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Abstract
Bokeh rendering for images shot with small aper-
tures has drawn much attention in practice. Very
recently people start to explore diffusion models
for bokeh rendering, aiming to leverage the mod-
els’ surging power of image generation. How-
ever, we can clearly observe two big issues with
the images rendered by diffusion models: large
fluctuation and severe color deviation. To ad-
dress these issues, we propose in this paper a
prior-aware sampling approach, which can adap-
tively control the noise scale through learned pri-
ors, and a prior-aware noise scheduling strategy,
which can greatly reduce the number of inference
steps without sacrificing performance. Extensive
experiments show that our method can effectively
alleviate the fluctuation problem of sampling re-
sults while ensuring similar color styles to the in-
put image. In addition, our method outperforms
state-of-the-art methods, sometimes even with only
two steps of sampling. Our code is available
at https://github.com/Loeiii/Reschedule-Diffusion-
based-Bokeh-Rendering.

1 Introduction
Bokeh rendering refers to simulating the effect of images
taken with a large aperture based on a given small aperture
image. Compared with shooting with a large aperture cam-
era, bokeh rendering is clearly much more convenient and
thus has received widespread attention in practice.

Recently, diffusion models have achieved tremendous suc-
cess on various generative tasks [Podell et al., 2023; Voleti
et al., 2022; Kim et al., 2022]. Very recently, people start
to explore diffusion models for bokeh rendering [Luo et al.,
2023b]. However, for bokeh rendering, diffusion models still
have two big issues that can be clearly observed.

Large Fluctuation. For bokeh rendering under the same
camera parameter settings, the results are supposed to be
unique. However, diffusion models are generative models
that are inherently characterized by certain degrees of diver-
sity in their outputs. Although specific conditions can guide
the generation process, considerable variability persists in the

Figure 1: Bokeh rendering results from diffusion models. From left
to right: (a) ground truth; (b) results from starting from standard
Gaussian noise, with severe color deviations being either too “cold”
or too “hot”; (c) results from our prior-aware sampling method.

outputs, resulting in relatively large variance of metrics when
the same input is sampled multiple times.

Severe Color Deviation. Diffusion models for bokeh ren-
dering still introduce severe color deviation. As shown in Fig-
ure 1, the model tends to yield the bokeh rendering results that
are either overly bright or too dark, along with a color shift to
either too “cold” or too “hot”.

To address these two issues, we propose in this paper a
prior-aware sampling approach, which can adaptively con-
trol the noise scale through learned priors, and a prior-aware
noise scheduling strategy, which can greatly reduce the num-
ber of inference steps without sacrificing performance. Our
proposal is based on the following motivations.

Firstly, there should exist much similarity between a small
aperture image and its corresponding large aperture image.
Hence, we utilize the information from small aperture images
as a useful prior to initialize the “noise” at the beginning of
sampling. This can not only avoid sampling from a standard
Gaussian noise, but also address both issue simultaneously.

Secondly, we observe from experiments that a moderate
increase in the proportion of prior information within the ini-
tial state of diffusion models can lead to the generation of
higher-quality sampling outcomes. However, the proportion
of prior information progressively decreases with increasing
noise. Hence, during sampling, we reschedule the noise based
on priors to avoid excessively large noise and better leverage
the priors.
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Figure 2: Progressive noise addition to images. (a) Relationship between MSE and NSR of noisy images, for the same image pair (blue curve)
and different pairs (orange curve). (b) Data distribution at various NSR (10−6, 100.4, 101.8), where blue and green contour plots are for the
corresponding large-aperture and small-aperture images, respectively, and red contour plot is for another image. As the noise level increases,
the distinctions between images (and data distributions) gradually diminish, eventually converging towards standard Gaussian noise. This
suggests that initiating sampling with standard Gaussian noise fails to leverage any prior information.

In short, our main contributions are three-fold:
• We propose a prior-aware diffusion sampling approach

that suppresses color deviations during model sampling
while greatly reducing fluctuation in sampling results.

• We propose a prior-aware noise scheduling strategy that
can greatly reduce the number of sampling steps, allow-
ing the model to render desired bokeh effects within only
10 steps, substantially (100 times in principle) improv-
ing inference speed.

