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Abstract
Finetuning the large vision-language models on
video data with a set of learnable prompts has
shown promising performance on zero-shot activ-
ity recognition but still requires extra video data
and expensive training costs. Inspired by re-
cent Test-time Prompt Tuning (TPT) on the im-
age domain, this work attempts to extend TPT to
video data for zero-shot activity recognition. How-
ever, monotonous spatial augmentation and short
class names cannot meet the need to capture di-
verse and complicated semantics of human behav-
ior during prompt tuning. To this end, this work
proposes a Dual Temporal-Sync Test-time Prompt
Tuning (DTS-TPT) framework for zero-shot ac-
tivity recognition. DTS-TPT tunes the learnable
prompts appended to text inputs on video feature
sequences of different temporal scales in multiple
steps during test time. In each tuning step, we
minimize the semantic consistency among the pre-
dictions from video feature sequences randomly
augmented via AugMix with both original class
names and the corresponding description generated
through LLM. Compared with the state-of-the-art
methods, the proposed method improves the zero-
shot top-1 accuracy by approximately 2% ∼ 5%
on popular benchmarks. The code is available at
https://github.com/quhongyu/DTS-TPT.

1 Introduction
Since the era of deep learning, activity recognition technol-
ogy has developed rapidly and achieved significant improve-
ments in predefined categories such as K400 [Kay et al.,
2017] and K600 [Carreira et al., 2018]. However, due to
the diversity of human activity, it is difficult for humans to
list all human activity categories in the real world completely.
Therefore, it is urgent to develop zero-shot algorithms to pre-
dict unseen but known activity categories, i.e., zero-shot ac-
tivity recognition [Brattoli et al., 2020; Liu et al., 2011] via
matching the video and class name feature directly. This re-
search has made progress in recent years but is still insuffi-
cient, mainly hindered by challenges such as i) Intra-modal
Distribution Shift [Lin et al., 2022]: Within each modality,
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Figure 1: Motivation of this work. Standard Test-time Prompt Tun-
ing adopts single-scale features for tuning with a single semantic
consistency. To capture the diverse temporal semantics underlying
human activities, we build multiple temporal scale video features for
multi-step tuning supervised by the semantic consistency on both
class names and explanations.

visual/textual features of each semantic should be clear and
distinguishable; ii) Inter-modal Semantic Gap [Lin et al.,
2022]: Between two modalities, the feature distribution of vi-
sual samples and labels with the same semantics should be
more aligned/consistent.

Existing solutions can be divided into two types, i.e.,
training-based and training-free. The training-based meth-
ods tune an off-the-shelf visual encoder on a certain scale of
video data for adapting to zero-shot activity recognition. To
enhance the discriminability of features from each modality
(visual or text), previous works build fine-grained motion fea-
tures from the objects or attributes in videos [Gao et al., 2019;
Liu et al., 2011], or enhance activity class name embed-
dings with object tags [Gao et al., 2019] or elaborative de-
scriptions [Chen and Huang, 2021]. To facilitate video-text
semantic alignment, some recent works [Lin et al., 2022;
Wang and Chen, 2017] try to convert text features of un-
known class names into the video feature space according
to the knowledge association between known and unknown
class names.

However, with the rise of large Vision-Language models
technology, intra-modal representations are becoming more
robust, and the inter-modal semantic gap (between visual and
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text) is gradually narrowing. Thanks to this, many training-
free methods built on pre-trained large visual and text models
have recently emerged in zero-shot visual classification. The
training-free method usually fixes the visual embedding, and
then i) replaces the fixed class embedding with a more flexible
support set [Zhang et al., 2022b; Udandarao et al., 2023]; or
ii) tunes the class embedding in a self-supervised manner on a
single sample during the test time for better alignment (Test-
time Prompt Tuning, TPT [Shu et al., 2022]), as shown in
Figure 1 (a).

Without a doubt, we can apply these works to zero-shot ac-
tivity recognition but will encounter the following issues. i)
The samples of the support set are retrieved from the large
database or generated via large generative models according
to class names, in which the quality of visual samples is lim-
ited and the cost of video data generation is expensive; ii) TPT
relies heavily on high-quality augmentation views to calibrate
the embedding of class labels. However, on the one hand, it
is difficult to mine rich and effective motion semantics via di-
rectly extending spatial augmentation to video data with high
redundancy; on the other hand, simple class names are insuf-
ficient to describe human activity semantics, which may limit
the effectiveness of the semantic consistency objective.

