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Abstract
Precise perception of articulated objects is vital
for empowering service robots. Recent studies
mainly focus on point cloud, a single-modal ap-
proach, often neglecting vital texture and lighting
details and assuming ideal conditions like optimal
viewpoints, unrepresentative of real-world scenar-
ios. To address these limitations, we introduce
MARS, a novel framework for articulated object
characterization. It features a multi-modal fusion
module utilizing multi-scale RGB features to en-
hance point cloud features, coupled with reinforce-
ment learning-based active sensing for autonomous
optimization of observation viewpoints. In exper-
iments conducted with various articulated object
instances from the PartNet-Mobility dataset, our
method outperformed current state-of-the-art meth-
ods in joint parameter estimation accuracy. Addi-
tionally, through active sensing, MARS further re-
duces errors, demonstrating enhanced efficiency in
handling suboptimal viewpoints. Furthermore, our
method effectively generalizes to real-world articu-
lated objects, enhancing robot interactions. Code is
available at https://github.com/robhlzeng/MARS.

1 Introduction
In an era increasingly marked by the integration of robotic as-
sistance into everyday scenarios, conducting research on the
precise perception of articulated objects, such as kitchen uten-
sils and personal devices, is of paramount importance. These
objects often have intricate joints and multiple moving parts,
presenting unique and complex challenges in robotic percep-
tion and manipulation.

By precisely perceiving the joint parameters of articu-
lated parts, robots enhance their effectiveness in manipu-
lation planning for these objects, considering parameters
such as joint position, orientation, and part state. We re-
viewed previous research [Yi et al., 2018; Yan et al., 2020;
Jain et al., 2021; Jiang et al., 2022; Chu et al., 2023] and
identified limitations in existing methods. Firstly, Many stud-
ies perceive joint characteristics using a single point cloud
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Figure 1: MARS uses active sensing to find optimal viewpoints
for observing articulated objects, predicting precise joint parame-
ters from RGB and point cloud for command-based robot planning.

modality, neglecting valuable information of color and tex-
ture data. Secondly, different joints, such as revolute and
prismatic, necessitate separate perception networks, which
can limit practical applications. Lastly, current work often
assumes the availability of an ideal observation viewpoint,
disregarding scenarios where the target part is obstructed or
invisible. However, robots frequently face suboptimal view-
ing angles, hindering complete object observation.

To address these challenges, MARS implements a mul-
timodal fusion strategy with a novel multi-layer dueling
module, efficiently extracting and combining feature maps
from diverse convolutional layers into a more effective,
information-dense image feature representation. Subse-
quently, MARS integrates multi-scale RGB features and
point cloud features via a transformer encoder-based fusion
module. Moreover, MARS standardizes the description of
joint parameters, allowing for the perception of various joint
types through a single network. Addressing the issues posed
by suboptimal viewing angles, MARS features a Reinforce-
ment Learning (RL) driven active sensing strategy. This ap-
proach authorizes dynamic camera position adjustment, en-
suring acquisition of the most informative viewpoint.

Ultimately, we introduce a comprehensive task flow for
robotic perception and manipulation of articulated objects, as
shown in Fig. 1. The process starts with the robot selecting
an object part, then inputting corresponding RGB images and
point cloud data into the perception network to determine the
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part’s movability and identify joint parameters. If deemed
movable and the perception score exceeds a threshold, the
robot plans a manipulation sequence based on the identified
joint parameters as well as the operation command. Con-
versely, when suboptimal viewing angles are detected, the
robot adjusts its viewpoint for further assessment, ensuring
reliable, precise interactions with the articulated objects.

To rigorously test our model, experiments were conducted
on Sapien simulation platform [Xiang et al., 2020] using
PartNet-Mobility [Mo et al., 2019]. Our method showed sig-
nificant advancements, evident in notable performance im-
provements over existing benchmarks. Key contributions are
summarized as follows.

• We developed a multimodal feature fusion technique
that significantly enhances point feature representation
by integrating multi-scale image details, thus substan-
tially improving representational capability.

• We developed an active sensing technique grounded in
reinforcement learning, empowering the robot to au-
tonomously optimize its camera position to capture the
most informative viewpoint.

• MARS achieved state-of-the-art in joint parameter esti-
mation for diverse articulated objects. It effectively per-
ceives both revolute and prismatic joints using a single
network, validated in real-world applications.

