
AK4Prompts: Aesthetics-driven Automatically Keywords-Ranking
for Prompts in Text-To-Image Models

Haiyang Zhang† , Mengchao Wang† , Shuai He† , Anlong Ming∗

School of Computer Science (National Pilot Software Engineering School),
Beijing University of Posts and Telecommunications

{zhhy, wangmengchao, hs19951021, mal}@bupt.edu.cn

Abstract
Current text-to-image synthesis (TIS) models have
demonstrated the ability to generate high-fidelity
images based on textual prompts. However, the ef-
ficacy of these models heavily relies on the key-
words present in the prompts, and there is a dearth
of objective analysis regarding how different key-
words impact the ultimate quality of generated
results. Therefore, manual evaluation becomes
necessary but limited and inefficient to ascertain
the role played by keywords. In this paper, we
propose automated keywords-ranking for prompts
(AK4Prompts), a keyword evaluation model based
on mainstream TIS models that explicitly quantifies
the multidimensional impact of various keywords
on image generation based on prompts. To enable
personalized keyword evaluation based on prompt
content, we propose decoupling the latent repre-
sentations of keywords and prompts in TIS mod-
els, followed by integrating the semantic features of
prompts into keywords. For quantitative and mul-
tidimensional evaluation, we align the fused fea-
tures of keywords using HPSv2, aesthetic score,
and CLIP score, each representing distinct factors
contributing to keyword impact. Our AK4Prompts
can flexibly and automatically select the keywords
that best match the original prompt based on in-
dividual user preferences. Extensive experimental
results show the superiority of AK4Prompts to im-
prove the quality of generated images significantly
over strong baselines. Our approach not only en-
hances usability and user experience but also ad-
dresses the current gap in automated analysis and
evaluation of keyword effects. Our code is avail-
able at https://github.com/mRobotit/AK4Prompts.

1 Introduction
Text-to-Image Synthesis (TIS) is a highly advanced and ex-
tensively utilized technique in generative Artificial Intelli-
gence, aimed at generating realistic images based on textual
input [Zhang et al., 2023]. Recently, with the advancement in
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the modeling capabilities of large models, TIS is undergoing a
revolution. Cutting-edge text-to-image diffusion models like
DALLE [Ramesh et al., 2021] and Latent Diffusion Models
(LDMs), such as Stable Diffusion [Rombach et al., 2022],
have emerged as pioneers in image generation, leveraging
training data at a web scale. Additionally, Consistency mod-
els [Song et al., 2023], a new class of generative models ca-
pable of producing high-quality samples through a single net-
work evaluation, have inspired further advancements. Build-
ing upon this concept, Luo et al. [Luo et al., 2023a] propose
Latent Consistency Models (LCMs), which enable rapid in-
ference with minimal steps on any pre-trained LDM and sig-
nificantly enhance the speed of TIS. However, the image gen-
eration quality in these existing models relies heavily on the
sophisticated design of keyword-based text prompts [Zhong
et al., 2023]. This reliance stems from the training data qual-
ity, necessitating detailed prompts to produce high-quality
images [Betker et al., 2023]. Determining the most effec-
tive keywords for a given prompt content often requires iter-
ative experimentation and research within online communi-
ties [Oppenlaender, 2022]. In real-world scenarios, individu-
als lacking expertise often encounter challenges in selecting
appropriate keywords for composing detailed prompts. This
necessity leads to subjective assessments of the impact and
quality of chosen keywords through repeated generation at-
tempts, resulting in significant time and resource losses.

Prompt engineering is an emerging research field focused
on developing more effective prompts for deep generative
models. In the TIS community, a common practice in-
volves investigating the effects of various keywords. Best-
Prompt [Pavlichenko and Ustalov, 2023] initially explores
these effects by employing human evaluation to assess a lim-
ited number of text prompts and keywords, ultimately select-
ing a set of exceptional keywords. However, this approach
has inherent limitations and inefficiencies, posing challenges
in comprehensively and objectively exploring the impact of
all keywords on generated results. Furthermore, image gen-
eration is jointly controlled by the interaction between key-
words and basic prompt content. However, this study only
considers the individual influence of keywords, neglecting
potential variations in their effects across different prompt
categories. Another prevalent approach involves fine-tuning
a language model for TIS prompt generation using com-
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Original Prompt: “vase of mixed flowers.”