• Our method achieves the state-of-the-art (SOTA) perfor-
mance on real-world bokeh rendering tasks using diffu-
sion models.

2 Related Work
2.1 Diffusion Models
Diffusion models [Ho et al., 2020] can generate high-quality
images through a large number of iterative denoising opera-
tions, and have achieved tremendous success on various im-
age restoration tasks.

[Song et al., 2020b] proposes a unified diffusion model
framework from the perspective of stochastic differential
equations, which inspires a large number of training-free
samplers [Song et al., 2020a; Lu et al., 2022; Zhang and
Chen, 2022], greatly accelerating the model inference pro-
cess. In addition, many subsequent works investigate model
training [Karras et al., 2022; Choi et al., 2022], latent space
encoding [Rombach et al., 2022], and variance estimation
during inference [Bao et al., 2021; Bao et al., 2022], greatly
improved the model utility.

In conditional image restoration tasks, unlike most works
that combine the condition with the noisy image [Saharia et
al., 2022] to guide the inference process, [Yue et al., 2023;
Luo et al., 2023a] reformulate the diffusion models by intro-
ducing conditional information into the forward process.

2.2 Bokeh Rendering
Using post-processing rendering to achieve bokeh effects is
a very popular method. Traditional single image bokeh ren-
dering methods estimate the defocus map [Bae and Durand,

2007; Zhuo and Sim, 2011] or foreground regions [Xue et al.,
2013] and manually render bokeh effects. Although easy to
implement, the rendering effects often lack realism.

Recently, learning-based methods have quickly become the
mainstream in this field due to their ability to render more
realistic bokeh effects.

[Wadhwa et al., 2018; Purohit et al., 2019; Ignatov et al.,
2020; Yang et al., 2023] rely on obtaining depth information,
such as masks and saliency maps, in advance to render bokeh
effects. These method are highly dependent on the accuracy
of depth map or saliency map, and thus the performance de-
grades dramatically when the depth information is not accu-
rate enough.

[Dutta et al., 2021; Qian et al., 2020] directly use small
aperture images to achieve end-to-end bokeh rendering, elim-
inating the dependency of depth information. With feature
pyramids [Dutta et al., 2021; Liu et al., 2022] or Laplacian
pyramids [Georgiadis et al., 2022], the model parameters can
be greatly reduced, making the networks lightweight. [Na-
gasubramaniam and Younes, 2022; Yang et al., 2023] utilize
Vision Transformers for bokeh rendering to better preserve
image details. By incorporating aperture information in net-
works, [Seizinger et al., 2023; Yang et al., 2023] achieve
controllable multi-aperture bokeh rendering to some extent.
[Qian et al., 2020; Choi et al., 2020] explore the use of gen-
erative adversarial networks for bokeh rendering, providing a
new idea for this task.

Very recently, people start to explore diffusion models for
bokeh rendering tasks. [Luo et al., 2023b] attempt the task on
a synthetic dataset by leveraging the diffusion model frame-
work for image restoration proposed by [Luo et al., 2023a].
Although this method can better preserve the input image
style, it introduces priors by modifying the forward process,
making it incompatible with mainstream approaches based
on Denosing Diffusion Probabilistic Model (DDPM), thereby
hindering effective utilization of existing achievements such
as [Zhang et al., 2023].

Therefore, unlike [Luo et al., 2023b], we utilize the exist-
ing DDPM framework [Ho et al., 2020] and introduce pri-
ors during sampling, which not only can better guide model
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∆PSNR ∆SSIM ∆LPIPS

mean ± std mean ± std mean ± std
DDPM 1.17 ± 0.96 0.0130 ± 0.0108 0.0158 ± 0.0131
DDIM 0.65 ± 0.56 0.0863 ± 0.0660 0.0739 ± 0.0546
Same 0.99 ± 0.77 0.0106 ± 0.0080 0.0111 ± 0.0095

Table 1: Comparison of variability between DDPM, DDIM, and us-
ing the same initial state. The term “Same” refers to using the same
initial state, and the metrics are computed over a set of 61 images.

generation without changing the model training, but also can
better leverages existing achievements.

