classifica-
tion purposes. This is consistent with subsequent experiments
showing that the networks tend to use a small amount of low-
frequency information to make decisions.

3.2 Fourier-Based PGD Attack
To evaluate the effect of the adversarial attack on different fre-
quencies, we use Fast Fourier Transform (FFT) to constrain
the frequencies of adversarial perturbations. Let F and F−1

represent the forward Fast Fourier Transform and its corre-
sponding inverse.

Our algorithm is based on the PGD and removes specific
frequency components of the on perturbation δt by applying
a mask to its frequency spectrum FFT(δt), and reconstruct
the gradient by applying the IFFT on the masked spectrum.
Specifically, the mask, M ∈ {0, 1}d×d, is a two-dimensional
matrix, and the mask operation is done by element-wise prod-
uct ⊙. In our work, we consider the l∞-norm and the algo-
rithm that attack f ∈ F frequencies performs T -step attack
with a small step size α = ϵ/T :

δt = ∇xtL(xt, y;θ) (7)

δtf = F−1(F(δt)⊙M) (8)

xt+1 = clipx,ϵ
(
xt + α · sign(δtf )

)
. (9)

Note that the non-linear sign and clip operators alias some
passed information into other frequencies, and so the pertur-
bations are not strictly contained in the frequency band, as
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(a) original (b) F ∈ [0, 1] (c) F ∈ [0, 2] (d) F ∈ [0, 5] (e) F ∈ [0, 10] (f) F ∈ [0, 25] (g) F ∈ [15, 30]†

(h) F ∈ [60, 75] (i) F ∈ [60, 75]† (j) F ∈ [105, 120]† (k) F ∈ [125,∞]† (l) F ∈ [65,∞] (m) F ∈ [65,∞]† (n) F ∈ [15,∞]†

Figure 3: Information of the image in different frequency bands. It is difficult to recognize images lacking low frequencies or in narrower
frequency bands for humans, but neural networks can easily extract information for classification tasks. †: normalized.

Low-pass High-pass Band-pass

F Pre-trained Retrained F Pre-trained Retrained F Pre-trained Retrained
Clean F∈-PGD Clean F∈-PGD F /∈-PGD Clean F∈-PGD Clean F∈-PGD F /∈-PGD Clean F∈-PGD Clean F∈-PGD F /∈-PGD

0, 145 73.2 0.1 73.2 0.2 52.5 145, 159 0.1 58.3 15.9 0.0 0.0 120, 159 0.1 16.6 41.5 0.0 0.0
0, 125 73.2 0.1 73.2 0.2 22.4 125, 159 0.1 23.3 38.5 0.0 0.0 105, 159 0.1 4.9 55.8 0.0 0.0
0, 105 72.8 0.2 72.9 0.2 9.6 105, 159 0.1 4.5 55.8 0.0 0.0 105, 120 0.1 6.8 52.8 0.0 0.0

0, 85 69.4 0.3 72.5 0.2 2.4 85, 159 0.2 1.2 62.5 0.0 0.0 90, 105 0.2 3.9 56.2 0.0 0.0
0, 65 63.1 0.5 72.1 0.3 1.7 65, 159 0.4 0.6 65.2 0.0 0.0 75, 90 0.2 3.0 57.6 0.0 0.0
0, 45 53.1 1.3 70.6 0.2 0.8 45, 159 0.8 0.4 68.1 0.0 0.1 60, 75 0.2 3.6 58.7 0.0 0.0
0, 25 29.3 5.0 66.5 0.2 0.3 25, 159 4.3 0.2 70.6 0.0 6.8 45, 60 0.2 5.1 59.5 0.0 0.0
0, 15 11.4 17.5 58.6 0.3 0.0 15, 159 19.9 0.2 71.5 0.0 25.3 30, 45 0.3 5.2 59.8 0.0 0.0
0, 10 4.6 31.1 52.0 0.5 0.0 10, 159 39.4 0.2 72.1 0.0 42.9 15, 30 0.4 4.8 59.3 0.0 0.0

0, 5 1.2 50.6 34.9 0.7 0.0 5, 159 57.1 0.1 72.5 0.0 56.5 0, 15 11.4 17.5 58.6 0.3 0.0
0, 2 0.5 65.5 13.0 0.5 0.0 2, 159 67.7 0.1 72.9 0.1 66.7 - - - - - -
0, 1 0.4 68.8 6.8 0.4 0.1 1, 159 70.1 0.1 73.1 0.1 68.2 - - - - - -

Table 1: Comparison of full-frequency pre-trained and retrained models at different rL. These experiments show that different frequency
bands of image data have a large number of effective features. And training a network using only the low-frequency bands does not improve
robustness but decreases it. Clean: The pre-trained models are tested on the full band and the retrained models are tested on the passed bands.

shown in Fig 2. These non-linear operations lead to large ef-
fects in many cases, so we relax the l∞-norm by restricting
the mean of perturbation to be equal to α at each update:

xt+1 = xt + α ·
card(gt

f )

∥gt
f∥1

· gt
f (10)

where card(·) count the number of matrix elements.
We refer to the standard method as F -PGD and the sign-

and clip-free method as F -PGD-L in the rest of the paper.
Besides, the F∈-PGD denotes an attack on frequencies be-
longing to F ; the F /∈-PGD denotes an attack on frequencies
that do not belong to F . F -PGD-L also can generate imper-
ceptible adversarial examples, but it is more pronounced than
F -PGD at lower frequencies.

