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Abstract
In domain adaptation, challenges such as data pri-
vacy constraints can impede access to source data,
catalyzing the development of source-free domain
adaptation (SFDA) methods. However, current ap-
proaches heavily rely on models trained on source
data, posing the risk of overfitting and subop-
timal generalization.This paper introduces a dy-
namic prompt learning paradigm that harnesses
the power of large-scale vision-language models
to enhance the semantic transfer of source mod-
els. Specifically, our approach fosters robust and
adaptive collaboration between the source-trained
model and the vision-language model, facilitating
the reliable extraction of domain-specific informa-
tion from unlabeled target data, while consolidat-
ing domain-invariant knowledge. Without the need
for accessing source data, our method amalgamates
the strengths inherent in both traditional SFDA ap-
proaches and vision-language models, formulating
a collaborative framework for addressing SFDA
challenges. Extensive experiments conducted on
three benchmark datasets showcase the superiority
of our framework over previous SOTA methods.

1 Introduction
Domain adaptation (DA) [Wang et al., 2022b; Nejjar et al.,
2023] refers to the process of adapting a model trained on a
labeled source domain to an unlabeled target domain. Tradi-
tional methods for this task assume access to labeled source
data during the adaptation process. However, in the real
world, practical constraints such as privacy and security of-
ten limit our ability to access source data directly. Conse-
quently, the field of source-free domain adaptation (SFDA)
[Roy et al., 2022; Tang et al., 2023] has gained significant
attention. SFDA aims to adapt a source-trained model to an
unlabeled target domain without the need for direct access to
source data.

Many SFDA methods prioritize transferring domain-
invariant knowledge from source-trained models to the tar-
get domain by iteratively fine-tuning models through self-

∗Corresponding authors (seanzhuxf@gmail.com).

Input
Source-trained Model

Source-trained Model

(a) Model-centric tuning

(b) Vision-language model            (c) Our proposed framework
VLM

Input

𝐿𝑜𝑠𝑠

Input VLM

𝐿𝑜𝑠𝑠

Prompt

𝐿𝑜𝑠𝑠
Dynamic Mask

Prompt

Figure 1: Conceptual comparison between (a) traditional model-
centric tuning method, (b) large vision-language model, and (c) our
proposed framework. Our method amalgamates the strengths of
both paradigms to achieve effective source-free domain adaptation.

supervised techniques, such as the use of pseudo-labels. In
an ideal scenario, when the source and target domains ex-
hibit a high degree of similarity, the source-trained model can
efficiently capture domain-specific information from the tar-
get data and learn accurate classification boundaries. How-
ever, practical situations often deviate from this ideal, and the
target data may significantly differ from the source hypothe-
sis. This can lead to unreliable pseudo-labels and introduce
bias into the learning process. Existing efforts aim to ame-
liorate these issues by employing techniques such as local
structural adjustments [Qu et al., 2022], entropy-based strate-
gies [Litrico et al., 2023], and historical consistency measures
[Huang et al., 2021]. Nevertheless, the inherent domain dis-
crepancy can persist, resulting in an accumulation of irrepara-
ble bias and a loss of domain-invariant information through-
out training [Fang et al., 2022; Yu et al., 2023].

Recently, large-scale pre-trained vision-language models,
such as CLIP [Radford et al., 2021], have demonstrated ex-
ceptional generalization capabilities with invariant feature en-
coding across diverse visual domains. However, foundational
models like CLIP struggle to effectively represent domain-
specific knowledge, a crucial factor for achieving success in
downstream tasks [Jia et al., 2022]. To address this limita-
tion, prompt learning has emerged as a solution, involving the
encoding of domain-related context as learnable parameters
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(referred to as prompts) at the input end [Zhou et al., 2022b].
This approach also offers a viable solution to challenges like
domain adaptation [Fahes et al., 2023]. Nevertheless, opti-
mizing these learnable prompts often demands careful data
curation and annotation, which can be difficult SFDA, where
labeled data is scarce, and extracting domain-specific infor-
mation poses significant challenges.

