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Abstract

The joint classification of multisource remote sens-
ing data is a prominent research field. However,
most of the existing works are tailored for two spe-
cific data sources, which fail to effectively address
the diverse combinations of data sources in prac-
tical applications. The importance of designing a
unified network with applicability has been disre-
garded. In this paper, we propose a unified and self-
supervised Symbiotic Diffusion framework (named
SymDiffuser), which achieves the joint classifica-
tion of any pair of different remote sensing data
sources in a single model. The SymDiffuser cap-
tures the inter-modal relationship through estab-
lishing reciprocal conditional distributions across
diverse sources step by step. The fusion pro-
cess of multisource data is consistently represented
within the framework from a data distribution per-
spective. Subsequently, features under the current
conditional distribution at each time step is inte-
grated during the downstream phase to accomplish
the classification task. Such joint classification
methodology transcends source-specific considera-
tions, rendering it applicable to remote sensing data
from any diverse sources. The experimental results
showcase the framework’s potential in achieving
state-of-the-art performance in multimodal fusion
classification task.

1 Introduction
The classification of remote sensing (RS) images has become
increasingly significant in various domains such as urban
planning [Dong et al., 2022], military applications [Ding et
al., 2022a], environmental monitoring [Hu et al., 2023], and
agricultural production [Meng et al., 2022]. Due to the limi-
tations of sensor technology, a single type of RS image can-
not meet the requirements of classification for diverse tasks.
Consequently, the integration of multisource modalities has
attracted increasing research attention. Commonly utilized
types of RS images include hyperspectral image (HSI) [Dong
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Figure 1: Overview of our proposed SymDiffuser. (Up) Pre-
training: Different modalities of RS data are projected into the
latent space through frozen encoder, and their mutual conditional
distributions are modeled by a Coupled Symbiotic Diffusion Model
(CSDiff) to capture the relationship between modalities. (Down)
Fine-tuning: Downstream task fuses the features of each time step
of CSDiff for fine-tuning to complete the joint classification.

et al., 2023], which provide rich spectral information, Syn-
thetic Aperture Radar (SAR) images [Wang et al., 2022a],
which contain amplitude and phase information, and Light
Detection and Ranging (LiDAR) data [Xue et al., 2022],
which reflects the precise height information. Relevant work
has provided evidence of the advantages of utilizing multi-
source data in classification task.

The key point of joint classification of multisource data
lies in effectively fusing information from diverse sources and
harnessing their complementary attributes to enhance the ex-
pressive capacity of the model. Nevertheless, existing mul-
tisource fusion methods are typically tailored to two specific
RS data sources, with the network architecture designed to
accommodate their unique characteristics. The lack of gen-
eralizability in these data-specific networks become apparent

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1570



when facing with diverse types of data. In addition, the ac-
quisition of labels for RS images is a labor-intensive task due
to their coverage of vast geographical areas. Therefore, there
exists a significant quantitative disparity between the labeled
and unlabeled data. The exploration of unlabeled multisource
data correlations in supervised joint classification methods re-
main largely unexplored. Self-supervised based methods in
computer vision have been demonstrated the effectiveness of
acquiring feature representations from unlabeled data. How-
ever, most of self-supervised based works solely focusing on
visual features of a single modality. In contrast, the effective
integration of information from multiple modalities should be
primarily emphasized in the joint classification of multisource
data.

To overcome this dilemma, as depicted in Fig. 1, we pro-
pose a unified and self-supervised symbiotic diffusion frame-
work, which is capable of fusing any two RS modality data
for classification. We point out that the process of multimodal
fusion can be conceptualized as the process of capturing the
reciprocal conditional distribution between two modalities.
In this way, the relationships and dependencies among modal-
ities can be deeply explored and modeled, which is help-
ful for an efficient and accurate fusion. Specifically, the re-
ciprocal conditional distributions between different modali-
ties are gradually captured by a coupled symbiotic diffusion
model. The feature at each step in the two Markov chains de-
fined by the diffusion steps is used as input for downstream
tasks. At each time step of the reverse process of diffusion, a
Modality Perception Block (MPB) is employed to enhance
the correspondence between different modalities under the
same degradation. Specially, textual information is leveraged
as weak supervision to guide the fusion feature towards the
classification task. Our proposed framework is specifically
designed to extract fusion feature from multimodal RS data,
offering a promising direction for the development of inte-
grated multimodal remote sensing data fusion classification
approach. Our major contributions are as follows:

1) We propose a unified symbiotic diffusion framework for
any multisource RS data classification, which learns the con-
ditional distribution between the two modalities by a coupled
symbiotic diffusion model, guiding the fusion process and fa-
cilitating a more effective combination of information from
each modality.

