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Abstract

Recently, heatmap regression methods based on 1D
landmark representations have shown prominent
performance on locating facial landmarks. How-
ever, previous methods ignored to make deep ex-
plorations on the good potentials of 1D landmark
representations for sequential and structural mod-
eling of multiple landmarks to track facial land-
marks. To address this limitation, we propose
a Transformer architecture, namely 1DFormer,
which learns informative 1D landmark represen-
tations by capturing the dynamic and the geomet-
ric patterns of landmarks via token communica-
tions in both temporal and spatial dimensions for
facial landmark tracking. For temporal modeling,
we propose a confidence-enhanced multi-head at-
tention mechanism with a recurrently token mix-
ing strategy to adaptively and robustly embed long-
term landmark dynamics into their 1D representa-
tions; for structure modeling, we design intra-group
and inter-group geometric encoding mechanisms to
encode the component-level as well as global-level
facial structure patterns as a refinement for the 1D
representations of landmarks through token com-
munications in the spatial dimension via 1D convo-
lutional layers. Experimental results on the 300VW
and the TF databases show that 1DFormer success-
fully models the long-range sequential patterns as
well as the inherent facial structures to learn infor-
mative 1D representations of landmark sequences,
and achieves state-of-the-art performance on facial
landmark tracking. Codes of our model are avail-
able in the supplementary materials.

∗Corresponding Authors
The links of supplementary materials: https://drive.google.

com/file/d/1J0q5eY4R 5iQ-3Wa8ZaHQgFJtjeZwK-X/view?
usp=drive link, also available at: https://pan.baidu.com/s/
1MPpD4S7h2x5rcUhQo5nF2g, extraction code: ml75

1 Introduction

Tracking facial landmarks from a video stream [Wu and Ji,
2019; Chrysos et al., 2018] is a fundamental task for human-
centered applications, such as human-computer interaction,
emotion analysis, and face recognition [Wang et al., 2021b],
while remaining unsolved in the challenging “in-the-wild”
scenarios. Recently, 1D heatmap regression methods, which
are built based on 1D landmark representations, i.e., the
light-weight 1D feature vectors and heatmaps representing
the marginal distribution of every landmark on each axis as
depicted in Figure 1, have achieved prominent performance
for landmark localization of human faces [Yin et al., 2020;
Xiong et al., 2020; Kang et al., 2023], human bodies [Moon
and Lee, 2020; Li et al., 2022c; Chi et al., 2022] and objects
[Liu et al., 2022]. Compared to the 2D landmark representa-
tions [Newell et al., 2016; Bulat and Tzimiropoulos, 2017;
Wang et al., 2021a] with quadratic spatial complexity, the
1D representations, with a linear spatial complexity, could
achieve higher resolution on each axis and enough feature
channels under the limited machine memory. Thus, these
methods based on 1D representations could capture more de-
tails of the spatial patterns of landmarks and bring a lower
quantization error as well as a better accuracy on locating fa-
cial landmarks under the same hardware condition. However,
previous methods have not fully explored the good potentials
of 1D landmark representations for temporal sequence mod-
eling, which is critical for the facial landmark tracking task.
What’s more, all of these methods predicted the 1D represen-
tation of each landmark in a loosely coupled manner, lack-
ing considerations of structural modeling upon multiple land-
marks. These limitations caused the accuracy bottleneck of
these methods.

To address these, as shown in Figure 2, we propose a
Transformer-based 1D representation learning method, i.e.,
1DFormer, to effectively capture the temporal and structural
patterns of multiple landmarks for facial landmark tracking.
The clusters of 1D landmark representations, including the
hidden features as well as the output heatmaps, are in the form
of a sequence of 1D light-weight vectors, which are the ideal
input and output patterns of Transformer. Thus, we build our
method based on the paradigm of Transformer and develop
a Transformer architecture with both temporal modeling and
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Figure 1: An illustration of 1D heatmap regression methods, which
are built upon 1D landmark representations, including 1D feature
vectors and heatmaps.

structural modeling techniques. For temporal modeling, we
propose a confidence-enhanced multi-head attention mech-
anism with a recurrently token mixing strategy to integrate
long-range temporal information from past frames to enhance
the features of the current time step through efficient window
sliding and information delivery. The attention mechanism
combines the temporal correlations learned from the key-
query mechanism as well as the confidence score of feature
qualities as the integrated attention weights, robustly guiding
the fusion of features from different time steps despite chal-
lenging imaging conditions. For structural modeling, to make
full use of the intrinsic geometry patterns of faces for land-
mark tracking, we design an intra-group and an inter-group
geometry encoding mechanisms to embed component-level
as well as global-level facial structure patterns as a refine-
ment for the 1D representations of the landmark sequence.
It is expected that these mechanisms can effectively extract
the structural patterns of multiple landmarks, and meanwhile,
keep the clear semantic of each landmark. For that purpose,
we adopt 1D convolutional layers instead of the vanilla at-
tention layers for token communications in the spatial di-
mension. Through the structural modeling mechanisms, the
learned facial structures are helpful to correct the texture dis-
turbances caused by occlusions or uneven illumination condi-
tions, and further improve the landmark tracking performance
for “in-the-wild” scenarios.