Motivated by the aforementioned insights, our work aims
to tackle SFDA by complementing the traditional methodol-
ogy with a large vision-language model. Our goal is to ex-
tract domain-specific information from unlabeled target data
reliably while consolidating the domain-invariant knowledge
embedded within the source model. However, the integration
of these two distinct modeling paradigms into a collabora-
tive SFDA framework presents significant challenges. The
first challenge is how to facilitate effective interaction be-
tween these two models. A well-designed integration of both
paradigms can result in mutual reinforcement and improved
performance. Conversely, a suboptimal solution may lead to
undesired outcomes. The second challenge is how to ensure
reliable learning from pseudo-labels. As the pseudo-labels in
SFDA can be susceptible to noise and errors.

To address these challenges, we propose a collaborative
framework centered around an innovative dynamic prompt-
ing method. As illustrated in Figure 1 (c), our approach
fosters collaboration between a source-trained model and a
vision-language model, such as CLIP, not only during the
later stages of loss functions but also through joint prompting
mechanisms at earlier feature and input stages. This unique
design helps reconcile the disparities between the two distinct
paradigms and promotes the exchange of complementary in-
formation within each component. Furthermore, to mitigate
the disruption caused by unreliable pseudo-labels, we intro-
duce a dynamic mask prompting (DMP) mechanism. When
presented with a pseudo-labeled image, DMP is trained to
analyze the corresponding class activation maps to identify
noisy and distracting elements within the image. These iden-
tified pixels are then suppressed by replacing them with visual
prompts. Consequently, subsequent model tuning can focus
more on task-related information and be less susceptible to
noise and background interference. We summarize the con-
tributions of this work as follows:

• We present a collaborative framework in which a tradi-
tionally source-trained model dynamically collaborates
with large vision-language models to address the SFDA
task.

• We recognize the adverse effects of incorrect pseudo-
labels in SFDA scenarios and propose a dynamic mask
prompting mechanism to enhance the learning process.

• We conduct extensive experiments on multiple datasets,
and the results show that our method outperforms previ-
ous state-of-the-arts in SFDA.

2 Related Works
2.1 Source-Free Domain Adaptation
Previous SFDA methods can be divided into two directions:
model-centric and data-centric. Model-centric methods as-

sume the optimal target hypothesis to be closely related to the
source hypothesis. Therefore, by exploring the outputs of the
source training model, models can be fine-tuned using a self-
training scheme [Liang et al., 2020]. BMD [Qu et al., 2022]
proposed a dynamic multi-centre pseudo-labelling strategy
for updating pseudo-labels during domain adaptation. JMDS
[Lee et al., 2022] proposed to mitigate the effect of noisy
samples by using confidence scores as sample weights. With
the success of Transformer in vision tasks, DSiT [Sanyal
et al., 2023] proposed a fully ViT-based solution for SFDA
and achieved outstanding performance. Though achieving
promising performance, this type of method relies on task-
specific knowledge learned on the source domain, which can
result in biased pseudo-labels and potentially suffer from the
loss of domain-invariant information in the progressive learn-
ing process [Zhang et al., 2023a].

Data-centric models aim to enhance the pre-trained task-
specific knowledge by reconstructing data for the missing
source domain, based on which existing DA methods can be
easily extended to SFDA scenarios [Li et al., 2020]. How-
ever, with only the unlabelled target data, it is challenging
to effectively represent the task-specific information revealed
by the source data [Chen et al., 2022; Tang et al., 2020]. Re-
cently, large-scale pre-trained vision-language models have
become a popular paradigm for transferring pre-trained mod-
els into downstream tasks. In domain adaptation i.e., Auto-
Label [Zara et al., 2023] utilized CLIP to discover candidate
target categories, enhancing the capture of discriminative in-
formation for video domain adaptation. PADCLIP [Lai et al.,
2023] introduced adaptive biasing learning to address the is-
sue of noisy labels in domain adaptation. However, the lack
of target annotations limits their application in SFDA.