To this end, we propose a Dual Temporal-Sync Test-
time Prompt Tuning framework that tunes the class embed-
ding with different temporal structures in multiple steps su-
pervised by dual semantic consistency, as shown in Fig-
ure 1 (b). This framework consists of the following two mod-
ules. Temporal-Sync Test-time Prompt Tuning (TS-TPT):
To capture rich and effective motion features, we append
learnable prompts to the original class embedding and tune
these prompts with different temporal scale video sequences
in multiple steps. Specifically, we build a set of video aug-
mentations via spatial AugMix [Hendrycks et al., 2019] and
then select high-confident augmentations for further tuning.
We sample frames from selected video augmentations syn-
chronously at the same scales in a single step but at different
scales in different steps. Details are in Sec 4.1. Dual Se-
mantic Consistency (DSC): To more accurately calibrate the
motion semantic in the language space, we adopt both orig-
inal class names of human activities and the corresponding
explanations enquired from LLMs for semantic consistency.
Learnable prompts are equipped and optimized via different
backward propagation solutions including Parallel, Hybrid,
and Switch Backward. Details are in Sec 4.2. We extensively
evaluate the proposed framework on various benchmarks and
quantitative and qualitative results show its substantial im-
provements and strong interpretability.

2 Related Work
2.1 Zero-shot Activity Recognition
Zero-shot action recognition aims to identify novel action
classes that do not appear during model training, which
is more appropriate for practical applications. The typical
pipeline of zero-shot matching [Brattoli et al., 2020] extracts
the video and class text features and then computes the dis-
tance between them in the feature space for final prediction.
To build robust representation, earlier works represent the

video via handcraft attributes [Liu et al., 2011] or building
knowledge graphs on object tags [Gao et al., 2019], and en-
hance the class text features with the help of object tags [Gao
et al., 2019] or elaborative descriptions [Chen and Huang,
2021] retrieved from dictionaries or Wikipedia according to
class names. Some recent works adapt the large pre-trained
model (e.g., CLIP) to zero-shot activity recognition via fully
tuning (e.g., ViFi-CLIP [Rasheed et al., 2023]) or partial
visual prompt tuning (i.e., ActionClip [Wang et al., 2021])
or partial visual/text prompt tuning (i.e., XCLIP [Ni et al.,
2022]). The above works still need to be fine-tuned on lots of
video samples during the training phase. However, this work
is the first to append several learnable prompts to the label
and tune them via a single sample during inference.

2.2 Prompt Tuning for VLMs
In recent years, it has become a trend to adapt Visual-
Language Models (VLMs) pre-trained on large-scale visual-
text corpora to various tasks in computer vision [Radford et
al., 2021; Chen et al., 2020]. As a heuristic way, prompt
tuning appends some learnable prompts to inputs and then
tuning them on the few training samples (training-time tun-
ing) [Zhou et al., 2022c; Zhou et al., 2022b; Gao et al.,
2023] or a single test sample without annotation (test-time
tuning) [Shu et al., 2022]. For instance, CoOp [Zhou et
al., 2022c] inserts a set of learnable vectors to class em-
bedding in different positions as a prompt context which is
directly optimized by the classification loss. To avoid the
over-fitting issue, CoCoOp [Zhou et al., 2022b] is proposed
to learn a lightweight network to make the prompt condi-
tioned on model inputs. Inspired by this, recent work [Sun
et al., 2022] decomposes backbone parameters into succes-
sive matrices and efficiently tunes part of them for few-shot
visual recognition, achieving promising results. To get rid
of annotation cost, some recent works [Huang et al., 2022;
Zhou et al., 2022a] optimize the prompts in an unsupervised
manner. However, this line of work still requires downstream
training data, which is not compatible with the zero-shot set-
ting. To this end, Test-time Prompt Tuning (TPT) [Shu et al.,
2022] is proposed to learn adaptive text prompts dynamically
with a single test sample during inference, which reduces the
cost of labeling and calculation. In this work, we extend TPT
to the video domain, taking into account the diversity of mo-
tion semantics, for zero-shot activity recognition.