The main contributions of this paper can be summarized
as the following. First, as far as we know, we are the first
to fit the prominent Transformer paradigm on learning infor-
mative 1D representations of facial landmark sequences for
facial landmark tracking. Second, we propose a new Trans-
former architecture, namely 1DFormer, with both temporal
modeling and structural modeling mechanisms, to explore the
good potentials of 1D representation learning on modeling
the long-term sequential as well as the geometric patterns of
facial landmarks. Third, as demonstrated by experiments on
the 300VW database and the TF database, the tracker based
on 1DFormer achieves state-of-the-art performance for facial
landmark tracking with a significant improvement of accu-
racy and stability performance compared to the related works.

2 Related Work
As the mainstream of key point detection and tracking,
heatmap regression methods explicitly modeled the spatial
distributions of landmarks by learning to predict the proba-

bility intensity that a landmark appears in each position of
the 2D plane or 3D space. Through explicitly capturing the
landmark distributions, these methods achieved a better spa-
tial generalization performance on facial landmark detection
and tracking compared to the conventional coordinate regres-
sion methods which directly regressed the values of landmark
coordinates [Xiong and De la Torre, 2013; Liu et al., 2018;
Simonyan and Zisserman, 2014; Yin et al., 2019; Li et al.,
2013; Wu et al., 2014; Zhu et al., 2022a]. Heatmap regres-
sion methods can be further divided into two categories: 2D
heatmap regression and 1D heatmap regression.

2D heatmap regression methods [Newell et al., 2016;
Peng et al., 2016; Bulat and Tzimiropoulos, 2017; Wang et
al., 2021a; Li et al., 2022a; Li et al., 2022b] modeled 2D
joint distributions, typically assumed as 2D Gaussian dis-
tributions, on the x and y axes in both hidden and output
stages for each landmark. These approaches excelled in spa-
tial generalization but faced challenges due to the high spa-
tial complexity, i.e., O(L2) where L is the resolution of 2D
features and heatmaps, requiring down-sampling of feature
and heatmap resolutions under limited machine space. This
leaded to precision loss and quantization errors, thus limit-
ing the effectiveness in landmark detection tracking. To ad-
dress this, 1D heatmap regression methods [Yin et al., 2020;
Xiong et al., 2020; Moon and Lee, 2020; Li et al., 2022c;
Chi et al., 2022; Liu et al., 2022] replaced some 2D landmark
representations of high spatial complexity with 1D features
and heatmaps. These methods, assuming 1D Gaussian distri-
bution as the marginal distribution of landmarks on each axis,
used strided CNN [Yin et al., 2020], MLP [Li et al., 2022c],
or pooling [Moon and Lee, 2020] to compress image repre-
sentations along one axis while enhancing resolution along
the other. With a feature resolution of L, the spatial complex-
ity is reduced to O(L), allowing higher resolutions per axis
and more feature channels to capture fine-grained details of
landmark distributions. This brings improved landmark lo-
calization performance compared to both coordinate and 2D
heatmap regression methods.

However, previous 1D heatmap regression methods,
mostly detection-based [Xiong et al., 2020; Moon and Lee,
2020; Li et al., 2022c; Chi et al., 2022; Liu et al., 2022;
Kang et al., 2023], lacked depth in time series modeling cru-
cial for landmark tracking. To the best of our knowledge,
only Yin et al. [2020] applied 1D representations to model
temporal sequences of landmarks. However, their sequential
encoder was quite simple with fixed preset weights for fus-
ing features from the past frames, without a dynamic weight
assignment mechanism to adaptively model the temporal cor-
relations and confidences of feature qualities from different
frames. These preset weights also decreased quickly with
the exponential decay of time, causing a sub-optimal perfor-
mance on capturing long-term temporal dependencies from
historical frames. What’s more, these methods ignored to de-
velop an effective interaction mechanism to capture the struc-
tural patterns of multiple landmarks. To address these issues,
we propose a new Transformer architecture adept at long-
range temporal modeling and geometric modeling to enhance
1D representation learning for facial landmark tracking.
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Figure 2: An architectural overview of the proposed facial landmark tracking method, i.e., 1DFormer.