Decrease Aesthetic Perference Increase

Decrease HPS Perference Increase

Decrease CLIP Perference Increase

Figure 1: The evolution of images is facilitated by customizing keyword preferences with AK4Prompts, leveraging the SDXL-Turbo model.

plex prompts datasets, such as MagicPrompt 1 and Beauti-
fulPrompt [Cao et al., 2023]. However, these methods pri-
marily focus on completing or rewriting prompts, potentially
altering the content entities. Moreover, the generated prompts
often lack flexibility and exhibit excessive rigidity.

In this paper, we propose a keyword evaluation model
named AK4Prompts that can explicitly quantify the multidi-
mensional impact of different keywords on the quality of gen-
erated images in response to user prompts. Our AK4Prompts
automatically selects the keywords that best match the origi-
nal prompt based on users’ preferences, effectively enhancing
the quality of the generated images. Our method preserves the
content of the original prompt and allows users to customize
their final outputs, thus overcoming the limitations of pre-
vious approaches. Meanwhile, it significantly alleviates the
complexity of prompt design and the difficulty of selecting
keywords, thereby saving users considerable trial and error
time.

Figure 1 illustrates the evolution of images generated by
setting different degrees of specific preferences. In summary,
the main contributions of this study are as follows:

• We curate a high-quality set of keywords and develop an
evaluation framework based on established TIS models.
This framework enables automated and efficient assess-
ment of these keywords, eliminating the need for manual
intervention.

• We propose AK4Prompts, a keyword evaluation model
that can explicitly quantify the multidimensional impact
of different keywords on the quality of images generated
by TIS models based on user prompts.

1https://huggingface.co/Gustavosta/MagicPrompt-Stable-
Diffusion

• Our approach demonstrates the judicious selection of the
most appropriate keywords based on user prompts and
preferences. Extensive experimental results showcase its
superiority over strong baselines.

2 Related Work
2.1 Text-to-Image Synthesis (TIS)
TIS is a multi-modal task involving the generation of im-
ages based on textual inputs. In the early years, popu-
lar image generation tasks were mainly based on Genera-
tive Adversarial Network (GAN) [Goodfellow et al., 2014;
Reed et al., 2016]. More recently, diffusion models [Ho
et al., 2020; Song et al., 2020; Sohl-Dickstein et al., 2015;
Dhariwal and Nichol, 2021] have achieved remarkable re-
sults. Subsequently, LDMs (e.g., Stable Diffusion [Rombach
et al., 2022]) apply a diffusion model in the latent space us-
ing a pre-trained autoencoder for efficient training and in-
ference. This development has resulted in the emergence
of high-performance generative models trained on billions of
data points, including DALLE-2 [Ramesh et al., 2022], Ima-
gen [Saharia et al., 2022], Imagic [Kawar et al., 2023], and
SDXL [Podell et al., 2023]. Among these models, the Sta-
ble Diffusion series stands out as open-source models with
an active user community.

Recently, LCMs [Luo et al., 2023a], LCM-LoRA [Luo
et al., 2023b], and SDXL-Turbo [Sauer et al., 2023] have
emerged as solutions to the slow sampling issue in image gen-
eration, inspired by Consistency Models [Song et al., 2023].
LCM-LoRA serves as a universal, training-free acceleration
module. It can be directly integrated into various Stable Dif-
fusion fine-tuned models or LoRAs [Hu et al., 2021], facil-
itating fast inference with minimal steps. This allows us to
efficiently infer and explore a large number of keyword and
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prompt category combinations.
However, the qualities of generated images are dependent

on the keywords provided in the prompts. TIS models usually
utilize a text encoder, which employs pre-trained language
models like CLIP [Radford et al., 2021] to convert textual
inputs into latent vectors. These latent vectors associated with
individual keywords represent specific control influences on
images, which can be utilized for our quantitative evaluation
task.