3 Preliminary: Conditional Diffusion Model
The forward process of the diffusion model is a process of
progressively adding Gaussian noise to perturb the image
through a Markov chain, which can be expressed as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ᾱt =
∏t

i=1(1 − βi) determines the variance of the
noise and controls the noise-to-signal ratio (NSR) of the noisy
image. βt ∈ (0, 1) is a monotonically increasing parameter
over time defined in advance. When t is very large, the noisy
image in the forward process tends towards standard Gaus-
sian noise.

The inference (reverse) process starts from a standard
Gaussian noise, and gradually transfers it to the target data
distribution according to the condition through Gaussian tran-
sition qθ (xt−1 | xt, y) = N (xt−1;µθ(xt, t; y), σt). [Song et
al., 2020b] claims that this process can be non-Markovian,
and gives the sampling formula in the reverse process as

xt−1 =
1√

1− βt

(
xt −

√
1− ᾱtϵθ(xt, t; y)

)
+

+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t; y) + σtϵ, (2)

where y represents the input image, σt = η
√

(1−ᾱt−1)
(1−ᾱt)

√
βt;

η ∈ [0, 1]; when η = 0, the sampling process is determin-
istic, known as Denosing Diffusion Implicit Model (DDIM),
whereas at η = 1, the sampling process aligns with that of
DDPM [Ho et al., 2020]; ϵθ(xt, t; y) is the noise estimated
by using xt, t, y through the denoising network, and its train-
ing loss function is L1 loss between the estimated noise and
the real noise, shown as

L = Et,ϵ[∥ϵ− ϵθ(xt, t; y)∥2]. (3)

4 Methodology
4.1 Technical Motivations
Stochasticity in Sampling. From Equation (2), we can see
that the randomness of the sampling results is affected by the
initial sampling state xT and the random noise ϵ introduced
during inference. To evaluate the fluctuation, we employ a
method comparing the variations between twice independent
sampling of the same input image in terms of Peak Signal-
to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), and

Learned Perceptual Image Patch Similarity (LPIPS). Specifi-
cally, we calculate the mean and standard deviation of the ab-
solute difference values of these metrics. When the number
of images is relatively large, this method effectively reflects
the stability of the sampling results under different metrics.
As shown in Table 1, we compare DDPM, DDIM and the
method sampling from the same Gaussian noise, which elim-
inates the randomness in the initial state. Although DDIM
yields a more stable PSNR by avoiding random noise intro-
duction during sampling, its structural metric fluctuation is
significantly higher than even that of DDPM. Conversely, us-
ing a fixed initial state is capable of mitigating fluctuations in
all measured metrics. Thus, employing a suitable method to
generate the initial state can result in more stable sampling
outcomes with only slightly higher PSNR fluctuation than
that of DDIM.

Data Distribution. Figure 2(b) illustrates that a pair of im-
ages sharing a substantial amount of information have quite
close data distributions. Conversely, different pairs of im-
ages exhibit significant differences. As the noise magnitude
increases, the data distribution of the noisy images progres-
sively deviates from the original and approaches standard
Gaussian distribution, diminishing differences between dif-
ferent pairs. Figure 2(a) illustrates that the Mean Squared
Error (MSE) between the different image pair gradually de-
creases with increase of the NSR. When the noise scale ap-
proaches infinity, the noisy image transforms into standard
Gaussian noise, losing all prior information. Consequently,
sampling directly from Gaussian noise introduces a big ob-
stacle in transitioning to the target data distribution.

Noise Schedule. Due to the similarity between small and
large aperture images, only an intermediate noise magni-
tude is needed to bring their data distributions very close.
Typically, using smaller noise means fewer inference steps.
Therefore, avoiding excessively large noise during sampling
can not only improve model performance but also accelerate
inference speed.

Based on the aforementioned technical motivations, we
propose a prior-aware sampling method in section 4.2 and a
prior-aware noise scheduling strategy in section 4.3.

4.2 Prior-aware Sampling
We set T = 1000 and use the small aperture input y to replace
x0. Then, using Equation (4) as the initial state for sampling,
we generate the noisy image:

xt =
√
ᾱty +

√
1− ᾱtϵ. (4)

Compared with standard Gaussian noise, such a generated
noisy image contains a certain level of prior information, thus
greatly reducing the distance between the initial and target
data distributions.