3 Method
The proposed facial landmark tracker consists of an 1D fea-
ture encoder fen(·) as well as two 1D heatmap decoders
fx
de(·) and fy

de(·). The video to be extracted facial land-
marks is denoted as I1:T = [I1; I2, ...; IT ], where It ∈
RH×W×3(1 ≤ t ≤ T ) is the image of the t th frame. fen(·)
encodes I1:T as a cluster of features representing the marginal
distributions of landmarks on the x and y axes for each time
step:

Fx
1 ,Fy

1,Fx
2 ,Fy

2, ...,Fx
T ,Fy

T = fen(I1:T ; θen) (1)

where θen is the parameters of fen(·), Fx
t = [fx1t;

fx2t; ...; fxNt] ∈ RN×L and Fy
t = [fy1t; fy2t; ...; fyNt] ∈ RN×L

respectively denote the 1D representations on x axis and the
y axis at the t th time step. Here N is the number of the
pre-defined landmarks, fxnt(1 ≤ n ≤ N) ∈ R1×L and
fynt ∈ R1×L denote the 1D features for the n th landmark
at the t th time step. Based on Fx

t and Fy
t , the fully con-

nected feed forward 1D heatmap decoders fx
de(·) and fy

de(·),
respectively predict two groups of 1D heatmaps, i.e., hx

nt =
fx
de(f

x
nt) ∈ R1×D and hy

nt = fy
de(f

y
nt) ∈ R1×D, for the two

axes, correspondingly. The x and y coordinates of the land-
mark can be obtained from the peak positions of hx

nt and hy
nt,

respectively. In this paper, we propose a new design of fen(·),
which is composed of a backbone encoder extracting 1D rep-
resentations from each individual frame image, as well as a
Transformer, which we called as 1DFormer, to extract long-
range sequential patterns and geometric structures of facial
landmarks to refine their 1D representations.

3.1 Backbone Encoder
Before processed by 1DFormer, we first extract 1D represen-
tations for every landmark from each individual frame image

through a backbone 1D representation encoder, which is com-
posed of a FAN network [Bulat and Tzimiropoulos, 2017]
cascaded with two groups of strided CNNs [Yin et al., 2020]
to encode 1D representations, i.e., sxnt(1 ≤ n ≤ N, 1 ≤ t ≤
T ) ∈ R1×L and synt, on the two axes, respectively.

3.2 Temporal Modeling Mechanism of 1DFormer
We take attention mechanism to embed the dynamic patterns
of the landmark sequence into sxnt(1 ≤ n ≤ N, 1 ≤ t ≤ T )
and synt, respectively, by integrating the 1D landmark repre-
sentations from different time steps. The inner structures of
our attention modules will be discussed later. Here we firstly
present a recurrently token mixing strategy arranging the in-
puts and outputs of the attention modules to capture the long-
range sequential patterns of facial landmarks from the video
stream, as shown in Eq. (2):

sx
′

nt = Attention(sxnt, sx
′

n(t−1), ..., sx
′

n(t−W+1))

sy
′

nt = Attention(synt, sy
′

n(t−1), ..., sy
′

n(t−W+1))
(2)

where sx
′

nt and sy
′

nt(1 ≤ n ≤ N, 1 ≤ t ≤ T ) are the features
integrated with temporal information of the video through
mixing temporal tokens, i.e., sxnt, sx

′

n(t−1), ..., sx
′

n(t−W+1) or

synt, sy
′

n(t−1), ..., sy
′

n(t−W+1). As a computationally acceptable
way, instead of taking the features from all of the past frames
as the input, we just send the features from a temporal neigh-
borhood window of W frames into the attention modules to
refine the 1D features of landmarks with sequential patterns.
Since the memories of temporal patterns are delivered with
the sliding of the window from the past windows to the cur-
rent window, sx

′

nt and sy
′

nt can still keep a long memory of the
landmark dynamics.
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Figure 3: The internal architecture of a basic block of 1DFormer on
the x axis. The architecture of basic block on the y axis is the same
as the x axis.