2.3 Test-time Tuning
Test-time Tuning (TTT) seeks to leverage unlabeled test data
to enhance the model’s generalization capabilities for the tar-
get task in the presence of data distribution shifts, which has
been well explored for several applications [Shocher et al.,
2018; Nitzan et al., 2022; Xie et al., 2023]. The key to TTT
is to formulate an effective test-time objective. In the image
domain, previous works apply rotation prediction [Sun et al.,
2020; Liu et al., 2021] or image reconstruction [Gandelsman
et al., 2022; Wang et al., 2023] as the self-supervision task to
optimize the model during inference. Besides, TENT [Wang
et al., 2020] utilize entropy minimization [Roy et al., 2019;
Saito et al., 2019] to tune the parameters of BN layers to over-
come the distribution shift [Zhang et al., 2022a]. To extend
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TENT [Wang et al., 2020] to scenarios involving a single
test sample, MEMO [Zhang et al., 2022a] proposes utiliz-
ing data enhancement methods to generate diverse enhanced
views from the single test sample for test-time tuning. In the
video domain, recent works attempt to extend TTT to video
data via self-supervised dense tracking [Azimi et al., 2022] or
segmentation on video streams [Wang et al., 2023]. However,
the optimization cost of tracking and segmentation is higher
than entropy minimization (on class predictions). Therefore,
this work applies entropy minimization as the objective func-
tion for prompt tuning but optimizes it at different scale video
sequences in multiple steps.

3 Preliminary
3.1 Problem Statement
Given a set of N class labels Yu = {y0, y1, · · · , yN}, the
goal of zero-shot activity recognition is to predict the label
of a testing video sequence Vtest as yi ∈ Yu. Specifically, a
zero-shot pipeline i) adopts pre-trained models Fvis and Ftxt

respectively to encode the input video and class labels into
visual and textual features with the same dimension, ii) then
calculates the distance among them in feature space, and the
nearest category is regarded as the prediction result.

Notably, the conventional methods finetunes Fvis and Ftxt

on an extra large video dataset (e.g., K400) with the labels of
Ys and have the constraint of Ys∩Yu = ∅. However, inspired
by [Shu et al., 2022], this work focuses on directly applying
an arbitrary VLM pre-trained model (such as CLIP [Radford
et al., 2021] and BIKE [Wu et al., 2023]) to identify the hu-
man activity in downstream tasks, which gets rid of training
data and is more practical.

3.2 Test-time Prompt Tuning
Zero-shot Matching. Given a test video Vtest and all class
labels Yu, we first encode them as fvis = Fvis(v) and f txt

i =
Ftxt(yi). For zero-shot visual recognition, we calculate the
probability that the test video v belongs to category yi as

p(yi|Vtest) =
exp(sim(fvis,f txt

i )/τ)∑N
j=1 exp(sim(fvis,f txt

j )/τ)
. (1)

Here, sim(·) is usually implemented by computing cosine
similarity between the two feature vectors, N is the total num-
ber of class labels, and τ is the temperature parameter.

Prompt Tuning. Large pre-trained models have strong se-
mantic representation capabilities but still need to be fur-
ther generalized to downstream tasks that may contain out-
of-distribution samples. For zero-shot testing, a common
method is to add learnable prompts to class labels and tune
these prompts with only a single sample in a self-supervised
manner, which is called Test-time Prompt Tuning [Shu et al.,
2022]. The optimization objective can be formulated as

p∗ = arg min
p

L(F ,p,vtest), (2)

where F is a pre-trained model consisting of visual and tex-
tual encoders. p is the learnable prompts appended to the
tokenized text labels as {p,yi}.

In the zero-shot inference phase, only one unlabeled test
video is given to match all class labels, thus we can only op-
timize the above objective function in a self-supervised man-
ner. Hence, Shu et al. implemented the loss function L via
minimizing the averaged entropy of predictions from K aug-
mented views as follows.

p∗ = arg min
p

−
N∑
i=1

p̂p(yi|Vtest)log p̂p(yi|Vtest), (3)

p̂p(yi|Vtest) =
1

K

K∑
j=1

pp(yi|AugSj (Vtest)). (4)

Here, AugSj denotes the random spatial augmentation and
pp(yi|Augj(Vtest)) is the prediction probabilities calculated
between the j-th video augmentation and i-th class label with
the prompt p.