2.2 Prompt Learning
Prompt learning is becoming a popular way to enhance
large-scale pretrained models with domain-specific knowl-
edge [Zhou et al., 2022b]. Hard prompt learning employs dis-
crete tokens in the vocabulary as prompts, while soft prompt
learning introduces learnable parameters in the text embed-
ding and tunes these parameters [Jia et al., 2022; Jiang et al.,
2024]. To address vision tasks, CoOp [Zhou et al., 2022b]
designed class-specific prompts through back-propagation.
DAPL [Ge et al., 2023] proposed ad-hoc prompting to learn
disentangled domain and category representations. ADCLIP
[Singha et al., 2023] introduced a domain-agnostic prompt
learning strategy for CLIP and achieved state-of-the-art re-
sults. Although these methods showing promising perfor-
mance in domain adaptation, prompt learning with large vi-
sion language models requires labeled training data, and the
limited capacity of prompts can be difficult to model complex
domain-specific knowledge of target domains.

3 Methodology
Problem Definition. The task of SFDA involves a labeled
source dataset Ds = {xs

i , y
s
i }

ns

i=1 and an unlabeled target
dataset Dt = {xt

i}
nt

i=1, where x and y denote the image and
label, respectively. Typically, Ds and Dt follow distinct dis-
tributions, and Ds is only available during the pre-training
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Figure 2: The framework of our proposed model comprises three main modules: (a) Source-Pretrained Branch (light yellow block) explores
domain-specific knowledge in the target data. (b) Vision-Language Branch (light blue block) leverages a large-scale Visual Language Model
(VLM) to extract domain-invariant task knowledge. (c) Dynamic Mask Prompting (DMP) customizes dynamic visual mask prompts for each
image to suppress noisy visual content. During training, we begin by averaging the predictions (pvit and pclip) from both branches to generate
the pseudo-label ỹ and compute the loss. The quality of the pseudo-label is assessed using a Gaussian Mixture Model (GMM) applied to the
loss values. Subsequently, the DMP module analyzes activation maps corresponding to pseudo-labels, identifying and masking out distracting
image patches. The masked areas are then filled with visual prompts. Finally, the prompted images and pseudo-labels are used to train the
target model. In the testing phase, the outputs of both branches are averaged to generate the final predictions.

stage of the source-trained model fθ. The primary objec-
tive of SFDA is to adapt the model fθ to the target domain
using solely Dt. This paper mainly focuses on the general
SFDA setting, wherein both domains share the same set of K
classes (closed-set setting). Nevertheless, in our experiments,
we also explore partial and open-set scenarios.

Overview. An overview of our method is depicted in Fig-
ure 2. The framework comprises three key components: the
source-pretrained branch, the vision-language branch, and
the dynamic mask prompting mechanism. In the source-
pretrained branch, we adhere to the traditional model-centric
SFDA approach, progressively fine-tuning the entire model
based on pseudo-labels to encode domain-specific knowledge
from the target domain. The vision-language branch lever-
ages the CLIP model and employs learnable textual prompts
to extract task-related domain-invariant information. The dy-
namic mask prompting module plays a pivotal role in our
method. It identifies and enhances the reliability of pseudo-
labels by introducing dynamic visual prompts. This module
facilitates collaboration between the two branches, enhancing
the overall performance of our approach. This comprehen-
sive design allows our method to effectively acquire domain-
related knowledge from the target data while ensuring the

preservation of domain-shared information related to classi-
fication tasks. In the following, we will provide detailed de-
scriptions of the source-model-based protocol, introduce the
vision-language model-based paradigm, and propose the dy-
namic mask prompt mechanism.

3.1 Source-Pretrained Branch
The source-pretrained branch is primarily dedicated to adjust-
ing model parameters to align with the target data, aiming
to learn domain-specific knowledge relevant to the target do-
main. Given the absence of annotations for the target data, we
employ a common self-training strategy used in SFDA meth-
ods. We start with an initial classification model fθ (e.g.,
ViT [Dosovitskiy et al., 2020]) and tuning it on the target
dataset Dt by optimizing the cross-entropy loss on the target
image xt:

Lm = −ỹtlogpm
(
x̂t
)
, (1)

where ỹt represents the pseudo-label generated based on the
average of the predictions from both branches, pm(·) denotes
the predicted probability of the target model, and x̂t refers
to the prompted input image, which will be comprehensively
introduced in Section 3.3.
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Figure 3: Visualization of activation maps. The first row shows the
pseudo-label for each image, with green indicating correct pseudo-
labels and red representing incorrect pseudo-labels. The second row
displays the image and the third row showcases the activation maps
corresponding to the pseudo-labels. As observed, incorrect pseudo-
labels can misguide the model focus on unrelated or confusing im-
age regions.