4 Frequency Properties of Feature Extraction
To analyze the frequency properties of the feature extraction,
we need to evaluate the performance of the networks in differ-
ent frequency bands. Furthermore, we analyze the frequency
properties of the networks over the entire dataset as well as
for each class. Therefore, we transform the images to the
frequency domain and then use ideal low-pass filters (LPF),
high-pass filters (HPF), and band-pass filters (BPF) to remove
specified frequency information, respectively. Then all the
experiments are conducted on ImageNet [Deng et al., 2009].

The tested models include both CNNs and transformer-based
networks, such as ResNets [He et al., 2016], MobileNetV1
[Howard et al., 2017], MobileNetV3 [Howard et al., 2019],
EfficientNets [Tan and Le, 2019], ViT [Dosovitskiy et al.,
2021] and Swin [Liu et al., 2021]. All the tested images are
at the resolution of 224× 224.

Since directly removing frequencies from the images
would lead to inconsistent distribution between test and train-
ing data, we preprocess the data with ideal low-pass, high-
pass, and band-pass filters and retrain the MobileNetV1 ×1.0
model on ImageNet from scratch, respectively.

4.1 Distribution of Features
We first test the distribution of features in different frequency
bands (bandwidth of 15) using band-pass filters. As shown
in Table 1 and Figure 1a, all models retrained with band-pass
filters achieve more than 50% accuracy in the frequency range
[0,120] (note that the information decreases rapidly when the
filter radius exceeds 112). There is no essential difference in
each band for the classification models, which indicates that
each band is rich in effective features.

Then, we test the feature distribution of each class. As
shown in Figure 4, most of the classes have similar accu-
racy in different frequency bands, rather than different classes
achieving different accuracy in different frequency bands. It
is only significantly different from the accuracy achieved in
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(b) Comparison between different frequency bands

Figure 4: Accuracy of the classes in different bands. The accuracy of the classes is similar at high- or low-frequency bands, most classes
either achieve high accuracy or low accuracy in all bands.
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Figure 5: Frequency sensitivity analysis. It seems that low-
frequency components are more important than high-frequency
components for standard-trained models.
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Figure 6: Low-frequency biased classes in MobileNetV3-Large.
There are 115 classes that achieve more than 70% accuracy in the
frequency band of [0, 30].

the full frequency band. We hold the opinion that these com-
ponents of the same feature at different frequencies are re-
dundant, and the neural networks do not need to extract the
information from all frequency bands.

As shown in Figure 3, images with a frequency band-
width of 15 are also indistinguishable to humans. This further
demonstrates that the classification task does not require the
models to extract robust features and can rely only on the i.i.d
statistics to achieve high accuracy.

4.2 Importance of Low-Frequency Features
As shown in Figure 5, with the increase of high-frequency
information, the accuracy of the models increases gradually;
With the absence of low-frequency information, the accuracy
of the models decreases sharply, and the models cannot work
at all when some low-frequency information is missing. In
addition, the higher-accuracy network performs better in the
low-frequency band than other networks. This indicates that
the classification models rely more on low-frequency com-
ponents and are vulnerable to differences in data distribution
due to low-frequency loss. And the models cannot rely on
high-frequency information alone to make correct classifica-
tions.

On the one hand, the retrained models are significantly
higher than the standard trained models at most frequencies,
as shown in Table 1. In particular, the retrained model achieve
52% top-1 accuracy at rLP = 10, which is much higher than
the 4.6% top-1 accuracy of the standard training model. And
it achieve 72.1% with only 1% accuracy lower than the full-
frequency trained model at rLP = 65, which also indicates
that for the standard training models, high frequencies are less
important for classification prediction.

On the other hand, the gap between the accuracy of the
network retrained with high-frequency information and the
standard trained network is even more prominent. These re-
sults indicate that the importance of low-frequency informa-
tion does not show up in the features it contains but in the
low-frequency bias. The lack of low frequencies will have a
huge impact on the image structure and the distribution of the
data set. For the standard trained networks, the low-frequency
components are the basis for further utilization of the high-
frequency components.