To reduce the noise from random augmentations, Shu et
al. [Shu et al., 2022] further select confident samples whose
prediction entropy is lower than the threshold θ from K aug-
mentation views as

p̂p(yi|Vtest) =
1

ρK

∑K
i=1 1[H(pi) ≤ θ]pp(yi|AugSi (Vtest)). (5)

Here, H calculates the self-entropy of the prediction on an
augmented view and 1[·] is the indicator function.

4 Methodology
Inspired by Tese-time Prompt Tuning (TPT), this work aims
to tune the embedding of activity labels for zero-shot activ-
ity recognition during test time. However, monotonous spa-
tial augmentation and short class names used in the stan-
dard TPT framework are insufficient for tuning complicated
motion semantics in the language space. To this end, this
work proposes a Dual Temporal-Sync Test-time Prompt Tun-
ing (DTS-TPT) framework consisting of two core mod-
ules (i.e., Temporal-Sync Test-time Prompt Tuning (TS-TPT)
and Dual Semantic Consistency (DSC)) as shown in Figure 2.
TS-TPT builds multi-scale video features from all spatial-
augmented videos synchronously and then tunes the prompts
with video features with different temporal scales in multi-
ple steps. In each tuning step, DSC minimizes the average
entropy of predictions from all augmented samples with both
class names and descriptions generated by LLMs [OpenAI,
2023].

4.1 Temporal-Sync Test-time Prompt Tuning
As mentioned above, the key to TPT is augmenting the test
visual sample into multiple views for tuning class embed-
ding. For the sake of clarity, we firstly rewrite the standard
TPT (i.e., Eq. (2)) as

p∗ = arg min
p

L(p,F(AugS(vtest))), (6)

where F(AugS(vtest))) denotes that TPT performs spatial
augmentation AugS on the test video and extracts the visual
features from them via the pre-trained model F .

Based on this, how to augment the video data is the dif-
ficulty in adapting TPT to zero-shot activity recognition. A
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Figure 2: Overview of the proposed framework. We first construct multiple spatial augmentation views from the given video sequence via
AugMix (only three views are shown for simplicity). The framework consists of two core modules, i) Temporal-Sync Test-time Prompt
Tuning: builds multiple temporal-scale video features, and then calculates the averaged predictions in multiple steps for subsequent tuning;
ii) Dual Semantic Consistency: In each tuning step, both the original class names and the LLM-generated description are wrapped with
learnable prompts for similarity calculations with all spatial-augmented videos. After that, we minimize the averaged entropy from confident
prediction scores, following [Shu et al., 2022].

straightforward approach is to perform spatial (AugS) and
temporal (AugT) augmentation on the video data and com-
bine them for a single-step optimization of TPT as

p∗ = arg min
p

L(p,F(AugT(AugS(vtest)))). (7)

However, spatio-temporal augmented videos are usually dif-
ferent from the original video and they should not be directly
used for consistency constraints, as shown in Table 5.

To this end, we designed a multi-step optimization strategy
with temporal synchronization, i.e., the same temporal struc-
ture should be used in single-step optimization, but different
temporal structures should be used in different steps.
Single-step Tuning. Formally, we sample the video fea-
tures extracted by F(AugS(vtest))) with different temporal
scales and tune the prompt in a single step as

p∗ = arg min
p

L(p, AugT(F(AugS(vtest)))). (8)

Here, AugT aims to further augment the given spatial views
in the temporal domain, and can essentially be viewed as a
Temporal Sampling function. We implement AugT via Video-
version AugMix [Hendrycks et al., 2019] which simply ex-
tends the spatial AugMix technology to the spatial-temporal
data.
Multiple-step Tuning. Given a test video, we aim to tune
the learnable prompt multiple times by video sequences with
different temporal structures augmented from the original test

Algorithm 1 Pseudocode of DTS-TPT

1: Input: a single test video vtest, class names {yj}, learn-
able prompts p, video encoder Fvideo, and text encoder
Ftext.

2: Perform spatial augmentation on the test video K
times and extract the visual features as xS

k =
Fvideo(Aug

S
k(vtest)), thus we get a set of augmented

video features XS = {xS
1 ,x

S
2 ,x

S
K}.

3: Extract text features xtext
j = Ftext({p, yj}).