3.2 Vision-Language Branch
We leverage the exceptional generalization capabilities of
CLIP [Radford et al., 2021] to extract domain-invariant task
information (i.e., category semantics) from the target data.
CLIP consists of a vision encoder fv and a text encoder ft.
The vision encoder fv transforms the image xt into a visual
representation fv(x

t) ∈ Rd. Simultaneously, a set of class
embedding ft(wk) ∈ Rd is generated by feeding template
prompts wk (e.g., “A photo of a [CLS]”) into text encoder ft.
Hence, the classification probability of xt is defined as:

pd
(
xt
)
=

exp(sim(fv(x
t), ft(wk))/τ)∑c

i=1 exp(sim(fv(xt), ft(wi))/τ)
, (2)

where sim(·, ·) represents cosine similarity, and τ is a tem-
perature factor. Following CoOp [Zhou et al., 2022b], we
convert the class name k into a text embedding wk ∈ Rd

and enhance this embedding with a set of learnable prompts
{vi}Ti=1. Formally, the input for the text encoder becomes
Vk = {v1, v2, . . . , vT , wk}. By normalizing the representa-
tions for each class k, we can calculate the classification prob-
ability using Eq. (2). During training, we optimize the learn-
able parameters on the target data by minimizing the cross-
entropy loss:

Ld = −ỹtlogpd
(
x̂t
)
, (3)

where ỹt denotes the pseudo-label of image xt, generated
based on the average of the predictions from the source-
trained model and CLIP model. x̂t represents the prompted
input image, which will be introduced in the next section.

3.3 Dynamic Mask Prompting
Due to the domain discrepancy, pseudo-labels can be prone
to limitations such as noise and errors. Learning directly
from such pseudo supervision may result in suboptimal per-
formance and limited generalization on the target domain. To
ensure the reliable transfer of domain-shared knowledge from

the source model to the unlabeled target data, we start by an-
alyzing the visual content that supports these pseudo-labels.
As depicted in Figure 3, effective pseudo-labels correspond to
relevant regions within the image, whereas incorrect pseudo-
labels often get distracted by unrelated or confusing areas.
This observation motivates us to enhance the quality of learn-
ing by suppressing distracting responses in the images. We
introduce a novel mechanism called Dynamic-Mask Prompt-
ing (DMP), as illustrated in Figure 2 (c). In DMP, we initially
obtain a pseudo-label for an image based on predictions from
both the source-pretrained branch and the vision-language
branch. Subsequently, we generate corresponding class acti-
vation maps, which are guided by a Gaussian Mixture Model
(GMM) [Permuter et al., 2006] to estimate regions with a
negative impact. These negative regions are then masked out
from the input image. The masked pixels are replaced with
visual prompts, further enhancing the interaction between the
two branches.
Mask Prompt Generation. To identify image regions that
negatively impact learning, we begin by analyzing the cor-
responding class activation maps of pseudo-labels. Given
the input image xt and the pseudo-label, we employ Grad-
CAM [Selvaraju et al., 2017] to generate the activation map
for the model in the source-pretrained branch. Specifically,
we first obtain feature tokens Fv ⊆ Rb×b×d, where b repre-
sents the patch size (e.g., 16). Then, we compute the activa-
tion map as follows:

Avit = GradCAM(Fv,
∂ỹ

∂Fv
), (4)

where GradCAM(·) is the activation map generation func-
tion [Selvaraju et al., 2017].