2) To effectively enhance the correlation between modal-
ities, we propose a modality perception block (MPB). MPB
helps the exploration of interactions between different modal-
ities, thereby enhancing the accuracy of modeling the condi-
tional distribution.

3) We introduced a task-oriented condition injection (TCI)
module to inject task-related prior knowledge into the model.
It ensures that the model gains a more informed understand-
ing of the data, leading to improved adaptability in down-
stream tasks.

2 Related Work
2.1 Multisource Fusion Classification in RS
Deep-learning based multisource RS data classification meth-
ods have been widely studied in recent years. In an early

attempt [Chen et al., 2017], two independent Convolutional
Neural Networks (CNNs) were proposed to extract the fea-
tures of HSI and LiDAR respectively. To capture more spe-
cific information from different sources, some studies [Xu et
al., 2018; Zhao et al., 2020] utilize two network branches
to extract both spectral and spatial features from HSI, while
focusing only on spatial feature for LiDAR. Such schemes
simply cascade the features of different sources and fail to
fully exploit the interrelationship between different modali-
ties. To address this issue, Zhang et al. [Zhang et al., 2020]
attempted to extract fusion feature in hidden layers through
encoding and decoding processes. Hong et al. [Hong et al.,
2021] investigated fusion strategies at various stages, which
can be applicable to pixel-based and spatial–spectral classifi-
cation respectively. Subsequently, attention mechanisms have
been introduced to guide the complementary integration of
multisource features [Mohla et al., 2020; Xiu et al., 2022;
Li et al., 2022a]. Li et al. [Li et al., 2022a] proposed
A3CLNN, which incorporates a composite attention mecha-
nism to fuse enhanced feature representations from both spa-
tial and spectral domains in HSI and LiDAR data. Another
group of works [Mohla et al., 2020] explored semantic corre-
lations between different source features by designing cross-
attention mechanisms. Xue et al. [Xue et al., 2022] developed
a DHViT structure, employing cross-attention feature fusion
pattern to fuse heterogeneous features from multi-modality
data adaptively. Decision-level fusion was then employed
to integrate these heterogeneous features. Methods such as
NNC [Wang et al., 2023] and CCL [Jia et al., 2023] utilized
contrastive learning to reduce the heterogeneity between dif-
ferent modalities. More recently, Huo et al. [Huo et al., 2023]
proposed a fusion method that captures the relationship be-
tween different perspectives within each modality at the patch
level, which achieves superior results. However, the above
methods utilize two networks tailored to two specific RS data
sources to extract features , yet these methods do not fully ex-
plore the inter-modal relationships, thereby failing to capture
the intricate structures and correlations within multisource RS
data. Such deficiency leads to the modal with suboptimal uti-
lization of multisource RS data.

2.2 Denoising Diffusion Probabilistic Model
The denoising diffusion probability model (DDPM) has
emerged as a mainstream generation model, garnering no-
table achievements in various tasks such as image restora-
tion [Zhu et al., 2023; Wang et al., 2022b; Luo et al.,
2023], image super-resolution [Metzger et al., 2023; Rom-
bach et al., 2022], style transfer [Li et al., 2023a; Zhang et
al., 2023], and text-to-image generation [Xu et al., 2023a;
Kumari et al., 2023]. Compared to the Generative Adver-
sarial Network (GAN), which aims to achieve feature space
transformation through a direct forward process, DDPM de-
composes the generation process into multiple denoising
steps with well-defined data distribution. This decomposition
approach provides enhanced stability in generation while of-
fering effective controllability and flexibility. The controlled
sampling process of DDPM has facilitated the design of nu-
merous conditional diffusion models. Gao et al. [Gao et al.,
2023] developed a low-resolution (LR) conditioning network
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Figure 2: Overview of the Pre-training stage (CSDiff): The CSDiff framework incorporates MPB and TCI (represented by purple and pink
blocks respectively) at each denoising step. In the MPB module, the forward degradation features of one modality are fused with the prediction
features of another modality and fed into the U-Vit-based denoising network for subsequent time-step noise prediction. TCI is utilized to
inject textual information into the model, enabling feature attention towards downstream classification tasks.