As can be seen from Figure 1(b), directly using the diffu-
sion model for sampling leads to severe color deviations. By
introducing priors, we greatly alleviate the color problem dur-
ing sampling and achieve considerable performance gains. In
Figure 3, we use the isolated point on the far right to denote
sampling from standard Gaussian noise, as its NSR is infin-
ity. As shown in Figure 3, the end of the blue curve on the
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Figure 3: Results of sampling under different prior scales. The or-
ange dashed line represents the results from Algorithm 1, while the
blue curve and the blue dot represent sampling results obtained from
starting from xt (with a prior scale of ᾱt) and standard Gaussian
noise (without prior), respectively. Given that ᾱt decreases over t,
this plot suggests that appropriately scaled prior information (e.g. by
Alg. 1) is more conducive to the model’s inference.

Algorithm 1 Prior-aware Sampling
Input: noise schedule ᾱ, denoising network ϵθ(·), small aper-
ture image y
Sample: ϵ ∼ N (0, I)

1: A = 1

1+
[

1√
6
(3nmaxc∈[R,G,B] σy;c)

]2
2: Find an index i such that ᾱi−1 > A and ᾱi < A.
3: Let T

′
= i and xT ′ =

√
ᾱT ′ y +

√
1− ᾱT ′ ϵ

4: for t = T
′
, . . . , 1 do

5: Sample ϵ ∼ N (0, I) if t > 1, else ϵ = 0

6: xt−1 = 1√
1−βt

(xt− βt√
1−ᾱt

ϵθ(xt, t; y))+
√

1−ᾱt−1

1−ᾱt
βtϵ

7: end for
8: return x0

left, where the scale of prior information is ᾱ1000, exhibits an
improvement of over 9 dB compared with starting sampling
with standard Gaussian noise.

Since ᾱ1000 is very close to 0, the proportion of priors in
the initial noisy image obtained through Equation 4 is very
small. By enumerating the starting point over t, we find that
appropriately increasing the proportion of priors in the ini-
tial image can further improve performance, as shown in Fig-
ure 3. Therefore, we propose to determine the initial state’s
proportion of priors, i.e. the starting point of model infer-
ence, based on an adaptively learned prior magnitude from
the conditional information.

Similarly to [Ye et al., 2023], by dividing both sides of
Equation (4) by

√
ᾱt, we obtain

1√
ᾱt

xt = y +
√
NSR · ϵ, (5)

where NSR = (1− ᾱt)/ᾱt is the NSR.
As shown in Figure 2, as the NSR increases, the data distri-

butions of the noisy large and small aperture images gradually

Algorithm 2 Refined Prior-aware Sampling
Input: denoising network ϵθ(·), inference stps N , small aper-
ture image y
Sample: ϵ ∼ N (0, I)

1: A = 1

1+
[

1√
6
(3nmaxc∈[R,G,B] σy;c)

]2
2: Calculate βend from

∏N−1
i=0 (1−βi;end+

γ
N−1 ) = ξ(N)A

and set new noise schedule according to βend ▷ use
Newton’s Iteration Method

3: xN =
√
ᾱNy +

√
1− ᾱN ϵ

4: for t = N, . . . , 1 do
5: Sample ϵ ∼ N (0, I) if t > 1, else ϵ = 0

6: xt−1 = 1√
1−βt

(xt− βt√
1−ᾱt

ϵθ(xt, t; y))+
√

1−ᾱt−1

1−ᾱt
βtϵ

7: end for
8: return x0

become closer. Considering the 3σ rule, for condition yi, we
could comfortably argue that, when the NSR is greater than
the level shown in Equation (6), the noisy images are almost
identical:

NSRi;min =

[
1√
6

(
3n max

c∈[R,G,B]
σi;c

)]2
, (6)

where n indicates the aperture ratio, since the blur disc diam-
eter is proportional to the f-number [Liu et al., 2016], and σi;c

is the standard deviation of each color channel of yi.
By solving Equation (6), for condition yi, there exists an

Ai such that

Ai =
1

1 +NSRi;min
, (7)

and then we simply use Ai to determine the initial noisy im-
age and time t during sampling, as shown in Algorithm 1.