For CLIP, we utilize the similarity between the text encod-
ing of the pseudo-label and the visual features of the image to
obtain the class attention map. Specifically, we compute the
similarity between the features of image tokens Fi ⊆ Rb×b×d

and the features of texts Ft ⊆ Rb×b×d with l2 normalization
along the feature channel dimension, as shown in the equa-
tion:

Aclip = norm

(
Fi

∥Fi∥2
·
(

Ft

∥Ft∥2

)T
)
. (5)

Then, we combine both activation maps by averaging,

Au =
(Avit +Aclip)

2
. (6)

As a result, the activation map reflects the correlation be-
tween pixel locations and the pseudo-label, revealing how the
visual contents will be activated during learning. When the
pseudo-label is correct, such activations assist the model in
concentrating on the most relevant regions. However, in cases
of an incorrect pseudo-label, the high-response areas can di-
vert the model’s attention away from informative content, re-
sulting in less effective knowledge transfer.

The absence of annotations poses challenges in assessing
the quality of pseudo-labels. Guided by our empirical obser-
vation that correct pseudo-labels yield lower loss values and
vice versa, we train a Gaussian Mixture Model (GMM) that
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takes the loss values as input. By applying a thresholding
strategy with a hyperparameter φ we can roughly distinguish
between correct and incorrect pseudo-labels. Based on the
prediction scores, we devise an adaptive strategy to suppress
the most irrelevant visual content during model tuning. For
samples predicted as incorrect, we mask out the ξ highest
activated pixel locations based on their activation map Au.
Conversely, for samples predicted as correct, we mask out the
ξ lowest activated pixel locations, as these regions are most
unrelated to the task.

Mask Prompt Padding. After obtaining the masked im-
ages, simply filling the masked patches with constant values
and passing them into an image encoder can lead to unde-
sired effects during model training. This approach neglects
the semantic information on the textual side, which is essen-
tial for effective learning. To address this, we introduce a
dynamic visual prompting strategy that interacts with the se-
mantic information from the textual side. Specifically, we de-
fine a set of learnable visual prompts g while simultaneously
extracting domain-shared task-specific information from the
text encoder through a lightweight MLP network:

ĝ = g + h (ft (wk)) , (7)

where h(·) represent the lightweight MLP network, ĝ is the
visual prompt. The masked pixels are then filled with the vi-
sual prompt ĝ. These prompted images are subsequently fed
into the image encoder for pseudo-label-based self-training.

3.4 Optimization
Throughout the training process, we jointly optimize the tex-
tual prompts, visual prompts, and the parameters θ of the
source-trained model within a collaborative framework. The
pseudo-labels are derived from the averaged predictions of
both branches. Additionally, to prevent the model from con-
verging to a trivial solution where it predicts all data as a spe-
cific class, we incorporate the prediction diversity loss Ldiv

into our framework:

Ldiv =
∑K

k=1KL
(
p̄kf
(
x̂t
)
|| q
)
, (8)

where p̄kf (x̂
t) represents the empirical label distribution of

the k-th class, and q is the uniform distribution defined as q =
1/K, where K represents the number of classes. KL (· || ·)
denotes the Kullback–Leibler divergence. Hence, together
with Eqs.(1) and (3), the overall loss is presented as:

L = Lm + µ1Ld + µ2Ldiv, (9)

where µ1 and µ2 are non-negative parameter weights. Eq. (9)
simultaneously collaborates with two independent modelling
paradigms to achieve optimal performance in SFDA.

4 Experiments
4.1 Experimental Setup
Datasets. We evaluate our proposed approach on three stan-
dard benchmarks in domain adaptation including Office-31
[Saenko et al., 2010], Office-Home [Venkateswara et al.,

BikeBookcase Lamp Desk_Chair

Figure 4: Visualization of masked patches in our method. Black
squares indicate masked patches. As shown, the unrelated or dis-
tracting visual contents are successfully suppressed.

2017], and DomainNet [Peng et al., 2019]. Office-31 con-
tains 4,652 images for 31 classes collected from three dis-
tinct domains, which are Amazon (A), DSLR (D), and We-
bcam (W). Office-Home is a medium-scale dataset consist-
ing of images for everyday objects, and can be divided into
four domains, i.e., Artistic (Ar), ClipArt (Cl), Product (Pr),
and Real-world (Rw), with 65 classes for each. DomainNet
is a large-scale benchmark with six domains, each with 345
classes. Following the setting of [Litrico et al., 2023], we se-
lect four domains: ClipArt (C), Real (R), Painting (P), and
Sketch (S), with 126 classes as the SFDA benchmark. All
reported results are the average of three independent runs.