2.2 TIS Evaluation
The aesthetic score [Schuhmann et al., 2022] assesses the
aesthetic quality of individual images, while the CLIP
score [Radford et al., 2021] quantifies the similarity between
generated images and prompts. Additionally, there exist met-
rics specifically trained to align with human preferences, such
as [Wu et al., 2023b; He et al., 2022; Wu et al., 2023a;
Xu et al., 2023; Kirstain et al., 2023; He et al., 2023a;
He et al., 2023b]. Human preferences are intricate and en-
compass various dimensions, such as text-image similarity,
image fidelity, aesthetics, and other factors. Among these
metrics, HPSv2 stands out for its consistent scoring and use
of larger, more diverse training datasets. Significantly, the
CLIP model has been fine-tuned on an extensive dataset, fea-
turing 798,090 human ranking choices across 433,760 image
pairs [Wu et al., 2023a]. These evaluation metrics provide
valuable visual feedback and enable a quantitative assessment
of the multidimensional impact of keywords on TIS.

In this paper, we adopt a quantitative and multidimensional
approach to evaluate the fused features of keywords. We use
multiple TIS evaluation metrics, including HPSv2, the aes-
thetic score, and the CLIP score, with each metric represent-
ing distinct aspects of keyword effects.

2.3 Prompt Engineering for TIS
Due to the remarkable potential of TIS, there has been a surge
of interest in prompt engineering. MagicPrompt, a widely
adopted model for automatic prompt completion, is trained
on high-quality prompts sourced from the Internet. Beauti-
fulPrompt [Cao et al., 2023] utilizes a reinforcement learn-
ing technique, complemented by visual AI feedback, to fine-
tune language models and maximize the rewards of gener-
ated prompts. However, these methods primarily focus on
completing or rewriting prompts, which may inadvertently
alter content entities, resulting in rigid and inflexible gener-
ated prompts. Liu et al. [Liu and Chilton, 2022] conducted a
series of experiments, proposing several design guidelines for
text-to-image prompt engineering that confirm the beneficial
impact of incorporating keywords. Additionally, [Oppenlaen-
der, 2023] identified six distinct types of keywords through an
ethnographic study spanning three months within the online
generative art community.

However, previous studies have been constrained by the la-
borious and time-consuming manual engineering of prompts.
In contrast, BestPrompt [Pavlichenko and Ustalov, 2023] em-
ploys a genetic algorithm to identify keywords that compose
prompts, aiming to achieve optimal aesthetic quality in im-
ages. Nevertheless, this study solely relies on selecting a

fixed set of keywords based on average performance deter-
mined through human evaluation.

Conversely, AK4Prompts can assess the varying impact
of keywords and select the most suitable ones for specific
prompts, thereby enhancing the visual appeal of generated
images according to user preferences. To address the po-
tential variations in the effects of keywords across different
prompt categories and provide personalized keyword evalu-
ation based on prompt content, we decouple the latent rep-
resentations of keywords and prompts in TIS models, which
have distinct impacts on the generated images. Subsequently,
to further enhance this integration, we employ multiple cross-
attention layers to merge the semantic features of prompts
with those of keywords.

3 Data Collection for Training
Simple Prompt datasets. The image-caption datasets, such
as COCO Captions [Chen et al., 2015] and LAION [Schuh-
mann et al., 2022] primarily describing real images, may not
align with the interests of generative model users. Diffu-
sionDB [Wang et al., 2022] comprises a large-scale dataset
filled with a wide range of user-written prompts and gen-
erated images. However, it features numerous complex
keyword-based text prompts. Regarding our prompt dataset,
we require simple text prompts to maximize the impact of
different keywords. SUR-adapter [Zhong et al., 2023] em-
ploys a pre-trained BLIP model to generate captions for im-
ages associated with high-quality prompts, treating the brief
and less detailed resulting captions as low-quality prompts.
BeautifulPrompt [Cao et al., 2023] enhances this approach
by using ChatGPT [OpenAI, 2023] to summarize high-
quality prompts, treating these summaries as low-quality
prompts. The dataset includes 143k simple prompts and 2k
test prompts. We train our model using BeautifulPrompt’s
training set and evaluate its performance on the test set.