4.3 Prior-aware Noise Scheduling
As with [Saharia et al., 2022], we use a piece-wise distribu-
tion method to sample the noise level during training, where
p(ᾱt) = U(ᾱt−1, ᾱt). This ensures greater flexibility in
noise scheduling during inference, aligning with the concept
proposed in [Chen et al., 2020].

According to Equation (7), NSR above a certain level will
not appear during sampling. Therefore, to ensure each input
gets the same number of iterations, we reschedule the noise
level during sampling based on the following strategy:

N−1∏
n=0

(
1− βi;end +

γ

N − 1
n

)
= Ai, (8)

where N indicates the number of sampling steps, and γ is a
hyperparameter to adjust the initial noise magnitude. Unlike
[Chen et al., 2020], we impose fewer constraints on β. Under
the condition of Equation (8), we combine DDPM with pri-
ors for sampling. Remarkably, even when the sampling steps
are reduced to only 10, our model maintains its performance
without any degradation. In some cases, such a steps reduc-
tion would produce even better results.
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Figure 4: Qualitative comparison. (a) Input image; (b) BRViT; (c) FPBNet; (d) SDMSHN; (e) Refusion; (f) Ours; (g) ground truth. It can be
observed that our method ensures the clarity of the foreground while rendering a more natural bokeh effect.

As the number of inference steps is reduced, the relative
proportion of information provided by the condition in the de-
noising process increases. This shift results in a tendency for
the model’s inference outcomes to converge to the given con-
ditions. Consequently, continuing to use priors of the same
scale fails to achieve the desired performance. Therefore,
when the number of inference steps is small, we propose to
appropriately reduce the scale of priors based on the number
of inference steps by weighting Ai. Our final formulation is

N−1∏
n=0

(
1− βi;end +

γ

N − 1
n

)
= (1− e−

N
20 )Ai. (9)

After implementing the refined strategy following Equa-
tion (9), the model is capable of maintaining robust perfor-
mance even when constrained to a mere two inference steps.
In Algorithm 2, we present our refined sampling algorithm,
which incorporates the refined noise scheduling strategy.

Method PSNR ↑ SSIM ↑ LPIPS ↓
BRViT 30.02 0.9387 0.0837
SDMSHN 30.13 0.9242 0.0945
FPBNet 29.98 0.9358 0.0834
Refusion 30.82 0.9255 0.0953
Baseline 30.25 0.9421 0.0682
Ours (N = 2) 30.54 0.9428 0.0691
Ours (N = 5) 30.99 0.9485 0.0678

Table 2: Quantitative comparison with SOTA bokeh rendering meth-
ods on the FPBNet dataset. The best is in bold; the second best is
underlined.

BRViT SDMSHN FPBNet Refusion Ours

P(M) ↓ 123.14 10.84 9.38 126.22 97.81

Table 3: Amounts of parameters of different methods.
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Figure 5: Noise schedule with different scaling levels for Ai. Ac-
cording to Equations. (4) and (8), adjusting Ai in noise schedule is
equivalent to altering the proportion of prior information in the ini-
tial state.

Figure 6: Results of using different prior scales: (a) ground truth;
(b) A

′
i < Ai, results in color deviation; (c) A

′
i > Ai, leads to in-

sufficient bokeh effect; (d) A
′
i = Ai. This suggests that adjustments

should be made based on prior information when scheduling noise.

5 Experiments
5.1 Settings
Dataset. Currently, high-quality real-world bokeh render-
ing datasets are relatively scarce. One such dataset is the
FPBNet dataset [Liu et al., 2022], comprising 941 sets of
highly aligned data with a resolution of 2232×1488. To mit-
igate the effects of data misalignment on the model training
and maximize its potential in generating more natural results,
we train and test our approach on the FPBNet dataset.

Implementation Details. During the training phase, we set
T to 1000 and linearly increase the value of β from 0.00001
to 0.01. The Adam optimizer is employed, with an initial
learning rate set at 1×10−4 without decay and the optimizer’s
weight decay is set at 0.01. Training is conducted over 1.2M
iterations on an A100 GPU.

During the inference process, we employed sampling with
the prior scale of ¯α1000 as our ‘Baseline’. Setting γ = 0.1;
sampling is then performed separately using N = 2 and
N = 5. Additional sampling strategies will be showed in
the ablation study.