2 Related Works
Articulated Object Characterization. To enhance robotic
capabilities in perceiving and manipulating articulated ob-
jects, a wealth of simulators [Todorov et al., 2012; Xiang et
al., 2020; Szot et al., 2021] and open datasets [Chang et al.,
2015; Mo et al., 2019; Wang et al., 2019; Geng et al., 2023]
have emerged as essential resources. These tools have fa-
cilitated advancements in 3D reconstruction [Li et al., 2020;
Bozic et al., 2021; Yang et al., 2021], joint parameter estima-
tion [Jain et al., 2021; Shi et al., 2021; Zeng et al., 2021;
Jiang et al., 2022; Chu et al., 2023], and the prediction
of interactive positions and trajectories [Mo et al., 2021;
Wu et al., 2021; Wang et al., 2022] for articulated objects.

In joint parameter estimation, prior work [Yi et al., 2018;
Abbatematteo et al., 2019; Shi et al., 2021; Jain et al., 2021;
Siarohin et al., 2021; Jiang et al., 2022] has leveraged multi-
view observations from ongoing monitoring as visual inputs,
capitalizing on the rich visual cues provided by the chang-
ing joint states. However, this method complicates data col-
lection, limiting its practicality in real-world robotics. Fur-
thermore, many studies [Yan et al., 2020; Jiang et al., 2022;
Chu et al., 2023] rely exclusively on point cloud data, ne-
glecting the valuable features available in RGB imagery that
can enhance joint parameter estimation. Our methodology
focuses on employing a single RGB image along with point
cloud data to achieve accurate perception of joint parameters.

Multimodal Feature Fusion. In the realm of multimodal
feature fusion, especially in combining RGB and point cloud
data, current research predominantly focuses on 3D object de-
tection [Ku et al., 2018; Sindagi et al., 2019; Zhu et al., 2021;
Piergiovanni et al., 2021; Wu et al., 2022; Zhang et al., 2022].

However, due to differences in input data, these fusion meth-
ods often struggle to be directly applicable and effective in
joint analysis. A notable example similar to our approach
is EPNet [Huang et al., 2020], which enhances point cloud
features by integrating image features into the point cloud
domain, utilizing both local and global contexts of images.
In contrast, our method employs a competitive mechanism
to dynamically prioritize the significance of image features
across various scales.
Active Sensing. In practical applications, the challenging
task of obtaining optimal imaging angles for robots [Ammi-
rato et al., 2017; Zhao et al., 2022] underscores the need for
active sensing. This technique entails dynamically adjusting
sensor positions or the manipulation environment to enhance
data acquisition, proving essential for certain tasks [Han et
al., 2019; Mattamala et al., 2021; Safronov et al., 2021],
especially in scenarios where initial views are insufficient
due to partial occlusions or limited visibility of articulated
objects. In current studies, researchers commonly assume
that high-quality images and point clouds can be obtained
from an ideal viewpoint [Jain et al., 2021; Yang et al., 2021;
Jiang et al., 2022; Chu et al., 2023], but such assumptions
frequently fail to align with the reality. Our approach suc-
cessfully adapts to complex real-world application scenarios
by incorporating active sensing techniques.

3 Method
We introduce MARS, a framework designed for estimating
joint parameters in articulated objects. As depicted in Fig. 2,
MARS consists of two primary components: Multimodal
Feature Fusion Perception (MFFP) and Active Sensing (AS).

The MFFP component of MARS utilizes ResNet18 [He et
al., 2016] and PointNet++ [Qi et al., 2017] as backbone net-
works to efficiently extract features from the input RGB im-
age and point cloud data. The Multi-Layer Dueling Module
(MLDM) is designed to strategically extract and weigh im-
age features across different scales. Following this, image
and point cloud features are merged at the feature level via
a specialized fusion module. A decoding module then pro-
cesses these integrated features to produce outputs for joint
parameters and a perception score, reflecting the efficacy of
the current viewpoint.

The AS module operates based on the perception score and
a set threshold. If the score is below this threshold, it trig-
gers a viewpoint change. A new observation position is de-
termined from the action space, followed by a repeated per-
ception process. This approach enables real-time adjustments
for optimal data acquisition and improved joint parameter es-
timation in complex or obstructed scenarios.