Keywords Collection. We extract a series of keywords
from complex prompts in DiffusionDB, separating them by
commas and sorting them based on frequency of occurrence.
After manually removing non-keywords and those with lower
frequencies, we obtain a list of 51,291 keywords. However,
the keyword set contains numerous semantically consistent
and repetitive terms. Since the SD utilizes CLIP to encode
text inputs into latent vectors for conditional control, key-
words with similar CLIP encodings have comparable effects
on the generation outcome. To reduce keyword redundancy
and prevent the model from developing a specific bias, we
employ CLIP to uniformly encode the keywords, compute
their similarity matrix, and apply the k-means clustering al-
gorithm for grouping them into clusters. We retain the most
frequently occurring keywords in each cluster while remov-
ing redundant ones to reduce the overall number of keywords
further. Through extensive experimentation, we ultimately
select 954 distinct semantic representations as our final key-
word set. Our AK4Prompts can generalize to all 51,291 key-
words via CLIP encoding. Keywords with similar seman-
tics receive similar scores, even rare ones, matched based on
learned semantic similarities.
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Figure 2: Illustration of AK4Prompts. (Top) The overall architecture of our training pipeline, where only the newly added module (highlighted
in red) is trained while the pretrained text-to-image model remains frozen. (Bottom) The network structure of our module, which utilizes the
AK4Prompts module to assess the impact of keywords on image quality generated in response to user prompts.

4 AK4Prompts
As shown in Figure 2 (Top), let us consider the keyword-
prompt pairs (pi, ki)

N
i=1, where pi represents the original

prompt and ki denotes a randomly selected keyword from the
collected set of keywords. Firstly, we freeze all learnable pa-
rameters of the text encoder fEn and the predictor fpre in the
pre-trained TIS model, as well as all the evaluation models
used. Then, we utilize the TIS model to generate images Ii
corresponding to keyword-based prompt p̂i and calculate av-
erage scores for both images Ii and the original prompt pi
using various evaluation models.

Finally, we propose our trainable AK4Prompts model to
predict these scores based on the features of pi and ki from
the text encoder. Our model, as illustrated in Figure 2 (Bot-
tom), comprises two components: the Semantic Fusion Mod-
ule (Section 4.1) and the Multidimensional Score Prediction
Module (Section 4.2). Section 4.3 demonstrates how to uti-
lize AK4Prompts for inference by identifying suitable key-
words according to user prompts and customized preferences.

4.1 Semantic Fusion of Keywords and Prompts
The structure of the Semantic Fusion Module is depicted in
Figure 2 (Bottom), which comprises L cross-attention layers.
These layers are responsible for fusing the semantic features
of keywords and prompts, generating attention maps for each
textual token of prompts. Each layer consists of four learn-
able transformations, denoted as hj(·) for j = 1, 2, 3, 4, im-
plemented using a multi-layer perceptron (MLP). We utilize
the outputs fEn(ki) and fEn(pi) from the text encoder as

initial embeddings for keyword features embki
0 and prompt

features embpi , respectively.

embki
0 = fEn(ki), embpi = fEn(pi). (1)

Then, we construct Qi = h3[embki

ℓ ] and Ki = h2[embpi ],
and calculate attention values as described in [Devlin et al.,
2018; Vaswani et al., 2017]

Qi
ℓ = h3(embki

ℓ−1),K
i
ℓ = h2(embpi) ℓ = 1...L, (2)

attiℓ = softmax(
Qi

ℓK
i
ℓ
T

√
d

) ℓ = 1...L, (3)

where d represents the feature dimension of Qi and Ki, and
the cell atti,jℓ defines the weight of the value of the j-th token
in pi on ki. Additionally, we construct Vi = h1[embpi ], and
obtain the calibrated semantic information as V̂i = Vi ⊗ atti,
which is then used to update the keyword features embki .
Afterwards, the output of the first cross-attention sublayer is
transformed by a learnable transformation function denoted
as h4(·) to obtain the fused semantic features.

V i
ℓ = h1(embpi), V̂ i

ℓ = V i
ℓ ⊗ attiℓ ℓ = 1...L, (4)

embki

ℓ = LN(embki

ℓ−1 + h4(V̂ i
ℓ )) ℓ = 1...L. (5)

Here, We employ a residual connection [He et al., 2016]
around each of the two sub-layers, followed by layer normal-
ization [Ba et al., 2016]. Finally, the output of the Seman-
tic Fusion Module is obtained as embki

L through the cross-
attention layers.
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TIS Model Method Aesthetic Score HPSv2 CLIP Score

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Original 5.70 5.70 5.70 0.256 0.256 0.256 0.258 0.258 0.258
SD (1.5) + BestPrompt 5.80 5.97 6.12 0.257 0.256 0.260 0.255 0.245 0.243