4: for m = 1, 2, · · · ,M do
5: Temporal augmentation XT

m = AugTi (X
S) ∈ RK×d;

6: Calculate the predictions pp ∈ RK×N based on XT
m

7: Select confident ones p̂p ∈ RK
′
×N with Eq (5);

8: Minimize the averaged entropy of p̂p with Eq (3)
9: Perform backward propagation for p.

10: end for

video. Thus, there are two core design points, i) Tuning
Times: How many times should we tune? ii) Tuning Struc-
ture: What temporal structure (i.e., AugT) should be used
each time?

For tuning structure, we gradually sample frame-level fea-
tures from the sequence via different strategies, including
Random Sampling, Center Sampling, Left-side Sampling, and
Right-side Sampling, as shown in Figure 4. Based on this, we
try different tuning times in the experiment, details in Sec-
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tion 5.4. To facilitate the understanding, we present the whole
tuning process in Algorithm 1 in the form of pseudo-code.

4.2 Dual Semantic Consistency
Since the semantics of the same behavior are diverse in vi-
sual space, it is insufficient to describe human behaviors with
short class names. A straightforward solution is to use dictio-
naries or handcrafted templates to empirically enhance these
class names, but this will ultimately be limited by the size of
the predefined knowledge database. This work aims to ap-
ply Large Language Models to explain the meaning of each
human behavior in detail, which will greatly facilitate cross-
modal alignment of behavioral semantics.

Specifically, we ask LLMs the question of “If you’re an
expert in video classification. Please answer the follow-
ing questions in one or two sentences. What does [CLASS
NAME] mean?”. After that, we clean up the noisy words
in the answers from LLMs and limit the descriptions to 77
words (max-length limit of Tokenizer). The explanation of
each CLASS NAME generated by LLMs can be found in Sup-
plementary Materials.

Moreover, how to optimize the tuning objective defined in

Eq. (8) with the class name and the corresponding explana-
tions becomes an issue. In this work, we provide three differ-
ent backward propagation for semantic consistency, includ-
ing Parallel, Hybrid, and Switch Backward. Notably, Parallel
Backward tunes two sets of learnable prompts separately, but
Hybrid and Switch Backward tunes the same prompts serially
or alternately, as shown in Figure 3. Comparison results can
be found in Table 6.

5 Experiments
5.1 Datasets
HMDB-51 [Kuehne et al., 2011] contains 51 activity cate-
gories and 6, 766 manually annotated videos extracted from
various sources ranging from digitized movies to YouTube.
UCF-101 [Soomro et al., 2012] collects a total of 13, 320
real activity videos in 101 categories from YouTube, to-
taling more than 27 hours. All categories can be classi-
fied into 5 types: Body motion, Human-human interactions,
Human-object interactions, Playing instruments, and Sports.
Kinetics-600 [Carreira et al., 2018] is an extension of the
Kinetics-400 [Kay et al., 2017] and consists of approximately
480K videos covering 600 categories. Each video is a 10-
second activity clip annotated from the original YouTube
video. ActivityNet [Caba Heilbron et al., 2015] provides
a large-scale video dataset covering the 200 actions most
relevant to human daily life. It contains a total of 19, 994
untrimmed videos, with 137 videos per category.

5.2 Setup
We sample T = 8 frames from test video and augment them
K − 1 (K = 32) times using AugMix [Hendrycks et al.,
2019]. We create 3 learnable tokens as text prompts and ini-
tialize them as “an action of”. We employ CLIP with ViT-
B/16 as the visual encoder and use the corresponding textual
encoder of CLIP for text encoding. Our model does not need
any training data such as K400. For each inference, we com-
pute predictions based on a batch of 32 augmented views (in-
cluding the original one) and then select top 20% confident
predictions for further optimization. We adopt the AdamW
optimizer with a learning rate of 0.001.