to encode the image without priors, and then combined it
with a scaling factor in DDPM to facilitate continuous im-
age super-resolution. Kawar et al. [Kawar et al., 2023] intro-
duced imagic for non-rigid edits on a single image, which em-
ploys natural language text as a prompt to pass the semanti-
cally meaningful mixture of image embedding and target text
embedding to DDPM. Recent studies have started to employ
the diffusion model to multimodal generation. MM-diffusion
[Ruan et al., 2023] used two coupled diffusion models to
learn the joint distribution of audio and video for the genera-
tion of aligned audio-video pairs. The proposed SymDiffuser
distinguishes itself from numerous existing diffusion models
by placing emphasis on the modeling of the conditional distri-
bution between two modes, thereby acquiring more effective
modality fusion information for classification task.

3 Method
3.1 Motivation and Overview
In the joint classification of multisource RS data, the purpose
of multimodal fusion is to combine information from differ-
ent modalities and leverage the complementary characteris-
tics between them to enhance the model’s comprehension of
classification task. During multimodal fusion, the exchange

of pertinent information between modalities needs to be fa-
cilitated, which requires the model to discern the relation-
ship between each modality and how they can mutually re-
inforce or complement one another. This relationship can be
efficiently represented by a conditional distribution. Condi-
tional distributions illustrate how the probability of one vari-
able changes based on the observation of another variable,
aiding in the comprehension of the influence of information
between different modalities. Based on this fact, we adopt
DDPM to model the conditional distribution between differ-
ent modalities of RS data, with the aim of improving the mu-
tual understanding between the two modalities and facilitat-
ing a more effective and balanced combination of modality
during the fusion process.

Our proposed SymDiffuser is a unified framework for joint
classification of multisource RS data, as shown in Fig. 1.
it consists of two stages: pre-training and downstream fine-
tuning. The high-level framework of pre-training incorpo-
rates a coupled symbiotic diffusion model, where we inde-
pendently input the latent features of two modalities and per-
form a two-way modality conditional distribution modeling.
The degraded feature of one modality and the correspond-
ing diffusion feature from the other modality are correlated
using a Modality Perception Block (MPB) during each re-
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verse diffusion step. Subsequently, U-ViT based denoising
networks are used for single-step modal transformation com-
pletion. We utilize the text captions produced by the super-
vised labeling process to train a Task-oriented Condition In-
jection module (TIC). It leverages the diffusion features from
each step and the text encoder embedding of category names
to provide guidance for the fusion process in classification
task. Once pre-trained, we perform multimodal RS images
classification with features from each time step in the diffu-
sion models.

3.2 Preliminaries of Vanilla Diffusion
The diffusion model is a type of generative model which uti-
lizes multi-step denoising to predict specific data distributions
from random noise [Ho et al., 2020]. It consists of two funda-
mental components: the forward process and the reverse pro-
cess. In the forward process, multi-step Gaussian noise is in-
crementally added to data that needs to be predicted. This it-
erative process persists until the data distribution degenerates
into a state of approximately pure Gaussian noise. Assume
X as the data distribution to be predicted, x0 as a sample in
X , and xt as the noise sample at time step t. The forward
process of diffusion model can be expressed as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)
(1)

where t ∈ [1, T ], and β0, β1, ..., βT represent a pre-defined
variance schedule.

The reverse process of the diffusion model is characterized
as a Markov chain that aims to recover a specific data distri-
bution through multi-step denoising networks. At each time
step t, the reverse process is defined as pθ(xt−1|xt), where θ
is typically implemented as a denoising network. By follow-
ing this Markov process, the model progressively denoises
the input xt to ultimately obtain the final result. The reverse
process of diffusion model can be expressed as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)
(2)

where µθ represents the predicted mean value by the network
θ. The vanilla diffusion model can be expanded to encom-
pass the modeling of the conditional distribution pθ(x0|c) by
introducing conditions into the reverse process. Here, c rep-
resents a data distribution distinct from x0, such as images or
textual information with varying styles.

In our method, a coupled symbiotic conditional diffusion
model is designed to promote the fusion of different RS
modalities by delving into their mutual conditional distribu-
tions.