We extend the conventional positional embedding of
Transformer as axis-landmark-positional (alp) embeddings
which distinguish not only different position indexes but also
different axes and landmarks, to make the attention mod-
ules aware of the discrepancy of marginal distributions on
different axes, the semantic distinctions among different fa-
cial landmarks, as well as the relative position of each fea-
ture vector from a window. These embeddings are denoted
as exnw and eynw(1 ≤ n ≤ N, 1 ≤ w ≤ W ), respectively,
where the superscript (x or y) denotes the axis the 1D fea-
ture belongs to, subscript n is the landmark index, w is the
relative position index of an input feature to the whole input
window with W frames. The input feature sequences for at-
tention modules are added with the axis-landmark-positional
embeddings in the way like: sxnt := sxnt + exn1, sx

′

n(t−w+1)) :=

sx
′

n(t−w+1) + exnw(1 < w ≤ W ), synt := synt + eyn1,

sy
′

n(t−w+1)) := sy
′

n(t−w+1)+eynw(1 < w ≤ W ). Here exnw and
eynw are randomly initialized, then optimized with the tracker.

Next, we present the inner structure of our attention mecha-
nism, which specifically is a confidence-enhanced multi-head
attention mechanism, to dynamically determine the attention
weights of features from different time steps according to
their temporal correlations as well as the their qualities in-
fluenced by the imaging conditions. Typically, the attention
weights can be calculated by the scaled dot-product opera-

tions between the query and the key matrices:

qxh
nt = sxntW

xh
q

T
, qyh

nt = syntW
yh
q

T

Kxh
nt = IxntW

xh
k

T
, Kyh

nt = IyntW
yh
k

T

axhnt = sf(
qxh
nt Kxh

nt

T

√
dh

), ayhnt = sf(
qyh
nt Kyh

nt

T

√
dh

)

(3)

where sf(·) denotes the Softmax function; Ixnt =

[sxnt; sx
′

n(t−1); ...; sx
′

n(t−W+1)] ∈ RW×L and Iynt denote the
feature sequence for the t th input window chunk of the at-
tention module; h denotes the head index of the multi-head
attention mechanism; qxh

nt and qxh
nt are the h(1 ≤ h ≤ H)

th query vector pair to get the attention weight vectors, i.e.,
axhnt ∈ R1×W and ayhnt ∈ R1×W , for the t the time step; Kxh

n

and Kyh
n ∈ RW×dh are the h th key matrix pair; Wxh

q , Wyh
q ,

Wxh
k , and Wyh

k ∈ Rdh×L are the projection matrices. By op-
timizing the attention mechanism, axh

nt and ayhnt can implicitly
capture the correlations among features of the temporal se-
quence: the intensity of the w(1 ≤ w ≤ W ) th element of
axhnt reflects the correlation between sxnt and sx

′

n(t−w+1).
We extend the conventional attention mechanism with two

confidence prediction branches fx
c (·) and fy

c (·) to predict the
confidence score of feature qualities at each time step. We
take sxnt and synt instead of sx

′

nt and sy
′

nt as the input for the
confidence predictors to reflect the imaging quality of each
individual video frame. It is expected that, if the texture
features around the n th landmark at the t th frame are of
good quality with a clear positional discrimination for the
landmark, cxnt = fx

c (sxnt) and cynt = fy
c (s

y
nt) are assigned

as a high value and the effects of sxnt and synt on temporal
token communications will be encouraged; otherwise, if the
image textures of the n th landmark are polluted at the cur-
rent time step by occlusions, cxnt and cynt are lowered, and
sxnt as well as synt will be mitigated to alleviate the effect of
feature disturbances. We integrate the weights calculated by
the key-query operations with the confidence scores, namely
cxnt = [cxnt, c

x
n(t−1), . . . , c

x
n(t−W+1)] and cynt ∈ R1×W , as

the final attention weights, to model temporal correlations
in landmark sequences while maintaining robustness against
texture disturbances, as shown in Eq. (4):

axhnt = sf(
qxh
nt Kxh

nt

T

√
dh

⊙ cxTnt ), ayhnt = sf(
qyh
nt Kyh

nt

T

√
dh

⊙ cyTnt )

(4)
Based on axh

nt and ayhnt , the features from different time
steps are fused as the temporally refined 1D landmark repre-
sentations, i.e., sx

′

nt and sy
′

nt, for the n landmark at the t th time
step. Since the feature fusion steps are vanilla in Transformer,
we just attach its details in the supplementary material due to
the page limits.