To comprehensively evaluate the performance of our
model, we conducted comparisons with several SOTA meth-
ods in the field of bokeh rendering, including BRVit [Na-
gasubramaniam and Younes, 2022], SDMSHN [Dutta et al.,
2021], FPBNet [Liu et al., 2022], and Refusion [Luo et al.,

Figure 7: Comparison of the original and refined noise schedules.

2023b] which is also based on diffusion models.
The results are evaluated with mainstream metrics such as

PSNR, SSIM, and LPIPS, with the calculations for PSNR and
SSIM being conducted in the RGB space.

5.2 Results
Quantitative Evaluation. Tables 2 and 3 present the quan-
titative results of various methods. By integrating DDIM with
a setting of η = 1, our approach achieves SOTA performance
with just 5 steps.

As indicated in Table 2, even our ‘Baseline’ model demon-
strates a considerable advantage in image perceptual qual-
ity under the LPIPS metric, exceeding a 15% improvement
over existing models. Moreover, it also produces comparable
PSNR and SSIM.

Furthermore, by strategically scheduling noise based on
prior information, the model not only reduces inference time
but also achieves a better performance. Employing a 5-step
sampling strategy, our model achieves optimal performance
across all evaluation metrics. Notably, even with a 2-step
sampling, the model’s performance remains essentially unal-
tered, surpassing the ‘Baseline’ in PSNR and SSIM metrics.
Qualitative Results. Figure 4 shows the visual compari-
son. Upon examining the visual quality of the experimental
results, it is evident that our model produces images with su-
perior clarity and noise suppression compared with compet-
ing methods. This is attributed to the incorporation of prior
information into the initial state, resulting in a data distribu-
tion more closely aligning with the target distribution, thereby
easing the diffusion process.

In terms of image content, our method accurately distin-
guishes the foreground from the background, rendering a
more realistic bokeh effect. As demonstrated in the first and
third rows of Figure 4, our model can simulate an effect closer
to natural bokeh effect rather than a simple blur. Furthermore,
as evident in the final row, our method better preserves the de-
tails in the foreground.

5.3 Ablation Studies
In this section, we conduct ablation studies to demonstrate the
effectiveness of our proposed prior-aware sampling method
and noise scheduling approach.
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Method PSNR ↑ SSIM ↑ LPIPS ↓
Baseline 30.25 0.9421 0.0682
Alg.1 30.60 0.9421 0.0648
N = 700, γ = 0.005 30.70 0.9461 0.0671
N = 100, γ = 0.01, w/o 16.67 0.7877 0.2210
N = 100, γ = 0.01 30.83 0.9482 0.0678
N = 50, γ = 0.05 30.78 0.9481 0.0676
N = 20, γ = 0.1 30.65 0.9477 0.0680
N = 10, γ = 0.1 30.52 0.9469 0.0691
N = 5, γ = 0.1 30.44 0.9466 0.0686
N = 2, γ = 0.1 29.95 0.9437 0.0708

Table 4: Ablation study on inference steps. When N is large, we
appropriately reduce the value of γ to ensure the feasibility of β.
The notation “w/o” means sampling from standard Gaussian noise
without prior; ‘Alg.1’ means sampling using Algorithm 1.

Effectiveness of Sampling Starting Point. Figure 3 illus-
trates the sampling outcomes of the model under different
prior scales. The horizontal dashed line in the figure repre-
sents the results from Algorithm 1, which shows consider-
able improvement over fixed prior scales. The results indicate
that dynamically selecting an appropriate prior scale for each
image according to Equation (7) could enhance the model’s
rendering performance.

Impact of Prior Scale. As shown in Figure 5, we manu-
ally adjust the value of Ai in Equation (8) to be larger or
smaller, thereby exploring the impact of the prior weight on
the sampling outcome. Observations from Figure 6 reveal
that decreasing the value of Ai, thereby increasing the initial
noise level, leads to noticeable color deviations in the infer-
ence results due to reduced prior information. This partially
explains why starting sampling with Gaussian noise can re-
sult in color biases. Conversely, increasing the value of Ai,
and thereby the weight of the prior in the initial noisy image,
makes the model’s inference results more dependent on the
given conditions, leading to insufficient bokeh rendering ef-
fects. This also suggests that we should leveraging the shared
information between the input and target images to identify
the optimal prior scale in other image restoration tasks where
the prior information is equally valuable.