3.3 Coupled Symbiotic Diffusion Model
As mentioned in the motivation, we suggest to model the con-
ditional distribution between different modalities to facilitate
multimodal fusion. It is essential to consider the bidirectional

relationship of two modalities from one to another when mod-
eling the conditional distribution. Assume that there are two
different types of RS data: modality A and modality B. We
design a coupled symbiotic diffusion model (CSDiff) to cap-
ture the conditional distributions p(A|B) and p(B|A) simul-
taneously. To enable the model to effectively handle complex
data distributions, similar as Stable Diffusion [Rombach et
al., 2022] and UniDiffuser [Bao et al., 2023b], the data of
both modalities are encoded into latent space by two frozen
ViT-based encoders εA and εB, respectively. The latent fea-
tures xA0 and xB0 obtained separately by εA and εB of the
two modalities are subsequently degraded using two indepen-
dent forward processes. Taking modality A as an example, its
forward process at timestep t can be expressed as follows:

q(xAt |xAt−1) = N (xAt ;
√

1− βtxAt−1
, βtI) (3)

where the schedule sequence β is shared of two modalities.
The forward process for modality B is same as modality A.
Different from the forward process of the two modalities, the
reverse process of the diffusion model in the generation task
cannot be directly applied to CSDiffer, as it presents two key
challenges. i) The general conditional diffusion model uti-
lizes fixed conditional information and degenerate features
from the current step for reconstruction at each step. How-
ever, this approach overlooks the correspondence between
data from different modalities under the same degradation
level, which is essential for multimodal fusion task. ii) In the
context of complex multimodal data, the conventional cas-
cade of conditions typically employed in conditional diffu-
sion models faces challenges in capturing the intricate modal
relationships. To tackle these problems, we redefine the re-
verse process in CSDiffer, which can be expressed as follows:

pFA(x
r
At−1

|(xr
At

, xf
Bt
)) = N (xr

At
;F (xr

At
, xf

Bt
, t))

pFB(x
r
Bt−1

|(xf
At

, xr
Bt
)) = N (xr

Bt
;F (xf

At
, xr

Bt
, t))

(4)

where xf
At

denotes the feature of modality A at time step t
in the forward process, xr

At
is the feature in the reverse pro-

cess, which is same for modality B. As depicted in Eq. (4),
the output of the t-th step for each mode is computed based
on its own degradation feature, the time step t, and the for-
ward degradation feature of the corresponding t-th step in the
other modality. This design is centered around the concept
that the features of both modes at each time step are interde-
pendent under the same level of degradation conditions. Con-
sequently, this coupling strengthens the interconnectedness
between the different levels of multimodal features. To train
the denoising process, the CSDiff predict the added noise us-
ing the standard MSE loss:

LmseA = Et∼[1,T ]

∥∥∥ϵ− FA(x
r
At

, xf
Bt
, t)

∥∥∥2
LmseB = Et∼[1,T ]

∥∥∥ϵ− FB(x
f
At

, xr
Bt
, t)

∥∥∥2 (5)

3.4 Modality Perception Block
To facilitate the alignment between two modalities in noise
prediction and learn their correlation, a cross-attention based
MPB is employed. MPB is embedded before each step of the
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denoising network, which aims to capture and strengthen the
correlations between two modalities within the fused feature
representation. Taking modality A in CSDiffer as an exam-
ple, the cross-attention mechanism can be formulated as fol-
lows:

Q = ϕq(x
f
Bt
), K = ϕk(x

r
At

), V = ϕv(x
r
At

)

Fatt =
QKT

√
C

, Ffuse = W softmax(Fatt)V + xr
At

(6)

where C is the dimension of feature, ϕq , ϕk, ϕv are Multi-
layer Perceptron (MLP) and W refers to learnable weights to
generate final fused features Ffuse. Once Ffuse is obtained,
it is treated as the input to the denoising network. The U-ViT
based network [Bao et al., 2023a] is employed as the denois-
ing network in each step, leveraging the significant advan-
tages of ViT for multimodal data processing. In U-Vit, time
steps t and fused feature Ffused are treated as tokens, and
long-range skip connections are employed between shallow
and deep layers. The reverse process of CSDiffer, represented
by Eq. (4), can be further refactored as follows:

pFA(x
r
At−1

|(xr
At

, xf
Bt
)) = N (FA(F

A
fuse, t))

pFB(x
r
Bt−1

|(xf
At

, xr
Bt
)) = N (FB(F

B
fuse, t))

(7)

where FA and FB are U-ViT based denoising networks in
tth step for modality A and modality B, respectively. After
the last step of the reverse process, the features of two modal-
ities are inputted into their corresponding frozen ViT-based
decoder DA and DB to accomplish reconstruction.