LCM-LoRA MostPopular 5.76 6.04 6.19 0.256 0.257 0.257 0.259 0.251 0.246
AK4Prompts (ours) 5.82 6.14 6.23 0.258 0.261 0.261 0.259 0.252 0.247

SD (1.5)

Original 5.70 5.70 5.70 0.261 0.261 0.261 0.287 0.287 0.287
BestPrompt 5.80 6.14 6.26 0.261 0.263 0.265 0.283 0.276 0.270
MostPopular 5.80 6.19 6.37 0.261 0.261 0.260 0.286 0.277 0.272
AK4Prompts (ours) 6.00 6.29 6.43 0.262 0.263 0.266 0.286 0.278 0.270

SDXL-Turbo

Original 6.21 6.21 6.21 0.275 0.275 0.275 0.286 0.286 0.286
BestPrompt 6.27 6.46 6.42 0.275 0.276 0.277 0.278 0.273 0.268
MostPopular 6.31 6.53 6.62 0.275 0.275 0.276 0.282 0.272 0.269
AK4Prompts (ours) 6.45 6.57 6.71 0.276 0.276 0.278 0.282 0.275 0.276

Table 1: Results on the testing set. ”Original” refers to the method that directly sends the original prompts to TIS models without modification.
”Top-n” refers to using the top-n keywords from different methods.

4.2 Multidimensional Score Prediction Module
The Score Prediction Module consists of three MLP score
prediction heads, Ŝhps(·), Ŝclip(·) and Ŝaes(·), as shown in
Figure 2 (Bottom). Each prediction head utilizes the out-
put keyword embedding from the Semantic Fusion Module
to predict the average HPSv2 score [Wu et al., 2023a], CLIP
similarity score [Radford et al., 2021], and aesthetic score
[Schuhmann et al., 2022] of the generated image based on
the corresponding keyword prompt.

Briefly, to enhance the prompt pi with keyword ki, append
ki to the end of pi and form p̂i. Then input p̂i into the down-
stream TIS model to generate image Ii:

Ii = fpre(fEn(p̂i), seed). (6)

HPSv2 is a human preference model trained on a large
dataset of text-to-image prompts and real user preferences.
To mitigate the impact of random seeds on the quality of im-
ages generated by the TIS model, we employ 8 different ran-
dom seeds to generate images and average the results. The
calculated averaged HPSv2 score HPS is used as the ground
truth for training our model. The loss function is as follows:

Lhps = − 1

N

N∑
i

MSE(Ŝhps(embki

L ), HPS), (7)

where Ŝhps(embki

L ) represents the scalar output of the HPSv2
prediction head for the keyword embedding embki

L obtained
from the Semantic Fusion Module. MSE refers to Mean
Squared Error, and N denotes the total number of samples.

CLIP score is a metric used to evaluate the correlation be-
tween the image generated by the model and the original text.
In our work, we use a MLP prediction head to assess the con-
sistency between the original prompt pi and generated image
Ii under the influence of keyword ki. The calculated aver-
age CLIP score CLIP is used as the ground truth to train our

model. The loss function is:

Lclip = − 1

N

N∑
i

MSE(Ŝclip(embki

L ), CLIP ). (8)

The aesthetic score model is trained to predict the rating
that people give when asked “how much do you like this im-
age on a scale from 1 to 10”. To maintain consistency with
HPS and CLIP , we scale the aesthetic scores to a range of
0 to 1. Similarly, a MLP prediction head is trained to fit the
corresponding keywords to the aesthetic scores AES of the
generated images:

Laes = − 1

N

N∑
i

MSE(Ŝaes(embki

L ), AES). (9)

Finally, we combine the losses of the three MLP prediction
heads as the final Ltotal using loss coefficients h, a, and c.

Ltotal = h · Lhps + c · Lclip + a · Laes. (10)

4.3 Customized Keywords-Ranking
After training, our AK4Prompts gak(·) can predict scores for
each keyword based on simple prompts, allowing us to de-
termine the optimal set of keywords that align with these
prompts. For a given simple prompt p, we input it into our
model to simultaneously predict HPSv2 scores, CLIP scores,
and aesthetic scores for all keywords in a parallel inference
step:

Si
hps, S

i
clip, S

i
aes = gbk(p, k

i;ϕ1, ϕ2) i = 1...K, (11)

where ki represents a keyword and K denotes the total num-
ber of keywords. Then, we can calculate a comprehensive
score for each keyword ki as follows:

Si
avg = ĥ ∗ Si

hps + ĉ ∗ Si
clip + â ∗ Si

aes i = 1...K, (12)
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Prompt Original BestPrompt MostPopular AK4Prompts (Ours)

two people standing in
front of a starry sky.