Implementation Details. As introduced in the methodol-
ogy, our proposed method contains two network branches.
In the Source-Pretrained Branch, we follow the experimental
settings of [Sanyal et al., 2023] and utilize ViT-B/16 (input
size 224 × 224, patch size 16×16, resulting in 14×14 patches
per input). For Vision-Language Branch, we adopt the ex-
perimental settings of CoCoOp [Zhou et al., 2022a] and use
CLIP based on ViT-B/16 as the vision encoder. We opti-
mize training objectives via the Stochastic Gradient Descent
(SGD) [Zinkevich et al., 2010] optimizer, given a mini-batch
size of 16, the momentum of 0.9, and weight decay ratio of
1× 10−4, respectively.

4.2 Experimental Results
Source-Free Domain Adaptation. Tables 1, 2, and 3 re-
port the performance of our method and previous approaches
on SFDA. As indicated in the tables, we compare with tra-
ditional CNN-based methods, Transformer-based methods,
and vision-language-based models. Results demonstrate that
our source-free method outperforms the previous state-of-
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Methods SF VLM
Office-Home

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

TVT† [Yang et al., 2023] 74.8 86.8 89.4 82.7 87.9 88.2 79.8 71.9 90.1 85.4 74.6 90.5 83.5
DAPL [Ge et al., 2023] 70.6 90.2 91.0 84.9 89.2 90.9 84.8 70.5 90.6 84.8 70.1 90.8 84.0
ADCLIP [Singha et al., 2023] 70.9 92.5 92.1 85.4 92.4 92.5 86.7 74.3 93.0 86.9 72.6 93.8 86.1

SHOT [Liang et al., 2020] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRC [Yang et al., 2021] 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
AaD [Yang et al., 2022] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
JMDS [Lee et al., 2022] 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
CRS [Zhang et al., 2023b] 63.5 82.1 85.0 73.0 82.7 82.4 69.5 62.9 82.6 74.2 65.7 87.3 75.9
SHOT† [Liang et al., 2020] 67.1 83.5 85.5 76.6 83.4 83.7 76.3 65.3 85.3 80.4 66.7 83.4 78.1
DIPE† [Wang et al., 2022a] 66.0 80.6 85.6 77.1 83.5 83.4 75.3 63.3 85.1 81.6 67.7 89.6 78.2
DSiT† [Sanyal et al., 2023] 69.2 83.5 87.3 80.7 86.1 86.2 77.9 67.9 86.6 82.4 68.3 89.8 80.5

Ours 71.1 87.1 91.3 86.3 90.9 91.6 86.6 74.1 91.8 87.6 75.0 91.8 85.4

Table 1: Source-Free Domain Adaptation (SFDA) on Office-Home benchmark. “SF” and “VLM” indicate source-free adaptation and visual
language model. “†” indicates Transformer-based methods. Bold numbers indicate the best results among SFDA methods.

Method SF
Office-31

A→D A→W D→A D→W W→A W→D Avg.

CDTrans† [Xu et al., 2021] 97.0 96.7 81.1 99.0 81.9 100.0 92.6
TVT† [Yang et al., 2023] 96.4 96.4 84.9 99.4 86.1 100.0 93.8

SHOT [Liang et al., 2020] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
NRC[Yang et al., 2021] 96.0 90.8 75.3 99.0 75.0 100.0 89.4
AaD [Yang et al., 2022] 96.4 92.1 75.0 99.1 76.5 100.0 89.9
JMDS [Lee et al., 2022] 94.4 95.2 76.2 98.5 77.6 100.0 90.3
CRS [Zhang et al., 2023b] 96.6 95.5 76.9 99.1 78.3 100.0 91.1
SHOT† [Liang et al., 2020] 95.3 94.3 79.4 99.0 80.2 100.0 91.4
DIPE† [Wang et al., 2022a] 94.8 95.5 77.5 98.5 77.1 100.0 90.5
DSiT† [Sanyal et al., 2023] 98.0 97.2 81.7 99.1 81.8 100.0 93.0