After the conditional distributions p(A|B) and p(B|A)
modeled by CSDiffer, in the subsequent downstream task,
the features at each time step t are utilized to accomplish the
fusion classification task involving multiple modalities. The
comprehensive details of this process will be elaborated upon
in the last subsection.

3.5 Task-oriented Condition Injection
In order to align the focus of the integrated features in pre-
trained models with downstream classification task, a Task-
oriented Conditional Injection (TCI) module is introduced.
Textual information about categories typically contains se-
mantic details regarding the respective categories. By in-
jecting this information into the reverse process, the model
can benefit from richer semantic guidance, thus enhancing
its ability to comprehend and leverage semantic differences
among different categories. This facilitates the inclusion of
more discriminative information in features during the pre-
training phase, enabling the model to adapt to classification
task. Hence, we advocate for the integration of visual fea-
tures with text that carries rich semantic meaning. We gen-
erate corresponding text prompts for each category and serve
these prompts as conditions for injecting the U-ViT denoising
network in the reverse process of the diffusion model.

Assuming that the input multimodal data belongs to a
known category Cls, where Cls represents the category
name. We set “a sample of [Cls]” as the text prompt. The
frozen CLIP text encoder T is utilized to extract the embed-
ding of the text prompt. This text embedding, along with the

fusion feature obtained from Eq. (6), is then passed through
a cross-attention module to enhance the correlation between
the diffusion feature and high-level semantics. The process
of task-oriented condition injection can be formulated as fol-
lows:

ϵtext-driven = ϵθ(Ffuse, T (Cls)) (8)
where ϵθ is a cross-attention block. Significantly, the network
performs semantic injection solely on labeled data, while un-
labeled data undergoes the denoising process directly in the
reverse process.

3.6 Multi-step Feature Fusion
Once the pre-training phase is completed, we input two dif-
ferent modalities of remote sensing data into the proposed
framework during the downstream classification task. This
process allows us to obtain fusion features at different levels.
The continuous generation steps of the diffusion model en-
able a gradual conversion between different modalities. As a
result, each time step contains varying degrees of modal fu-
sion information. Based on this observation, we extract the
fusion features from each time step within the co-occurrence
diffusion model. These features capture the diverse levels of
fusion information. We then combine these different levels of
features and feed them into the classification head. The net-
work architecture employed for processing the fusion features
uses ViT. Each time step is encoded and embedded to provide
specific time information for each step within the network.
Finally, the fused feature representation is passed through a
simple MLP to output the classification results.

4 Experimental
4.1 Datasets
We validate SymDiffuser on three real multi-source remote
sensing datasets. To explore its potential in more types of
remote sensing data fusion classification, we construct sim-
ulated multi-source remote sensing data on two additional
datasets for further validation.

HSI-MSI 2012Houston data: The 2012Houston dataset
comprises HSI and MSI data over the University of Hous-
ton campus and the surrounding urban regions. This image
consists of 349 × 1905 pixels and encompasses 15 different
categories. HSI was collected by CASI-1500, encompasses
144 spectral bands ranging from 380 nm to 1050 nm. MSI is
composed of the same size with HSI but 8 spectral bands.

HSI-LiDAR MUUFL data: The MUUFL dataset contains
registered HSI and LiDAR-based DSM over the University of
Southern Mississippi Gulf Park Campus. The spatial size of
this data is 325 × 220 pixels, with the spatial resolution in 1
m and 11 categories. HSI consists 64 bands ranging from 375
nm to 1050 nm at a spectral sampling of 10 nm. The LiDAR
data has the same spatial size and resolution.

HSI-SAR Augsburg data: The Augsburg dataset consists
of HSI and PolSAR image, over the city of Augsburg, Ger-
many. The scene comprises a total of 332 × 485 pixels
and encompasses a spectral range spanning from 0.4µm to
2.5µm, consisting of 180 spectral bands for HSI and 7 cate-
gories. Additionally, the dual-Pol (VV-VH) SAR image con-
tributes with four distinct features, namely VV intensity, VH

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1574



Figure 3: Classification maps of the 2012Houston dataset.

Figure 4: Classification maps of the MUUFL dataset.

intensity, the real part, and the imaginary part of the off-
diagonal element within the PolSAR covariance matrix.