3.3 Structural Modeling Mechanism of 1DFormer
We embed facial structural patterns to enhance the 1D rep-
resentation of each landmark, as shown in Figure 3. Ac-
cording to the inherent structure of a human face, its land-
marks can be divided into seven groups, i.e., left eyebrow,
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right eyebrow, left eye, right eye, nose, mouth, and contour.
To encode component-level structural patterns as a refine-
ment for 1D landmark representations, we propose an intra-
group geometric encoding mechanism. Specifically, at the
t(1 ≤ t ≤ T ) th time step, we stack the features outputted
by the attention modules for landmarks of the k(1 ≤ k ≤ 7)

th group as Sx′

kt = stack(sx
′

k(1)t, sx
′

k(2)t, ...s
x′

k(Nk)t
) and Sy′

kt =

stack(sy
′

k(1)t, sy
′

k(2)t, ...s
y′

k(Nk)t
), respectively, where the stack-

ing operation gathering multiple 1D representation vectors
as multi-channels for convolution, Nk is the total number of
landmarks of the k th group, sx

′

k(j)t(1 ≤ j ≤ Nk) and sy
′

k(j)t

denote the 1D representations produced by Eq. (2) for the j
th landmark of the k th group. Here we replace the subscript
n(1 ≤ n ≤ N) of sx

′

nt and sy
′

nt in Eq. (2) with the subscript
k(j) just to mark the switch between the universal index of
all landmarks to the relative index within a landmark group.
We integrate the component-level structural information into
the features of the k(1 ≤ k ≤ 7) th landmark group via two
residual 1D convolutional layers, as shown in Eq. (5):

Px
kt = LN(Conv1D(Sx′

kt) + Sx′

kt)

Py
kt = LN(Conv1D(Sy′

kt) + Sy′

kt)
(5)

where LN denotes the layer normalization operation.
Furthermore, to capture global facial shapes, we adopt an

inter-group global geometric encoding mechanism based on
the output features from the intra-group geometric encod-
ing module. Let Px

t = stack(Px
1t,Px

2t, ...P
x
7t), and Py

t =
stack(Py

1t,Py
2t, ...P

y
7t), where the stacking operation gathers

the inputs along the channel dimension for convolution. We
introduce two residual 1D CNNs to embed global facial struc-
tures as a refinement of the 1D representations for each land-
mark, as shown in Eq. (6):

Fx
t = LN(Conv1D(Px

t ) + Px
t )

Fy
t = LN(Conv1D(Py

t ) + Py
t )

(6)

where the n th channels of Fx
kt and Fy

kt, denoted fxnt and fynt
respectively, are the features for the n th landmark refined
by global structural patterns. From the proposed geomet-
ric encoding modules, facial geometric patterns are captured
through feature communications among different facial land-
marks, and the learned facial structures help to correct the
disturbances on facial appearances caused by occlusions or
uneven illumination conditions, and further improve the land-
mark tracking performance for “in-the-wild” scenarios. It is
worth noting that, we take 1D convolutional layers instead of
attention layers for token communications in the spatial di-
mension. The reason lies in that, unlike the temporal tokens
which are the features of one certain facial landmark from dif-
ferent time steps, the spatial tokens are features from different
landmarks which constitute a structure, and we find that the
1D convolutional layers show a better capability on model-
ing the general structural patterns among different landmarks
while keeping their clear semantic distinguishments. See sup-
plementary materials for a empirical study.

3.4 Optimization
Our method is trained with the following loss fucntions:

Lo =λhLh + λcLc,

Lh =

T∑
t=1

N∑
n=1

(||hx
nt − hx∗

nt ||22 + ||hy
nt − hy∗

nt ||
2
2),

Lc =

T∑
t=1

N∑
n=1

((||cxnt − cx∗nt ||22) + (||cynt − cy∗nt ||
2
2))

(7)

where λh and λc are the hyper-parameters determining the
weights of each loss in the overall loss function; Lh is the
training loss for 1D heatmap regression; hx∗

nt and hy∗
nt are the

heatmap labels, which are 1D Gaussian distributions around
the ground truth landmark positions; Lc is the training loss
for confidence regression; cx∗nt and cy∗nt are the confidence la-
bels. Due to the difficulty of manual annotations for confi-
dences on feature qualities, current benchmark databases for
facial landmark tracking do not provide such labels. As an
alternative, we have to infer confidence labels through a flow-
based model [Li et al., 2021] which models landmarks’ po-
sitional certainty reflecting the texture qualities, and take its
inference results as the pseudo labels of confidences. For a
better generalization, we just take these pseudo labels as early
guidance of our confidence branches, then fine-tune the confi-
dence branches through the supervised signals from heatmap
regression in an end-to-end manner. Formally, denote the to-
tal training epochs as E, when 1 ≤ e ≤ E/2 we train the
tracker with Lo; when E/2 ≤ e ≤ E we train the tracker
with Lh. Adam is used for optimization.