4.3 Importance of High-Frequency Features
As shown in Table 1 and Figure 6, high-frequency features
seem complementary to low-frequency features to achieve
better generalization. However, the adversarial attack results
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Figure 7: Low-frequency vs. High-frequency Features. When the low-frequency features and high-frequency features conflict, the higher-
frequency feature will play the dominant role.

show that high-frequency features are more vulnerable to ad-
versarial perturbations, causing networks to fail to make cor-
rect decisions, as shown in Figure 1c and 1d.

The significant impact of perturbed high-frequency fea-
tures on decision-making indicates that high-frequency fea-
tures are no less important than low-frequency features. We
hypothesize that the neural network will preferentially select
low-frequency features as the basis for its decision, and when
it cannot decide, it will gradually use higher-frequency fea-
tures. When the network needs to use both low-frequency and
high-frequency features, high-frequency features are more
important to the decision result than low-frequency features.
Furthermore, our experimental results support this hypothe-
sis.

4.4 Low-Frequency vs. High-Frequency Features
As shown in Figure 6, in addition to some classes that can
be used as decisions only depending on low-frequency fea-
tures, other classes require the participation of low- and high-
frequency features. In the experiment, we found that the
accuracy of some classes will gradually decrease with the
addition of high-frequency features, especially among some
classes with the same low-frequency features. We believe that

the conflict between low-frequency and high-frequency fea-
tures causes this, and it is the high-frequency features that
ultimately play a decisive role.

Conflicts between high-frequency and low-frequency fea-
tures will appear in similar classes on the ImageNet, such
as between different species of spiders. As shown in Fig-
ure 7, networks using high- and low-frequency features al-
ways produce different predictions in classes between 72 and
77. These samples are always predicted to be class 73 at
low frequencies and gradually classified into the correct class
with the increase of high-frequency information. This in-
dicates that these classes have the same low-frequency fea-
tures and that these features belong to class 73. However,
the high-frequency features will dominate the final classifi-
cation results. The high-frequency feature-dominated classi-
fication results extracted by the standard trained models are
also shown in the adversarial attack, which we analyze in the
next section.

5 Frequency-Based Attack
To verify the effectiveness of adversarial attacks on differ-
ent frequencies, we performed frequency attacks on both the
standard-trained and the retrained models on different fre-
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classification results will still be dominated by high-frequency features, which are easily attacked by all frequencies.
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Figure 9: F -PGD attack on MobileNetV3-Large. The adversar-
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quency bands. The results of the attacks are shown in Table 1,
the models retrained in the low-frequency band are less stable
than the standard trained models when attacked by F∈-PGD.
This indicates that models forced to be trained with low fre-
quencies do not become robust. Similarly, models trained us-
ing only high frequencies or using a certain frequency band
are also less robust than the standard trained models. No-
tably, the attack using F /∈-PGD shows that the models are
not robust to the features in frequency bands that do not ap-
pear during training.

Further, we examined the stability of different frequency
features under adversarial attacks, as shown in Figure 9, low-
frequency features showed some stability under attacks at dif-
ferent frequencies. However, high-frequency features were
more affected under both low-frequency and high-frequency
attacks, and the influence of high-frequency features domi-
nated the final classification results.

5.1 Attack on Low-Frequency Features
As shown in Figure 9, low-frequency features have better sta-
bility than high-frequency features, which explains why some
blurring operations can be effective against attacks. As shown

in Figure 6, many classes in the networks that can be correctly
classified by ultra-low-frequency information alone. How-
ever, such stable low-frequency features could not improve
the adversarial robustness of networks.

We perform F -PGD-L attacks on low-frequency depen-
dent samples at different frequency bands. As shown in Fig-
ure 8, low-frequency features have some robustness against
attacks of various frequencies, and the networks could make
correct decisions when using only low-frequency features.
Moreover, the attacks on the low-frequency bands will affect
the features of all frequency bands, while attacks on the high-
frequency band will hardly interfere with the low-frequency
features. The effect of adversarial attacks on low-frequency
bands is higher than on high-frequency bands. The disturbed
high-frequency features dominate the networks to make the
final wrong decision. This indicates that stable low-frequency
features cannot improve the robustness, and the model cannot
unify low-frequency and high-frequency features.

6 Conclusion
In this paper, we analyzed the feature extraction and adver-
sarial robustness from the Fourier perspective. We experi-
mentally show that low- and high-frequency features are both
important for decision-making. Low-frequency features are
the basis for classification decisions, but high-frequency fea-
tures often dominate when the neural networks make con-
flicting decisions on different frequency features. The at-
tack experiments show that the low-frequency features are
more robust to the attacks on different frequencies. However,
since the higher frequency features dominate the decision-
making and are very vulnerable to interference from vari-
ous frequency attacks, the robust low-frequency features will
not improve the adversarial robustness of CNNs. Next, we
will explore whether reducing the sensitivity of networks to
high-frequency features and improving the use of broader fre-
quency features will improve the robustness of the network in
future research.
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