Influence of Different Noise Schedules. Table 4 presents
the sampling outcomes under different (N, γ) combinations.
It is observed that when N is relatively large, the prior-aware
sampling method does not compromise the model’s perfor-
mance; in fact, it may even enhance it to some extent. How-
ever, as N decreases, especially when N < 20, the quality
of the sampling results considerably deteriorates. The defi-
ciency in the bokeh rendering effect in these samples is ev-
ident. We hypothesize that the amplification of the condi-
tion’s influence when the number of inferences is small leads
to a significant bias in the sampling results towards the condi-
tions. Based on these experiments, we adjust to Equation (9),
especially for lower values of N , reducing the weight of the
prior in the initial sampling image. This refinement makes the
equation more suitable for our model’s needs, with the com-
parison of the refined ᾱ′ and the original ᾱ shown in Figure 7.

Method PSNR ↑ SSIM ↑ LPIPS ↓
N = 20, γ = 0.1 30.88 0.9483 0.0681
N = 10, γ = 0.1 31.01 0.9494 0.0671
N = 5, γ = 0.1 30.99 0.9485 0.0678
N = 2, γ = 0.1 30.54 0.9428 0.0691

Table 5: Ablation study on the refined noise schedule. Compared
with Table 4, the model’s performance has shown overall improve-
ment after such a noise-schedule refinement.

Method ∆PSNR ∆SSIM ∆LPIPS

mean ± std mean ± std mean ± std
Baseline 1.07 ± 0.98 0.0037 ± 0.0111 0.0055 ± 0.0064
Alg.1 0.35 ± 0.33 0.0020 ± 0.0039 0.0024 ± 0.0034
N = 200 0.44 ± 0.36 0.0018 ± 0.0036 0.0021 ± 0.0029
N = 100 0.44 ± 0.39 0.0019 ± 0.0046 0.0024 ± 0.0042
N = 10 0.52 ± 0.42 0.0018 ± 0.0019 0.0024 ± 0.0024
N = 10† 0.48 ± 0.49 0.0013 ± 0.0015 0.0024 ± 0.0023
N = 5 0.71 ± 0.78 0.0022 ± 0.0047 0.0030 ± 0.0032
N = 5† 0.68 ± 0.71 0.0022 ± 0.0040 0.0034 ± 0.0041
N = 2 0.69 ± 0.47 0.0026 ± 0.0041 0.0042 ± 0.0039

Table 6: Ablation study of the fluctuations between employing priors
of varying scales and using fixed initial states. † indicates sampling
from a fixed initial state; ‘Alg.1’ means sampling using Algorithm 1;
and for N = 100, 200, we set γ = 0.01. It can be observed that our
method exhibits a level of stability comparable to that achieved by
using a fixed initial state.

Furthermore, compared with Table 4, Table 5 demonstrates
that this refinement enhances the overall performance of the
model.

Comparison of Variability. As described in Section 4.1,
we assess the variability of the model’s sampling outcomes
by analyzing the mean and standard deviation of the abso-
lute differences in metrics (PSNR, SSIM, LPIPS) between
twice independent sampling. To better evaluate the impact
of prior information on the stability of sampling results, we
fix the initial state as a benchmark, where the fixed initial
state is generated using a constant standard Gaussian noise.
According to Table 6, the introduction of prior information
significantly enhances the stability of the model’s sampling
outcomes. Moreover, this improvement in stability is compa-
rable with that achieved by using a fixed initial state.

6 Conclusion
In this paper, we propose a prior-aware sampling method and
a prior-aware noise scheduling strategy, for diffusion model-
based bokeh rendering. Our method adeptly mitigates sig-
nificant color deviations commonly encountered during the
model’s inference by integrating prior information. The in-
tegration of priors not only significantly elevates the perfor-
mance of the model, but also contributes to a substantial re-
duction in the number of required inference steps via prior-
aware noise scheduling. In the future, we plan to explore
and substantiate the versatility of our prior-aware sampling
method in a wider array of image restoration challenges.
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