Tiny kitty and puppy
in ultra HD render.

Futuristic rainbow
road in city.

Figure 3: The qualities of images generated from prompts with different keyword selection methods using the SDXL-Turbo model.

where (ĥ, ĉ, â) represent the weights for the HPS score, CLIP
score, and aesthetic score, respectively.

Finally, a comprehensive ranking of all keywords can be
obtained, where higher-ranked keywords exhibit a more pro-
nounced enhancing effect on the prompt p. Moreover, by cus-
tomizing the values of (ĥ, ĉ, â) based on user preferences,
keywords with different emphases can be sorted and selected.
For instance, assigning a larger value to â enables the se-
lection of keywords that exert a greater impact on aesthet-
ics. Based on this keyword ranking, we can choose the top-
performing keywords and append them to simple prompts in
order to enhance overall image generation performance.

Our method achieves higher computational efficiency com-
pared to prompt generation models due to its use of precom-
puted semantic embeddings, avoidance of self-attention com-
putation during keyword processing, and smaller model size.

5 Experiments
Training Settings. Our model was trained on 143K Beauti-
fulPrompt training samples. We utilized the pre-trained stable
diffusion 1.5 as our TIS model and employed LCM-LoRA for
accelerated inference. We generated 512x512 resolution im-
ages through a four-step inference with a CFG scale ω set to
1.0, leveraging FLOAT16 formats to save GPU memory and
speed up training. For the semantic fusion module, we set
L = 3. Regarding Ltotal, we set h = 2.25, c = 2.25, and
a = 1. Due to different ranges in the distributions of these
scores, we assigned a larger weight to the one with smaller
ranges to balance gradients and enhance prediction accuracy.
The learning rate was set at 1e-4, weight decay at 1e-2, batch

size at 32, and training step at 88,000 steps. All experiments
were implemented in PyTorch and run on a single server with
NVIDIA RTX3090TI GPUs.

Baselines. We consider two strong baselines: Best-
Prompt [Pavlichenko and Ustalov, 2023] and MostPopular.
BestPrompt is the first work to identify the best keywords
for TIS, using a genetic algorithm that identifies a set of
high-quality keywords through extensive human evaluations.
MostPopular represents the most frequently used keywords
in TIS, which have gained widespread recognition within the
user community for their proven effectiveness in enhancing
the quality of generated images. Our method requires setting
the number of selected keywords and specific preferences.
Whereas the generation methods may produce new prompts
with different keyword lengths, making comparison challeng-
ing.

Evaluation Protocols. We assess the images generated by
the TIS model using 2K BeautifulPrompt testing prompts em-
ploying various keyword selection methods. Multiple TIS
models are employed to generate images, and we compute
the aesthetic score [Schuhmann et al., 2022], HPSv2 [Wu et
al., 2023a], and CLIP score [Radford et al., 2021] for both the
images and original prompts. For the baselines, we evaluate
using different numbers of keywords, specifically top-1, top-
5, and top-10. Regarding our AK4Prompts approach, we set
(ĥ=3, ĉ=5, â=1) to determine a comprehensive ranking for all
keywords and select an equivalent number of top keywords
for evaluation and comparison purposes. As a comparative
measure due to baselines’ emphasis on clip scores, we also
assign a higher weight to ĉ in order to enhance the clip score.
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TIS Model Method Aesthetic Score HPSv2 CLIP Score

Original 5.70 0.256 0.258
SD (1.5)+ BestPrompt 5.97 0.256 0.245

LCM-LoRA MostCommon 6.04 0.257 0.251
AK4Prompts 6.49 0.261 0.254

SD (1.5)

Original 5.70 0.261 0.287
BestPrompt 6.14 0.263 0.276
MostCommon 6.19 0.261 0.277
AK4Prompts 6.66 0.265 0.283

SDXL-Turbo

Original 6.21 0.275 0.286
BestPrompt 6.46 0.277 0.273
MostCommon 6.53 0.275 0.272
AK4Prompts 7.03 0.279 0.283

Table 2: Performance of selecting the most impactful keywords on
the aesthetic score, CLIP score, and HPSv2 score, respectively. Each
score is calculated independently based on the top-5 highest-scoring
keywords.