4 Experiments
In this Section, we first describe the experimental conditions
(4.1), then give the results and analyses of the ablation stud-
ies (4.2) as well as the empirical study on the length of tem-
poral window (4.3), then compare our method with related
works (4.4). Notably, due to the page limits, the details on
hyper-parameter selections, the empirical study on different
token communication strategies, the discussion on the com-
putational complexities, as well as more visualization com-
parisons on the tracking results, are attached in the supple-
mentary materials.

4.1 Experimental Conditions
Two video databases, i.e., the 300VW [Shen et al., 2015]
database and the TF [FGNET, 2014] database, are used to
evaluate performance of the proposed method. The 300VW
database, i.e., the most widely-used database in the field of
facial landmark tracking, contains 114 “in-the-wild” videos,
each frame is annotated with 68 facial landmarks. 50 videos
are divided as the training set and 64 videos for testing. The
testing set can be further categorized as three subsets, i.e., S1,
S2 and S3, according to their challenging levels.

To be consistent with the experimental conditions of previ-
ous works [Liu et al., 2018; Yin et al., 2020], for experiments
on the 300VW database, both the 300VW training set and the
300W [Sagonas et al., 2016] training set is used for training.
The 300W database is an image database with 3,148 train-
ing images, without any temporal information. We just make
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multiple copies of an image to be a pseudo static video to
pre-train our tracker, then fine-tuning it on the 300VW train-
ing set. We adopt all of the 68 landmarks when testing on
the 300VW database, and adopt 7 landmarks common to the
300VW and the TF databases for testing on the TF database.
All faces are cropped from the facial bounding boxes and re-
sized to 256× 256 pixels, then fed into the network for train-
ing. Details on hyper-parameter selection are attached in sup-
plementary materials.

We evaluate the tracking performance on both accuracy
and stability. Accuracy reflects the closeness of the pre-
dicted landmark coordinates to the ground truths. We use
Normalized Root Mean Squared Error (NRMSE) [Sagonas et
al., 2016] as the accuracy metric. A lower value of NRMSE
corresponds to a better accuracy performance. Stability re-
flects the consistency of movement between predicted land-
marks and ground truths. The stability error [Tai et al., 2019]
is defined as the error of landmark displacement between the
tracking results and the ground truths. A lower value of the
stability error corresponds to a better stability performance.

Settings 300VW S1 300VW S2 300VW S3 TF

N S N S N S N S

BL 3.31 0.90 3.45 0.93 4.42 1.85 2.02 0.66

BL+TE−a 3.26 0.87 3.40 0.91 4.39 1.84 2.02 0.65
BL+TE−r 3.06 0.80 3.01 0.76 4.10 1.61 1.98 0.57
BL+TE−c 3.10 0.80 3.03 0.77 4.14 1.65 2.00 0.61
BL+TE 2.91 0.74 2.93 0.73 3.98 1.52 1.92 0.47

BL+IT 3.13 0.84 3.06 0.79 4.20 1.70 2.00 0.62
BL+IR 3.16 0.85 3.12 0.83 4.25 1.73 2.01 0.64

BL+IR+IT 3.09 0.82 2.99 0.76 4.12 1.64 1.98 0.58

BL+TE+IR 2.82 0.72 2.85 0.70 3.93 1.47 1.90 0.41
BL+TE+IT 2.80 0.72 2.81 0.69 3.88 1.44 1.88 0.38

BL+TE+IR+IT 2.74 0.70 2.74 0.67 3.80 1.42 1.86 0.35

Table 1: NRMSE (N/%) and stability error (S/%) of each experi-
mental group.

4.2 Abalation Study
We conduct multiple groups of experiments for ablation stud-
ies. The NRMSE and the stability errors of these experiments
are recorded in Table 1. The experimental settings are as
the following: BL denotes the baseline method, which only
preserves the backbone 1D representation encoder as well as
the 1D heatmap decoders. This makes a simple facial land-
mark detection method without any temporal modeling and
structural modeling modules; TE denotes a complete preser-
vation of the temporal modeling mechanisms of 1DFormer;
TE−a, TE−r, and TE−c are three ablation terms from TE:
−a replaces the attention mechanism with a simple token
mixing communication mechanism, i.e., directly adding the
feature from each time step with the average feature of the
time window; −r removes the recurrently token mixing strat-
egy and simply takes the output features of the backbone en-
coder from one temporal window as the inputs for attention
mechanisms, instead of delivering long-term historical infor-
mation recurrently as Eq. (2) does; −c removes confidence
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…
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Figure 4: Visualization of the tracking results on a challenging video
clip from the 300VW S3. The red points and green points are respec-
tively the tracking results without / with the recurrently token mixing
strategy.
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Figure 5: Visualization of the attention weights as well as the tracked
results for an occluded landmark, i.e., the left corner of outer-ocular,
from a challenging movie clip. The red point and green point are
respectively the tracking results without / with the help of the confi-
dence branch.