5.3 Comparisons with State-of-the-art Methods
We compare the proposed DTS-TPT with existing zero-shot
video activity recognition methods on four benchmarks with
8 frames, as shown in Table 1. Notably, DTS-TPT does
not need training data but still achieves better generaliza-
tion when utilizing a pre-trained model such as BIKE [Wu et
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Method Encoder HMDB-51 UCF-101 Kinetics-600 ActivityNet
Uni-modal zero-shot video recognition models
ER-ZSAR [Chen and Huang, 2021] TSM 35.3± 4.6 51.8± 2.9 42.1± 1.4 −
JigsawNet [Le and Li, 2019] R(2+1)D 38.7± 3.7 56.0± 3.1 − −
E2E [Brattoli et al., 2020] R(2+1)D 29.8 44.1 − 26.6
ResT [Lin et al., 2022] Resnet-101 41.1± 3.7 58.7± 3.3 − 32.5

Adapting pre-trained CLIP
ActionCLIP [Wang et al., 2021] ViT-B/16 40.8± 5.4 58.3± 3.4 66.7± 1.1 −
Vita-CLIP [Wasim et al., 2023] ViT-B/16 48.6± 0.6 75.0± 0.6 67.4± 0.5 −
A5 [Ju et al., 2022] ViT-B/16 44.3± 2.2 69.3± 4.2 55.8± 0.7 −
XCLIP [Ma et al., 2022] ViT-B/16 44.6± 5.2 72.0± 2.3 65.2± 0.4 −
Tuning pre-trained CLIP
BIKE [Wu et al., 2023] ViT-B/16 49.1± 0.5 77.4± 1.0 66.1± 0.6 75.2± 1.1
ViFi-CLIP [Rasheed et al., 2023] ViT-B/16 50.9± 0.7 74.9± 0.6 67.7± 1.1 −
BIKE + DTS-TPT (Ours) ViT-B/16 54.4± 0.8 79.4± 0.7 68.2± 1.2 76.8± 0.8

Table 1: Comparisons with the state-of-the-art methods. Top-1 accuracy using single-view inference is reported.

al., 2023]. Following [Ni et al., 2022; Rasheed et al., 2023;
Lin et al., 2023], we report the mean and standard deviation
of results on three official validation sets.

Our approach outperforms uni-modal zero-shot activity
recognition methods by a significant margin, such as ER-
ZSAR and JigsawNet, which train on Kinetics-400 and
need crawled descriptions of activity classes with man-
ual correction. Moreover, DTS-TPT is superior to re-
cent methods, either adapted directly from CLIP or tuned
from CLIP with K400 for zero-shot recognition. As a
baseline for our approach, BIKE fine-tunes the pre-trained
CLIP model with video attributes and activity categories.
Our approach achieves state-of-the-art results on HMDB51,
UCF101, Kinetices-600, and ActivityNet in terms of top-1
accuracy, surpassing BIKE by a significant margin. Besides,
the proposed framework is compatible with different VLMs
with different backbones, as shown in Table 3.

5.4 Ablation Study
Component Analysis. To illustrate the effectiveness of
each component of our approach, we conduct ablation ex-
periments on HMDB51 and UCF101 datasets. As shown in
Table 2, the proposed modules (TS-TPT and DSC) bring ob-
vious gains respectively, and it is better to use them together,
which indicates that they are complementary.

TS-TPT DSC HMDB-51 UCF-101
✗ ✗ 49.1 77.4
✓ ✗ 51.6 78.0
✗ ✓ 52.4 79.1
✓ ✓ 54.4 79.4

Table 2: Effect of different components of our approach.

Temporal-Sync Sampling. As shown in Figure 4, we have
designed four different temporal sampling strategies for TS-
TPT. For a fair comparison, all the variants employ Vanilla

Backbone Method HMDB-51 UCF-101

ViT-B/16

Vanilla CLIP 41.2 69.9
+ TPT 44.0 70.8
+ DTS-TPT (Ours) 46.0 72.3

BIKE 49.1 77.4
+ TPT 50.6 77.7
+ DTS-TPT (Ours) 54.4 79.4

ViT-L/14

Vanilla CLIP 46.3 77.3
+ TPT 47.9 80.4
+ DTS-TPT (Ours) 49.3 81.0

BIKE 58.9 85.5
+ TPT 55.6 84.9
+ DTS-TPT (Ours) 60.4 87.9

Table 3: Adaption to different pre-trained models.

CLIP as a visual encoder and sample 6 frames out of 8, and
perform TS-TPT twice. From Table 4, we find that the re-
sults of three non-random sampling methods are slightly bet-
ter than random sampling. It indicates that TS-TPT is not
affected by the temporal sampling strategy.

Sampling Strategy HMDB-51 UCF-101
Random 43.8 70.9
Left-side 44.2 71.3
Right-side 44.8 71.5
Center 44.5 71.3

Table 4: Effect of different temporal sampling strategies.