More data combinations Trento and Berlin data: The
Trento dataset comprises HSI and LiDAR data, while the
Berlin dataset consists of HSI and SAR image. Utilizing the
HSI data from these datasets, we generated PAN, RGB, and
MSI. Subsequently, we conducted various combinations of
these derived data with the original LiDAR and SAR data to
validate the applicability of our approach across diverse types
of data combinations.

4.2 Comparison with State-of-the-Art Methods
In order to verify the effectiveness of the proposed network in
the joint classification of multisource RS data, it is compre-
hensively compared with the state-of-the-art DL-based meth-
ods. Specifically, competing methods designed specifically
for different modalities were selected on three datasets. For
HSI-MSI dataset, SS-MAE [Lin et al., 2023], UCSL [Yao
et al., 2023a], ExVit [Yao et al., 2023b], and DSTD [Xu et
al., 2023b] are employed. For HSI-LiDAR dataset, GLT-Net
[Ding et al., 2022b], Sal2RN [Li et al., 2022b], S2ENet [Fang
et al., 2021], and HCT [Zhao et al., 2022] are employed.
For HSI-SAR dataset, CCRNET [Wu et al., 2021], MFT
[Roy et al., 2023], MACN [Li et al., 2023b], and SepDG-
Conv [Yang et al., 2022] are employed. Given the lack of

Method
Index

OA(%) AA(%) κ × 100

2012houston HSI + MSI
SS-MAE [Lin et al., 2023] 85.25 87.85 84.04
UCSL [Yao et al., 2023a] 79.73 79.95 78.10
ExVit [Yao et al., 2023b] 88.18 90.15 87.23
DSTD [Xu et al., 2023b] 87.61 89.86 86.62

Proposed 91.63 92.89 90.95
MUUFL HSI + LiDAR

GLT-Net [Ding et al., 2022b] 81.50 82.99 76.39
Sal2RN [Li et al., 2022b] 88.50 90.02 85.14

S2ENet [Fang et al., 2021] 86.68 86.53 82.73
HCT [Zhao et al., 2022] 80.60 80.72 75.10

Proposed 90.42 93.03 87.63
Augsburg HSI + SAR

CCRNET [Wu et al., 2021] 73.07 65.26 64.16
MFT [Roy et al., 2023] 86.10 78.95 81.57

MACN [Li et al., 2023b] 89.02 81.59 84.73
SepDGConv [Yang et al., 2022] 85.96 82.95 80.74

Proposed 91.20 86.16 87.74

Table 1: Classification accuracy of different methods for three
datasets

OA(%) AA(%) k × 100 OA(%) AA(%) k × 100

Trento PAN + LiDAR Trento RGB + LiDAR
GLT-Net 98.34 97.89 97.79 98.23 97.35 97.64
Sal2RN 97.91 95.92 97.22 98.83 98.11 98.45
S2ENet 97.93 97.36 97.25 98.30 98.12 97.74
HCT 96.73 95.99 95.64 97.42 97.44 96.57
Proposed 98.89 97.97 98.41 99.01 98.52 98.81

Berlin PAN + SAR Berlin RGB + SAR
CCRNet 61.84 55.71 47.12 64.08 57.45 49.72
MFT 63.62 64.05 50.30 64.93 66.05 52.00
MACN 59.59 54.76 44.56 59.46 62.84 46.66
SepDGConv 60.79 58.81 46.73 61.72 62.67 48.70
Proposed 64.30 68.66 52.54 67.24 71.56 55.69

Table 2: Classification accuracy of different methods for other data
combinations

joint classification research on PAN+LiDAR, RGB+LiDAR,
PAN+SAR, and RGB+SAR data combinations, the methods
for HSI+LiDAR is applied to combinations with LiDAR data,
and the methods for HSI+SAR is applied to combinations
with SAR data. For fair comparisons, we use the original
code provided by the author.

The quantitative results of the proposed method and com-
peting methods on three different multisource datasets are
presented in Table 1. By leveraging the data correlation
across different modalities, it is evident that our proposed
method consistently achieves the highest accuracy on all
datasets in terms of overall accuracy (OA), average accuracy
(AA), and Kappa coefficient. For example, our overall ac-
curacy achieved on the HSI-MSI dataset is 91.63%, repre-
senting a significant improvement of 6.38% over SS-MAE,
3.45% over ExVit, and 4.02% over DSTD. The classification
results of the proposed method on the three datasets are illus-
trated in Fig. 3, Fig. 4 and Fig. 5, respectively, highlight-
ing its superiority compared to other methods. In comparison
to other methods, the proposed method yields qualitative re-
sults that are more closely aligned with ground truth. For
instance, it is a challenge to distinguish “healthy grass” and
“stressed grass” in 2012Houston dataset. As shown in Fig. 3,
compared with other methods, the classification results of the
proposed method on 2012Houston dataset show that different
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Figure 5: Classification maps of the Augsburg dataset.