3.1 MLDM
Employing ResNet, we capturing a range of articulated ob-
ject RGB features from local to global, as depicted in Fig. 3a.
For each feature map f i

r ∈ RCi×Hi×W i

with Ci channels
and spatial dimensions Hi×W i, and for point cloud features
f j
p ∈ RNj×K comprising N j points each of K dimensions,

we perform point-wise convolution and subsequent pooling
operations to aggregate the features (as shown in Fig. 3b).
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Figure 2: MARS Framework with MFFP and AS components. MFFP integrates RGB and point cloud data, utilizing MLDM for adaptive
RGB feature scaling (see Fig. 3) and a Fusion Block for combining features, aiding in joint parameters prediction. AS adjusts viewpoints
under suboptimal conditions, enhancing perception accuracy in real-world scenarios.

Figure 3: MLDM Architecture for RGB Image Feature Aggrega-
tion. (a) Image feature maps f i

r are extracted at multiple scales from
ResNet blocks. (b) These feature maps are first combined with point
cloud feature f j

p , upon which adaptive weights wi are computed to
form the final weighted image feature representation fr .

The aggregated image feature f̄ i
r ∈ RK is computed as fol-

lows:
f̄ i
r = g

(
δ
(
B
(
PWConv(f i

r)
)))

, (1)
where g is the global average pooling, δ is the ReLU func-
tion [Nair and Hinton, 2010], and B represents BN [Ioffe and
Szegedy, 2015], with the kernel size for the PWConv being
K × 1 × 1. For point cloud feature aggregation, the max
pooling operation m is utilized:

f̄p = m
(
f j
p

)
. (2)

We combine the aggregated features f̄ i
r and f̄p, and use a

Multi-Layer Perceptron (MLP) to determine the weights for
the final RGB image feature fr ∈ RK . The computation is
given by:

fr =
n∑

i=1

(
f̄ i
r ⊗ σ

(
θw

(
f̄ i
r + f̄p

)))
, (3)

where σ represents the softmax function, and θw denotes the
learnable parameters within the MLP. Comprising two linear

layers with a ReLU activation between them, the MLP scales
up and then reduces the dimensions of the fused feature to
compute the weight wi ∈ R1. The operation ⊗ indicates
element-wise multiplication. The weights from all blocks are
then combined to form the final weight distribution w.

3.2 Feature Fusion Block
This component leverages transformer encoders [Vaswani et
al., 2017], intentionally excluding positional embedding due
to the intrinsic spatial information of the RGB and point cloud
features. The input tokens tj = f j

p ⊕ fr ∈ RNj×2K for the
fusion module are formed by concatenating image feature to
each point feature. A CLS token tCLS is also incorporated to
encapsulate global features, which is pivotal for the model’s
generalization. The Feature Fusion Block outputs a global
feature fCLS ∈ R2K and local features f̃ j

p ∈ RNj×2K for
each point, expressed as:

{fCLS, f̃ j
p} = FL(FL−1(. . .F1(t

CLS, tj) . . .)), (4)

where Fl is the l-th layer of the fusion block.

3.3 Articulation Decoders
We utilize the global feature fCLS to determine the movability
of the chosen rigid part, represented as a binary variable τ ∈
0, 1, where τ = 0 signifies an immovable part and τ = 1 a
movable part. An MLP head dedicated to this task decodes
this parameter:

τ = θmov (fCLS) (5)

Joint Parameters. Upon determining the movability of the
target part, we assume a fully closed position as the initial
state to estimate the joint parameters. These include the joint
type ρ ∈ 0, 1, where ρ = 0 indicates a revolute joint and
ρ = 1 a prismatic joint, the joint position h ∈ R3, orientation
u ∈ R3, and the current state v ∈ R. Unlike previous models
that omit position predictions for prismatic joints [Jiang et
al., 2022; Chu et al., 2023], our framework accommodates
both revolute and prismatic joints, identifying the centroid of
the movable part as the position for the prismatic joint. The
joint type ρ is deduced from fCLS using an MLP head. For the
joint parameters, a shared voting module leverages each point
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pj ∈ RNj×3 and its corresponding feature f̃ j
p ∈ RNj×2K

for point-wise voting to infer hj , uj , and vj . The final joint
parameters are then the mean of these votes:

ρ = θtype (fCLS) ,

{hj , uj , vj} = θpara
(
pj , f̃ j

p

)
,

{h, u, v} =
1

N
{

N∑
j=1

hj ,
N∑
j=1

uj ,
N∑
j=1

vj}.
(6)

Perception Score. To assess the quality of perception re-
sults, we use an additional MLP head with fCLS as the input.
This module predicts the likelihood of successful perception
γ ∈ (0, 1) in the following manner:

γ = ζ(θscore(fCLS)), (7)

where ζ is the sigmoid activation function, ensuring γ falls
between 0 and 1. A success threshold of 0.5 is set for binary
decision-making within the module.
Loss Functions. To supervise the predictions of movability
and joint type, binary cross-entropy loss functions Lmov and
Ltype are utilized. For joint state prediction, an L1 norm loss
function Lstate is employed. As the perception score predic-
tion has been transformed into a binary classification task for
assessing viewpoint optimality, it is supervised using binary
cross-entropy loss Lscore. To penalize the discrepancy in ori-
entation between the estimated joint and the ground truth û,
which is a unit vector, the loss Lori is defined as:

Lori =
1

N

N∑
j=1

arccos
(
û · uj

)
, (8)

The loss Lpos penalizes the distance between the estimated
projection point hj and the actual joint axis û:

Lpos =
1

N

N∑
j=1

||(hj − ĥ)× û||. (9)

Training Steps. In the initial training phase, we pre-train
the model parameters using the movability loss Lmov along
with the corresponding decoding head. This step is crucial
for ensuring efficient learning of movability prediction. For
joint parameter prediction, the model is trained to minimize
the differences between the predicted and the actual ground
truth values. The cumulative loss for this training phase is
given by:

Lpara = Ltype + Lori + Lpos + Lstate (10)

In the final training stage, parameters except for the percep-
tion scoring decoder are fixed, with the training focused on
optimizing the scoring decoder using the loss Lscore.

3.4 The RL Policy For Active Sensing
Training of a conditional RL policy, using a DQN ap-
proach [Mnih et al., 2015], follows the completion of percep-
tion module training. This policy, aimed at active viewpoint
optimization, is trained within a simulated environment. Suc-
cess in a training iteration occurs when the perception score
exceeds 0.5; over 5 action steps indicate failure. Details of
the RL policy are provided in the following section.

Figure 4: (a) Sixteen discrete positions constitute the discrete action
space for viewpoint selection. (b) Comparative analysis of point
cloud quality obtained from different viewpoints.

State Space. In the state space, a pre-trained perception
network processes an RGB image and point cloud from the
current viewpoint, yielding the global feature fCLS. Addi-
tionally, the position of camera is represented as a one-hot
encoded vector x ∈ R16, indicating one of 16 distinct posi-
tions. The state input for the RL algorithm is formed by the
combination of fCLS and this one-hot encoded position x.

Action Space. We established a discrete action space A ∈
{0, 1}16 with 16 viewpoints around the object. This action
space aligns with the coordinate framework of the object, as
depicted in Fig. 4a. To better simulate a real environment,
some locations will be randomly set as unreachable.

Reward Design. The per-step rewards rstep are determined
by two primary criteria: perception score and point cloud
quantity variation. To balance these aspects, the step reward
is defined as:

rstep = λsrscore + λnrnum, (11)

where λs and λn are weight coefficients that adjust the rel-
ative importance of rscore and rnum in the reward. Here,
rscore = s−s′ represents the change in perception scores be-
fore and after an action, and the point cloud variation reward
is given by:

rnum =
n− n′

n′ − 1, (12)

where n denotes the number of point clouds. Additionally, at
the end of a round, a positive reward of +10 is assigned for
successful task completion. Conversely, a negative reward of
−10 is incurred if the task fails due to exceeding the action
step limit.

3.5 Command-Based Point Cloud Manipulation
We use perceived joint parameters for point cloud manipula-
tions based on operational commands C. The system mod-
ifies the joint state in response to C, involving adjustments
such as angle and position changes. Specifically, C specifies
the target state for the joint, and we calculate the difference
between this target and the current perceived joint state as the
operational compensation ∆v = C − v. Based on ∆v, joint
orientation u, and joint position h, we compute a rotation-
translation matrix M to represent the current operation. The
matrix is calculated as follows:

M =

[
R(∆v, u) T (∆v, h)

0 1

]
, (13)
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Methods Revolute Prismatic AvgLaptop Chair Pliers Safe Eyeglass Fridge Scissor Door Micro Oven Table Storage Window Knife