Additionally, we set (ĥ, ĉ, â) as (1, 0, 0), (0, 1, 0), and (0, 0,
1) respectively to select the top-5 keywords that have a sig-
nificant impact on the aesthetic score, CLIP similarity score,
and human preference score for evaluation.

5.1 Overall Results

Our method consistently outperforms the other baselines in
most scores, as demonstrated by Table 1. Given that the CLIP
score reflects semantic consistency between text and image, it
is unsurprising that sending the original prompts without any
additional keywords to Stable Diffusion unchanged yields
the highest score. Our approach achieves superior aesthetic
scores, HPSv2, and CLIP scores compared to the baselines
while maintaining a comparable CLIP score to the Original
prompt. This highlights the effectiveness of our proposed
method, AK4Prompts, in selecting optimal keywords for in-
put prompts.

Our AK4Prompts is applicable to all SD-style models. The
experimental results of SD1.5 and SDXL-Turbo demonstrate
the transferability of AK4Prompts to other diffusion-based
TIS models. Taking into consideration the widely adopted
model SDXL-Turbo 2, Figure 3 illustrates that, despite al-
ready performing well with most vanilla prompts, SDXL-
Turbo can further enhance its image generation capabilities
when utilizing AK4Prompts. As depicted in Table 2, the se-
lection of only the top 5 keywords, predicted by the model
with the highest aesthetic scores for image generation, leads
to a significant enhancement in aesthetic scores, as well as
CLIP and HPS scores. This observation signifies that our ap-
proach proficiently captures diverse keyword effects, offering
guidance to users and enabling customization of final output
preferences. Additional examples are provided in Appendix
A and B in our code repository, including qualitative analy-
ses of different keywords and the specific effects of different
categories of keywords on image generation. We also feature
a qualitative comparison of images generated using keywords
selected with different preferences.

2https://huggingface.co/stabilityai/sdxl-turbo

5.2 Ablation Study
In Table 3, we analyze the various design choices imple-
mented throughout our experiments. As discussed in Section
4.1, the Semantic Fusion Module integrates the semantics of
simple prompts with keywords. This integration enables a
more effective combination of different prompt semantics,
thereby providing personalized keywords. To validate the
module’s effectiveness, we initially compare it with a simpler
method that omits the Semantic Fusion Module. This method
involves directly using the text encoder to obtain semantic en-
codings of user prompts and additional keywords, followed
by score prediction using MLP prediction heads. Subse-
quently, we employ self-attention instead of cross-attention
for integrating semantic features from user prompts and ad-
ditional keywords. Finally, we evaluate different scheduling
steps using LCM-LoRA. For a fair comparison, both models
were trained for 88,000 steps under identical configurations.

Aesthetic Score

AK4Prompts (ours) 6.49
w/o SF 6.34

with self-attention 6.43
with step=1 6.28

Table 3: The proposed method consistently outperforms all other
baselines in terms of achieved rewards, as evidenced by the table
featuring the top-5 keywords.

6 Conclusion
In this paper, we propose a universal algorithmic framework
named AK4Prompts that quantitatively assesses the different
effects of various keywords in TIS models based on simple
prompt. Our approach significantly reduces the complex-
ity of prompt design and the difficulty of keyword selec-
tion, thereby saving users considerable trial-and-error time.
While AK4Prompts can automatically select keywords for
user prompts and generate more aesthetically pleasing im-
ages, we find it challenging to strike a balance among factors
such as image aesthetics, human preferences, and text-image
consistency in order to choose the best keywords. At times,
in pursuit of better text-image consistency, we have to com-
promise on certain aspects of image aesthetics. Additionally,
since we use SD1.5 and employ LCM-LoRA with CFG scale
ω set to 1.0, only positive keywords are used to control gen-
eration while negative keywords are not considered. Similar
to positive prompts, negative prompts are also crucial inputs
for many TIS models. The final image generation results de-
pend on both positive and negative prompts. Therefore, dis-
covering the best negative keywords can effectively improve
the quality of generated images as well. The incorporation
of negative keywords into our framework is achievable, but
addressing this aspect will be a key focus in the development
of AK4Prompts 2.0.
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