Dataset(2012Houston) OA(%) AA(%) κ × 100

HSI+MSI+LiDAR 93.69 94.51 93.18

Table 3: Classification accuracy of dataset with three modals

grassland types are successfully distinguished. Furthermore,
as depicted in Fig. 4, our method demonstrates fewer mis-
classification within the “road” category. Both quantitative
and qualitative evaluations unequivocally establish the supe-
riority of our approach.

Specially, the proposed SymDiffuser capture the inter-
modal relationship through establishing conditional distribu-
tion for fusion. SymDiffuser is applicable to any modal data
and can naturally extend to accommodate any number of
modal inputs by establishing a chained conditional distribu-
tion. The classification result of the extended scheme, which
fuses three different modal data, are presented in Table 3.

4.3 Ablation Study
To verify the effectiveness of different metrics in our method,
we conduct ablation studies with four variants of SymDif-
fuser. The details are as follows.

Variant-1
In Variant-1, CSDiff is replaced by VAE. CSDiff is used to
explore the interdependence between different modal data,
so that the model can enhance the understanding of modal
relationships to effectively fuse information from different
sources. The data from different sources are fed into two
frozen mode-specific encoders εA and εB, and the extracted
latent space features are cascaded for fusion before classifi-
cation. As shown in Table 4, the use of CSDiff increases by
5.91% on OA in 2012Houston dataset compared to using the
cascaded way to fuse features for classification.

Variant-2
To further validate the effectiveness of the proposed CSDiff,
the MPB and TIC modules are removed in Variant-2, and the
experimental results are shown in the second row of Table
4. Compared to the result by using VAE shown in the first
row, employing CSDiff without including MPB and TIC has
improvements of 4.31%, 6.01%, and 4.35% in the OA on the
three datasets.

Variant-3
The mode-aware block uses the fusion features of the two
modalities to predict the noise, which enhances the correla-
tion of the two modalities in the process of establishing the

2012houston MUUFL Augsburg
Variant - 1 (CSDiff replaced) 85.72 84.41 86.85
Variant - 2 (w/CSDiff only) 90.03 87.96 88.25
Variant - 3a (w/o MPB) 89.67 88.25 89.14
Variant - 3b (MPB replaced) 89.51 88.93 88.82
Variant - 4 (w/o TIC) 91.18 88.84 89.39
Proposed 91.63 90.42 91.20

Table 4: Effect of different components

conditional distribution of each other. We remove the MPB
in the model to verify its effectiveness in Variant-3a. Given
that the primary objective of MPB is to enhance modal cor-
relation, we adopted a direct strategy in Variant-3b to replace
MPB: aligning and concatenating features from modality A
and modality B, subsequently inputting the merged features
into the denoising network. From Table 4, we can find that
compared with not using MPB, model with MPB has an av-
erage improvement of 2.06% in the three datasets.

Variant-4
The Task-oriented Conditional Injection module (TCI) seeks
to associate the visual features of each category with their
corresponding textual descriptions by integrating textual in-
formation into CSDiff. TCI facilitates the enrichment of fea-
tures with more discriminative information during the pre-
training stage, enhancing adaptation to multi-source classifi-
cation tasks. In Varinat-4, we remove TCI to verify its impact
on classification accuracy. As can be seen from Table 4, the
model adopting the task guidance module has 0.45%, 1.58%
and 1.81% improvements in the OA of the three datasets.

5 Conclusion
We proposed SymDiffuser, a unified framework for any mul-
timodal RS data classification. By modeling the conditional
distribution, SymDiffuser effectively captures the interdepen-
dence and interaction between different modalities. This pro-
found understanding of the modality relationship enables the
efficient integration and fusion of information from diverse
sources. To further enhance the correlation between modal-
ities and improve the model’s ability to comprehend down-
stream classification task, we introduce the modality percep-
tion block and task-oriented conditional injection module. By
offering insights into the modal relationship and fusion pro-
cess, CSDiff Pre-training opens up new avenues for advanc-
ing the field of multimodal data fusion and classification in
RS applications.
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