Errors of Joint Position

RPM-Net 0.12 0.10 0.13 0.16 0.18 0.14 0.17 0.25 0.16 0.21 - - - - 0.16/-
ANCSH 0.08 - - - 0.06 - - - 0.06 0.12 - - - - 0.08/-
Ditto 0.03 0.02 0.03 0.06 0.04 0.06 0.04 0.06 0.03 0.03 - - - - 0.04/-
Cart 0.03 0.03 0.03 0.06 0.03 0.04 0.03 0.06 0.05 0.03 - - - - 0.04/-
EPNet* 0.03 0.03 0.04 0.05 0.05 0.05 0.03 0.07 0.03 0.04 0.15 0.25 0.04 0.03 0.04/0.12

MFFP(Ours) 0.02 0.02 0.03 0.05 0.03 0.05 0.02 0.05 0.03 0.02 0.13 0.21 0.02 0.01 0.03/0.09
w/o MLDM 0.03 0.03 0.03 0.06 0.04 0.05 0.02 0.06 0.03 0.04 0.15 0.22 0.04 0.03 0.04/0.11

Errors of Joint Orientation

RPM-Net 10.73◦ 11.69◦ 7.83◦ 12.64◦ 20.52◦ 6.27◦ 4.85◦ 16.38◦ 7.42◦ 5.28◦ 17.37◦ 9.63◦ 7.84◦ 5.92◦ 10.36◦/10.19◦

ANCSH 3.92◦ - - - 5.87◦ - - - 3.64◦ 3.15◦ - 7.74◦ - - 4.15◦/7.74◦

Ditto 1.52◦ 2.54◦ 1.42◦ 2.98◦ 1.87◦ 2.21◦ 1.33◦ 1.96◦ 1.30◦ 1.70◦ 1.83◦ 4.74◦ 2.73◦ 1.76◦ 1.88◦/2.77◦

Cart 1.45◦ 2.78◦ 1.23◦ 2.04◦ 1.82◦ 2.03◦ 1.26◦ 2.48◦ 1.26◦ 1.78◦ 1.78◦ 4.03◦ 2.56◦ 1.69◦ 1.81◦/2.52◦

EPNet* 0.94◦ 1.69◦ 1.15◦ 1.53◦ 1.27◦ 4.38◦ 1.16◦ 1.79◦ 0.83◦ 1.02◦ 2.37◦ 4.14◦ 0.18◦ 0.16◦ 1.58◦/1.71◦

MFFP(Ours) 0.08◦ 0.44◦ 0.06◦ 0.24◦ 0.39◦ 3.36◦ 0.05◦ 1.51◦ 0.28◦ 0.10◦ 0.42◦ 2.96◦ 0.04◦ 0.04◦ 0.65◦/0.87◦

w/o MLDM 0.56◦ 1.78◦ 0.95◦ 1.24◦ 1.72◦ 4.16◦ 0.68◦ 3.23◦ 2.24◦ 0.87◦ 1.08◦ 4.27◦ 0.25◦ 0.56◦ 1.74◦/1.54◦

Errors of Joint State

RPM-Net 15.38◦ 17.99◦ 14.66◦ 9.96◦ 18.85◦ 16.45◦ 8.24◦ 25.78◦ 19.91◦ 14.24◦ 0.27 0.31 0.38 0.11 16.15◦/0.27
ANCSH 10.15◦ - - - 15.74◦ - - - 14.72◦ 9.03◦ - 0.24 - - 12.41◦/0.24
Ditto 3.98◦ 4.98◦ 3.89◦ 4.18◦ 7.73◦ 6.14◦ 3.05◦ 13.53◦ 6.80◦ 3.86◦ 0.05 0.07 0.16 0.02 5.81◦/0.08
Cart 3.64◦ 5.53◦ 3.14◦ 4.20◦ 6.43◦ 5.83◦ 2.79◦ 11.07◦ 3.74◦ 3.18◦ 0.04 0.08 0.17 0.02 4.96◦/0.08
EPNet* 1.96◦ 3.79◦ 2.37◦ 3.53◦ 3.79◦ 5.25◦ 2.53◦ 13.49◦ 5.53◦ 2.64◦ 0.09 0.08 0.18 0.02 4.49◦/0.09

MFFP(Ours) 1.21◦ 3.20◦ 1.98◦ 2.38◦ 3.13◦ 5.30◦ 1.94◦ 12.03◦ 4.88◦ 1.34◦ 0.05 0.07 0.13 0.01 3.74◦/0.07
w/o MLDM 1.79◦ 3.78◦ 2.05◦ 2.94◦ 4.24◦ 5.80◦ 2.39◦ 15.48◦ 5.51◦ 2.28◦ 0.06 0.08 0.20 0.02 4.63◦/0.09

Table 1: Quantitative evaluation of joint parameters estimation across 14 categories. The best results are in bold, with our method demon-
strating superior performance in most categories.

where R(∆v, u), the rotation matrix, is derived from ∆v and
joint orientation u. T (∆v, h), the translation vector, is calcu-
lated from ∆v and joint position h.