branches from our attention mechanism in both training and
testing phases. IR and IT respectively denote the proposed
intra-group and inter-group geometric encoding mechanisms.
Here, BL+TE+IR+IT corresponds to the full method of our
work. To offset the randomness in the experiment, we con-
ducted 10 independent repeated experiments and reported the
average value for each metric in Table 1. From Table 1, we
have the following observations and analyses:

First, comparing between the results of BL+ TE and BL,
we find that the temporal modeling mechanism TE can sig-
nificantly improve the accuracy and stability performance for
facial landmark tracking. This results demonstrate that the
proposed temporal modeling mechanisms can effectively in-
tegrate the complementary information among multiple video
frames to enhance the tracking performance under “in-the-
wild” scenarios.

Second, the tracking performance of BL+ TE shows sig-

Figure 6: Visualization of the tracking results on two challenging
video frames, the former from a movie while the latter from the
30VW S3. The red points and green points are respectively the re-
sults of the tracker without / with structural modeling mechanisms.
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Figure 7: NRMSE (%) and stability errors (%) on 300VW S1, S2, S3, and the TF database with different length (W ) of the temporal window.

nificant superiority than BL + TE−a, demonstrating the ef-
fectiveness of the attention mechanism. This is because the
attention mechanism can dynamically adjust the weights of
feature fusion, enabling it to adapt to a wide range of imag-
ing conditions and facial geometric variations.

Third, we can observe that recurrently token mixing strat-
egy contributes to the tracking performance by the result that
BL+TE outperforms BL+TE−r. In the example of Figure
4, without the proposed strategy, the tracking performance at
the t th frame is very poor since all of the frames in the tem-
poral window, i.e., from t − 9 to t for a window length of
10, suffer from severe occlusions; in contrast, if we add this
strategy, we can deliver informative features out of the current
window. In this case, information delivered from historical
frames, e.g., the t − 12 th frame without heavy occlusions,
may help to improve the robustness of the tracking perfor-
mance.

Fourth, the contribution of the confidence branch to the
attention mechanism is demonstrated by the comparison be-
tween BL+TE and BL+TE−c in Table 1. Figure 5 visual-
izes the attention weights given by BL+TE and BL+TE−c

for an occluded facial landmark, namely the left corner of
outer-ocular in this case, from a challenging movie clip. We
can find that the confidence branch helps the attention mech-

anism to assign high attention weights if the landmark is visi-
ble and assign low weights if it is occluded, providing a plau-
sible guidance to fuse features from different time steps, and
thus promoting the localization performance for the occluded
frames.

Fifth, we find that both of the intra-group (IR) and inter-
group (IE) geometric encoding mechanisms promote the
tracking performance. Combined with the illustration in Fig-
ure 6, we can find significant improvement brought by our
structure modeling modules. The reason lies that, the IR cap-
tures the structure patterns of a local component while the IE
models the global face patterns, enhancing robustness of 1D
landmark representations to challenging imaging conditions.

4.3 Empirical Study on the Length of Temporal
Window

We make an empirical study on the length of the temporal
window (W ) in the recurrently token mixing strategy. From
Figure 7, we have the following observations. First, when
increasing W from 2 to 10, the tracking accuracy and stabil-
ity boost significantly. The reason lies that, when W is very
small, increasing the value of W can provide necessary tem-
poral information for the Transformer to capture. Second, the
tracking performance quickly goes to a converge with the in-
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creasing of W . For example, when W is 10, the results have
no significant gap with W = 16. The reason may be that, as
W reaches an appropriate value, e.g., 10 in our experiment,
the recurrent information delivery strategy from window to
window can play an effective role in capturing the long-term
temporal patterns of landmark sequences. Thus, there is no
need to continuously increase the value of W and a moder-
ate value of W may also bring a good tracking performance
comparable to a large W . This is an advantage which allows
for an acceptable computational complexity of our method.