Ours 96.9 97.0 83.9 98.2 83.7 100.0 93.3

Table 2: Source-Free Domain Adaptation (SFDA) on Office-31
benchmark. “SF” indicate source-free adaptation. “†” indicates
Transformer-based methods. Bold numbers indicate the best results
among SFDA methods.

the-art SFDA methods, and achieves similar performance
to the source-dependent models. Specifically, it surpassed
the prior best method DSiT† by 0.3% Office-31, by 4.9%
Office-Home, and method AaD† by 12.9% on DomainNet,
thereby establishing a new state-of-the-art for SFDA. Be-
sides, Compared to source-dependent DA approaches, our
proposed method is equally competitive. Specifically, our
method improves over the VLM-based DAPL by 1.4% on
Office-Home. The reasons can be summarized as follows.
First, our proposed approach unites the traditional source-
pretrained model and the vision-language model in a collab-
orative framework, complementing to enhance their advan-
tages and address their shortcomings. The domain-specific
knowledge encoded in the tuned source pre-trained model
helps to unleash from VLM the reliable domain-invariant task
information as well as the generalization ability to fill the do-
main gap. Moreover, benefiting from the proposed dynamic
mask prompt learning, our proposed approach mitigates the
noise and erroneous in pseudo-label-based self-training.

Open-set/Partial-set SFDA. We also evaluate our method
with more practical settings like open-set and partial-set sce-
narios. In the open-set setting, the target domain contains
some classes that are agnostic in the source domain. In con-
trast, in the partial-set scenario, the target domain contains
only some of the classes in the source domain. We compare
the performance for the open-set and partial-set settings in
Table 4. In both scenarios, the proposed method achieves the
best performance. Compared with the previous best method
CRS, ours improves by 5.2% on average. This shows the su-
perior performance of our methods. In addition, compared to
the sub-optimal method AaD, our method improves by 6.35%
on average, which demonstrates the ability to better enhance
the generalization capacity in vision-language models.

Ablation Analysis. In this part, we analyze the impact of
different components in the proposed framework and report
the ablation results in Table 5. Specifically, “SPB” and
“VLB” denote applications of the Source-Pretrained Branch
and the Vision-Language Branch, respectively. “DMP” in-
dicates the dynamic mask prompt learning. As shown in
the Table 5, each component makes a unique contribu-
tion to the final performance. We observe that the SPB-
only baseline outperforms the VLB-only baseline on easier
datasets (e.g., Office-31), and underperforms on more com-
plex datasets (e.g., Office-Home, DomainNet). This may be
because the VLB model is less effective in encoding domain-
specific knowledge under small domain gaps, whereas the
SPB model struggles to extract domain-invariant task infor-
mation under large domain discrepancies. Thus, both sepa-
rate branches have their inherent disadvantages. The fusion
of VLB and SPB allows for the integration of their respective
strengths. As shown, the simple combination “SPB +VLB”
is 1.2% better than “SPB” on Office-31 and 1.7% better than
“VLB” on Office-Home. By further encouraging the interac-
tion between the two paradigms, our dynamic mask prompt-
ing mechanism leads to a more adaptive and robust model,
thereby enhancing performance across datasets of varying
scales and complexities, e.g., boosting the performance by
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Method SF VLM
DomainNet

Cl→Pn Cl→Rl Cl→Sk Pn→Cl Pn→Rl Pn→Sk Rl→Cl Rl→Pn Rl→Sk Sk→Cl Sk→Pn Sk→Rl Avg.

DAPL [Ge et al., 2023] 83.3 92.4 81.1 86.4 92.1 81.0 86.7 83.3 80.8 86.8 83.5 91.9 85.8
ADCLIP [Singha et al., 2023] 84.3 93.7 82.4 87.5 93.5 82.4 87.3 84.5 81.6 87.9 84.8 93.0 86.9

SHOT [Liang et al., 2020] 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
NRC [Yang et al., 2021] 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
AdaCon [Chen et al., 2022] 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
JMDS [Lee et al., 2022] 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
SHOT† [Liang et al., 2020] 64.8 82.3 63.1 68.9 84.0 62.7 72.3 70.6 61.7 74.0 69.2 83.6 71.4
AaD† [Yang et al., 2022] 66.8 81.0 63.8 70.4 84.0 65.4 74.6 72.1 63.8 76.4 71.2 82.8 72.7

Ours 82.5 89.6 82.1 89.7 91.2 80.9 86.1 82.9 81.4 87.2 84.8 89.2 85.6

Table 3: Source-Free Domain Adaptation (SFDA) on Domain-Net benchmark. “SF” and “VLM” indicate source-free adaptation and visual
language model. “†” indicates Transformer-based methods. Bold numbers indicate the best results among SFDA methods.