Comparison with TPT. We compare the proposed TS-TPT
with the previous standard TPT in Table 5. Based on the
results, we can conclude the following: i) Applying sim-
ple spatio-temporal augmentation (ST-TPT) cannot bring im-
provements, compared with TPT. ii) The performance of the
TS-TPT is gradually improved with the number of optimiza-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1539



STD = 53.27 STD = 61.06 (+7.79) 	STD = 50.90 STD = 61.99	(+11.09)

class name class name (tuned) explanation explanation (tuned)

Figure 5: Visualization of the feature distribution of class names and the corresponding explanation.

Dataset Method Steps
1 2 3 4

UCF-101
TPT 71.2 71.2 70.8 70.8

ST-TPT 71.2 71.3 71.2 70.7
Temp.-Sync TPT 71.2 71.5 71.7 71.0

HMDB-51
TPT 44.2 44.0 44.0 43.4

ST-TPT 44.3 44.0 43.8 43.2
Temp.-Sync TPT 44.2 44.8 45.6 44.9

Table 5: Comparison with TPT. “TPT” applies AugMix to each
frame independently and “ST-TPT” applies it to all frames.

Semantic Consistency HMDB-51 UCF-101

Single class name 51.6 78.0
explanation 53.0 78.9

Dual
switch 52.9 78.9
parallel 54.4 79.2
hybrid 54.6 79.4

Table 6: Different Implementation of Dual Semantic Consistency.

tion steps increasing from 1 to 3. This indicates that tuning
prompts collaboratively with video features at different tem-
poral scales is more likely to approximate the latent semantic
distribution of labels. iii) Depending on the original design,
TPT can be optimized repeatedly using the same scale video
features, but more update steps do not lead to better perfor-
mance, and sometimes even worse.

Context for Text Prompts. We investigate the effect of dif-
ferent context (class name and explanation) for text prompts
in Table 6. The explanation generated through LLM sig-
nificantly improves performance compared with using class
names alone, suggesting that fine-grained text context helps
prompt tuning of diverse motion semantics.

Explanation from Different LLMs. We study the effect
of description generated by different LLMs in Table 7. We
observed that LLM with a larger number of parameters (i.e.,
Gemini and GPT 3.5) resulted in a more significant perfor-
mance improvement. Notably, the description generated by
GPT-3.5 brings the best overall performance, thus we used it
for the final model.

Text branch Params HMDB-51 UCF-101
Baseline: class name - 51.6 78.0
+Llama-2 [Touvron et al., 2023] 13B 49.5 78.1
+Vicuna [Chiang et al., 2023] 13B 50.4 77.9
+Gemini [Team et al., 2023] 1800B 52.7 78.9
+GPT 3.5 [OpenAI, 2023] 175B 53.0 78.9

Table 7: Effect of different large language models.

Backward Types of DSC. We have designed three back-
ward types of dual semantic consistency (as shown in Fig-
ure 3). As reported in Table 6, Switch Backward cannot com-
bine the benefit from two types of semantic consistency (class
name and explanation), but optimizing the Dual Semantic
Consistency via Parallel and Hybrid Backward has a better
performance compared to single semantic consistency, There-
fore, we used Hybrid Backward for the final model.

Visualization. We apply t-SNE to visualize the original
features and tuned features of class names and their corre-
sponding explanation generated by GPT 3.5, as shown in Fig-
ure 5. At the same time, we calculated the standard deviation
of the data points in different feature distributions. We found
that the standard variance of the features increases signifi-
cantly and some confused features (in red circles) no longer
exist after tuning, indicating that divergent feature distribu-
tion is more conducive to cross-modal alignment.

6 Conclusion

This work has managed to adapt Test-time Prompt Tun-
ing (TPT) to zero-shot activity recognition by fully exploit-
ing the temporal characteristics and semantic diversity of hu-
man behaviors. We developed the Dual Temporal-Sync Test-
time Prompt Tuning framework which tunes the prompts in
multi-steps on different temporal scales video features with
dual semantic consistency. Extensive experiments on various
benchmarks demonstrated that DTS-TPT can effectively im-
prove the generalization ability of the pre-trained model on
video data without training data/annotation and is compatible
with various VLMs. In the future, it is critical to improve the
efficiency of multi-step tuning and class name explanation in
practical applications.
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