4.4 Comparison with Related Works
We compare our method with the state-of-the-art methods,
which include coordinate regression methods, e.g., TSCN
[Simonyan and Zisserman, 2014], TSTN [Liu et al., 2018],
GAN [Yin et al., 2019], and MSKI [Zhu et al., 2022b]; 2D
heatmap regression methods, e.g., FHR [Tai et al., 2019],
FHR+STA [Tai et al., 2019], ADC [Chandran et al., 2020],
SCPAN [Wan et al., 2021], and SAAT [Zhu et al., 2021];
1D heatmap regression methods, e.g., the Tracker based on
Attentive One-dimensional Heatmap Regression (T-AOHR)
[Yin et al., 2020] and SimCC [Li et al., 2022c]; as well as the
hybrid method of 2D and 1D heatmap regression, i.e., Hy-
bridMatch (HM) [Kang et al., 2023]. From these methods,
FHR, ADC, SCPAN, SAAT, SimCC, MSKI, and HM are de-
tection methods, which only consider spatial modeling from a
static image or video frame; TSCN, TSTN, FHR+STA, GAN,
and T-AOHR are tracking methods which consider both spa-
tial and temporal modeling of a video clip.

Method year 300VW S1 300VW S2 300VW S3 TF

N S N S N S N S

TSCN 2014 12.54 - 7.25 - 13.13 - - -
TSTN 2018 5.36 - 4.51 - 12.84 - 2.13 -
FHR 2019 4.82 2.67 4.23 1.77 7.09 4.43 2.07 0.97

FHR+STA 2019 4.21 1.58 4.02 1.09 5.64 2.62 2.10 0.69
GAN 2019 3.50 0.89 3.67 0.84 4.43 1.82 2.03 0.59

T-AOHR 2020 3.06 0.84 3.17 0.87 4.12 1.78 1.97 0.64
SCPAN 2021 4.49 - 4.23 - 5.87 - - -
SAAT 2021 3.46 - 3.41 - 5.23 - - -
SimCC 2022 4.07 1.22 4.12 1.09 5.13 2.01 2.09 0.73
MSKI 2022 3.89 1.49 3.94 1.23 5.07 2.07 2.19 -
HM 2023 3.15 0.89 3.23 0.92 4.28 1.80 1.99 0.67

Ours 2024 2.74 0.70 2.74 0.67 3.80 1.42 1.86 0.35

Table 2: NRSME (N /%) and stability error (S /%) of the pro-
posed tracker and the compared methods on the 300VW and the
TF databases.

Table 2 lists the NRMSE performance and stability errors
of the proposed tracker and the compared methods on the
300VW and the TF database, respectively. The evaluation re-
sults of the compared methods are directly copied from litera-
tures, except for SimCC and HM. Due to the lack of published
results of these two methods on the respective databases, we
just re-implement them under the same experimental condi-
tion as our method. Experimental results from Table 2 show
that our method outperforms the compared methods on both
tracking accuracy and stability. Our method outperforms the

NRMSE of T-AOHR, which achieves the best overall perfor-
mance among the compared methods, by 10.46%, 13.56%,
7.77%, and 5.58% on the 300VW scenarios 1, 2, 3, and
TF databases, respectively; we also outperforms T-AOHR at
the stability performance by 16.67%, 22.99%, 20.22%, and
45.31% on the respective databases. Although T-AOHR ap-
plied 1D representations on the facial landmark tracking task
and achieved remarkable performance, it ignored a deep ex-
ploration on temporal and structural modeling for multiple
landmarks, as analyzed in Section 2. We address these weak-
nesses by developing a Transformer architecture to release
the good potentials of 1D representations on modeling the
long-range sequential patterns as well as the local and global
geometric patterns of facial landmarks, thus achieving sig-
nificant performance boosts compared to T-AOHR and other
related works. We also make visualization comparisons of
our method and the related works by rendering their tracking
results, please see supplementary materials for details.

5 Conclusions
On addressing the weaknesses of current 1D heatmap regres-
sion methods and fully exploring the good potentials of 1D
landmark representations on temporal and structure model-
ing of multiple facial landmarks, we propose a facial land-
mark tracking method based on a new Transformer architec-
ture, namely 1DFormer, to model long-range temporal pat-
terns as well as the local and global facial structures via to-
ken communications in the temporal and spatial dimensions,
respectively. Specifically, a confidence-enhanced multi-head
attention mechanism with a recurrently token mixing strat-
egy is proposed for temporal modeling; an intra-group and
an inter-group geometric encoding mechanism are presented
for structure modeling. Experimental results on the 300VW
and the TF databases demonstrate that our method achieves
state-of-the-art performance for facial landmark tracking with
a good modeling capability on the temporal dynamics as well
as the geometric patterns of facial landmarks.
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