4 Experimental Evaluation
We evaluated perception capabilities of MARS for articulated
objects. Quantitative assessment across various object cate-
gories confirmed accuracy of the MFFP module in estimating
joint parameters. Integration of active sensing for viewpoint
optimization significantly enhanced algorithm performance.
Visual demonstrations of command-based point cloud manip-
ulation and qualitative showcasing of method effectiveness on
real-world objects were also conducted.

4.1 Experimental Setup
Datasets. For evaluation, we utilized the SAPIEN simula-
tor [Xiang et al., 2020] and PartNet-Mobility dataset [Mo et
al., 2019], selecting 14 common articulated objects (10 with
revolute and 4 with prismatic joints). In the simulator, these
objects, with randomized joint states and camera positions,
generated various viewpoint samples (see Fig. 4b). Post mov-
ability prediction module training, immovable parts data was
removed, resulting in 10K training, 1K testing, and 1K valida-
tion samples for each category for perception network train-
ing. Image data was captured at 600 × 600 resolution using
an RGB-D camera.

Baselines. We benchmarked our method against six ap-
proaches. RPM-Net [Yan et al., 2020] employs recurrent
neural networks for predicting object motion from point
clouds. ANCSH [Li et al., 2020] focuses on joint param-
eter estimation in canonical object space. Ditto [Jiang et
al., 2022] utilizes multi-view for articulated object under-
standing. Cart [Chu et al., 2023], the current state-of-the-art
(SOTA), specializes in joint parameter estimation. To facil-
itate prediction of the current joint state by Cart, a ’Closed’
command was issued in each evaluation. EPNet [Huang et
al., 2020], a multimodal fusion approach for 3D object detec-
tion, was adapted by replacing our MLDM module with its
LiDAR-guided Image Fusion (LI-Fusion) module, enabling
EPNet* to estimate joint parameters. Additionally, we in-
cluded an ablated version of MARS lacking MLDM for com-
parison. Lastly, we proportionally increased poor viewpoints
data for all methods to ensure a fair comparison.
Evaluation Metrics. Our investigation primarily focuses
on the estimation errors of articulated object joint parameters.
Specifically, we measure errors in estimating joint orienta-
tion, joint position, and the current joint state of the selected
part relative to its fully closed initial state.
RL Environment. To train and validate active sensing
strategies, a reinforcement learning environment was con-
structed. In each training round, an object is randomly im-
ported into the simulation environment, and a camera posi-
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Figure 5: Comparison of point cloud-level manipulation visualizations, where blue dots represent selected parts and C denotes the current
manipulation command.

tion is initialized within the action space with a step size limit
of 5. For testing purposes, the step size is set to 1. If the
initial sensing score falls below a predefined threshold, the
robot selects a new observation position based on the action
strategy.

4.2 Main Results.
Comparison of joint parameters estimation. Table 1
shows the joint parameter estimation results from our quan-
titative evaluation, where our method surpasses the SOTA in
most categories and closely matches it in the rest. This su-
perior performance can be attributed to our robust feature
representation, a result of the multimodal fusion approach
that effectively utilizes the rich information in RGB images
to enhance point cloud features. Additionally, in compar-
ison to EPNet*, our MLDM exhibits enhanced multi-scale
feature extraction capabilities, significantly improving articu-
lated object perception. It’s important to note that joint state
estimation is the most challenging, with the largest errors.
Our method leads in performance, yet encounters a 3.74° er-
ror in revolute joints and 0.07m in prismatic joints. The large
error mainly arises from poor observation perspectives in the
acquired data, as depicted in Figure 4b. Practically, robots
often encounter such angles, highlighting the importance of
active sensing to adjust the viewpoint.
Ablation Studies. Table 1 demonstrates evaluation of the
MLDM module impact on performance. Across all cate-
gories, the complete version outperformed the ablated version
in joint parameter estimation. Notably, even the ablated ver-
sion marginally surpassed other approaches, highlighting the
effectiveness of multimodal fusion with RGB data combined
with limited point cloud input.
Harmonized Training for Mixed Joint Types. To address
the need for separate models for revolute and prismatic joints
in current approaches, joint parameter representation was