Partial-set DA Avg. Open-set DA Avg.
SHOT [Liang et al., 2020] 79.3 SHOT [Liang et al., 2020] 72.8
HCL [Huang et al., 2021] 79.6 HCL [Huang et al., 2021] 72.6
JMDS [Lee et al., 2022] 83.2 CoWA [Lee et al., 2022] 73.2
AaD [Yang et al., 2022] 79.7 AaD [Yang et al., 2022] 71.8
CRS [Zhang et al., 2023b] 80.6 CRS [Zhang et al., 2023b] 73.2
Ours 87.6 Ours 76.6

Table 4: Partial-set SFDA and Open-set SFDA on Office-Home
benchmarks. Bold numbers indicate the best results among SFDA
methods.

1% and 1.3% on Office-31 and Office-Home, respectively,
compared to the simple fusion strategy. The effectiveness
of applying dynamic mask prompt learning to individual or
both branches is confirmed. In Figure 4, we also visualize
the masks generated in the dynamic mask prompting compo-
nent. As shown, the background and distracting content are
successively suppressed, hence enabling the model to better
learn from the target data.

Figure 5: Classification results of our method under different param-
eter settings (i.e., φ , ξ) for different transfer tasks in Office-Home.

Hyper-parameter Analysis. We investigate the impact of
hyper-parameters in our proposed method, i.e., the threshold
φ for GMM and the percentage ξ for selecting on activation
maps. We conduct the classification task on Office-Home
(i.e., Cl-Ar, Cl-Pr) by varying the value of φ in the range of
[0.7,0.9] and the value of ξ in the range of [0.05,0.25]. The re-
sults are illustrated in Figure 5. The accuracy decreases when
the value of φ becomes small (i.e., 0.7). This is because the

SPB VLB DMP Office-31 Office-Home DomainNet Avg.
- - 91.1 75.9 71.1 79.4

- - 81.7 82.4 82.3 82.1
- 92.3 84.1 83.9 86.8

- 91.6 77.6 72.4 80.5
- 82.3 83.0 82.7 82.7

93.3 85.4 85.6 88.8

Table 5: Ablation study of different components of the proposed
method. “SPB” and “VLB” denote the source-pretrained branch
tuning and the vision-language branch, respectively.

initial pseudo-labels of the model are of good quality, and
when setting at a lower φ, it is easy to confuse the correct
labels leading to poor training results. If the value of ξ is too
large or small, it is easy to get poor results. Too many mask
patches may lose discriminative information, while too few
mask patches will contain noisy information. This also shows
the effectiveness of our proposed dynamic masked prompt.

5 Conclusion
In this paper, we present a collaborative framework for
source-free domain adaptation, which exploits the inherent
advantages of traditional model-centric protocol and large-
scale vision-language model to complement each other. To
enhance the interaction between the two paradigms, we fur-
ther introduce a novel dynamic mask prompting mechanism
that adaptively suppresses noisy and distracting visual con-
tent during training. Extensive experiments have been con-
ducted to analyze the proposed approach, and the results
demonstrate that our method outperforms previous state-of-
the-art of source-free domain adaptation.

Acknowledgments
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2022YFA1004100, the National Natural Science Foundation
of China under Grant 62306066, and the Sichuan Province
Innovative Talent Funding Project for Postdoctoral Fellows
under Grant BX202313.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1649



References
[Chen et al., 2022] Dian Chen, Dequan Wang, Trevor Dar-

rell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In CVPR, pages 295–305, 2022.

[Dosovitskiy et al., 2020] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[Fahes et al., 2023] Mohammad Fahes, Tuan-Hung Vu, An-
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