Class Type acc Position Orientation State

Revolute Micro 100% 0.03 0.35◦ 4.05◦

Oven 100% 0.03 0.27◦ 1.37◦

Prismatic Table 100% 0.14 2.63◦ 0.06
Storage 100% 0.25 4.57◦ 0.07

Table 2: Results from harmonized training on mixed joint types

standardized by defining prismatic joint positions at centroids
of movable parts. As demonstrated in Table 2, with bal-
anced training samples for both joint types, 100% accuracy
was achieved in joint type prediction. Performance slightly
declined compared to models trained on each joint type sep-
arately, yet notable results were still achieved in quantitative
joint parameter evaluation.
Visualization results. We visualized and evaluated point
cloud level manipulations by first specifying the desired joint
state as a command, such as ’open 100◦’. Then, we executed
the corresponding manipulation on the point cloud of the se-
lected part using the rotation-translation matrix computed as
per Equation (13). Fig. 5 compares the performance of RPM-
Net [Yan et al., 2020], Cart [Chu et al., 2023], and our method
against the ground truth, with blue dots indicating the se-
lected parts. Overall, our method more accurately reflects the
real situation post-manipulation. In comparison, Cart tends
to have larger state estimation errors, resulting in poorer ma-
neuvering performance. RPM-Net often incorrectly predicts
the joint direction, leading to significant discrepancies with
actual ground conditions.

4.3 Enhancing Results through Active Sensing
We compared the performance of our method with and with-
out the active sensing module. To expedite testing, we pre-
collected samples from each articulated object instance at 16
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Figure 6: (a)Reward trends across there categories;(b)Bar chart showing joint state error reduction using active sensing in MARS versus
MFFP, with MFFP normalized to 100% and the red line at 50%.

Figure 7: Real world Experiments.

camera positions after randomizing joint states. For each in-
stance, the initial camera viewpoint provided a perception re-
sult to establish MFFP performance. A single active sensing
adjustment informed by the perception score followed, mark-
ing the outcome of this camera position change as MARS per-
formance. Fig. 6a charts the learning curves for active sens-
ing in three categories, with cumulative rewards increasing
and eventually converging over time, a pattern echoed across
other categories not depicted. Fig. 6b presents a performance
comparison of the two models, where the estimation error
for the most challenging joint state in each articulated ob-
ject class is normalized to 100% for MFFP. Bar graphs sub-
sequently illustrate the proportional error reduction achieved
by MARS. Overall, MARS achieved an average error reduc-

tion of approximately 50% across all categories, particularly
notable in categories of articulated objects with larger sizes
and inherent self-occlusion issues. This analysis underscores
the efficacy of active sensing in enhancing the accuracy of our
method, demonstrating its vital role in complex joint param-
eter estimation.

4.4 Real-world Experiments
To validate the generalizability of our method in real-world
settings, we selected two articulated objects: a door and a
table with drawers. As depicted in Fig. 7, we used an In-
tel RealSense RGB-D camera on a mobile robot to capture
RGB and point cloud data of these objects. Segmentation
of the rigid parts was achieved using 3D U-Net [Choy et
al., 2019]. The perception scoring module assessed the in-
put viewpoint quality. If the score fell below the threshold,
active sensing guided the robot to a new position ID for ad-
ditional data acquisition. Once the perception score exceeded
the threshold, the robot formulated its action plan based on
the perception results and specified commands. Interaction
positions between the robot and the object were manually as-
signed, leading to the successful manipulation of the target
object.

5 Conclusion
In this paper, we introduced MARS, a multimodal frame-
work specifically designed for accurately sensing joint pa-
rameters of articulated objects. Central to this framework is
the MLDM, an innovative approach for adaptive multiscale
feature fusion that significantly enhances image feature rep-
resentation. MARS utilizes a transformer encoder, devoid
of positional embedding, to effectively integrate RGB fea-
tures with point cloud data.The significant advancement in
this work is the reinforcement learning-based active percep-
tion strategy, empowering robots to autonomously seek new
perspectives and substantially improve practical applicability
in response to inadequate perception. Future research aims to
enhance MARS by seeking more powerful point cloud repre-
sentation capabilities and improving algorithmic generaliza-
tion to cover a broader range of articulated objects.
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