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Abstract
The U-shape (encoder-decoder) architecture, com-
bined with effective blocks, has shown significant
success in image restoration. In U-shape mod-
els, there is insufficient focus on the feature fusion
problem between encoder and decoder features at
the same level. Current methods often employ sim-
plistic operations like summation or concatenation,
which makes it difficult to strike a balance between
performance and complexity. To address this issue,
we propose a compression-in-the-middle mecha-
nism, termed Integration-Compression-Integration
(ICI), which effectively conducts dense fusion and
avoids information loss. From the block design
perspective, we design a multi-dimension aggre-
gation (MDA) mechanism, capable of effectively
aggregating features from both the channel and
spatial dimension. Combining the Integration-
Compression-Integration feature fusion and the
multi-dimension aggregation, our dense fusion and
multi-dimension aggregation network (DFMDA-
Net) achieves superior performance over state-of-
the-art algorithms on 16 benchmarking datasets for
numerous image restoration tasks.

1 Introduction
Bad weather or physical limitations of the camera can de-
grade the quality of captured images and further negatively
impact the robustness of downstream tasks. Image restora-
tion aims to eliminate those annoying degradation (such as
noise, rain, and blur), and therefore plays an important role in
surveillance, autonomous driving, remote sensing, etc. Due
to the ill-posed nature, earlier model-based methods restrict
the solution space by relying on handcrafted statistical priors.
However, in complex real-world scenarios, it is difficult for
these methods to recover faithful results.

With the fast development of deep learning, convolutional
neural networks (CNN)- and transformer-based methods have
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achieved remarkable success by learning generalizable priors
from large-scale datasets. In these methods, ingenious archi-
tecture or blocks are designed or borrowed from the high-
level computation vision tasks. For example, the U-shape
(encoder-decoder) architecture [Ronneberger et al., 2015] is
widely adopted for the effective hierarchy representation. The
blocks are commonly designed based on residual learning
and different attention mechanisms. Representative blocks
include the residual block [Nah et al., 2017] and transformer
block [Zamir et al., 2022].

This paper aims to address the restoration task from both
the U-shape architecture and the block design. In the
encoder-decoder architecture, to assist the recovery, the fea-
tures from the encoder are passed through to the decoder
at the same level. For the feature fusion problem, current
methods directly conduct the concatenation operation [Wang
et al., 2022], the summation operation [Chen et al., 2022a],
and first concatenation and then compression [Zamir et al.,
2022]. These operations either cause information loss or
make the complexity higher1. To alleviate this challenge, this
paper proposes an Integration-Compression-Integration (ICI)
mechanism for feature fusion. Our ICI first conducts inte-
gration to avoid information loss, then applies information
compression to maintain efficiency, and finally conducts in-
tegration again for better information utilization. In this way,
our ICI implements effective feature fusion while keeping ef-
ficient.

For block design, we revisit existing blocks from the
perspective of information aggregation direction. Existing
blocks either aggregate features from the spatial dimension
such as the residual block [Nah et al., 2017] and window-
based attention [Liu et al., 2021] or from the channel di-
mension such as transposed attention [Zamir et al., 2022],
and have achieved remarkable success. Nevertheless, how to
effectively aggregate the information from both the channel
and spatial dimensions, which can further strengthen the per-
formance, deserves attention2. Since the window-based at-
tention shares weights across channels, it is compatible with
the transposed attention, as the shared operation limits the
diversity of channel features. Moreover, the residual block

1More details will be illustrated in Section 3.3.
2Note that aggregating information from channels in this paper

means applying self-attention across channels.
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Figure 1: Our method achieves significant performance gain on dif-
ferent image restoration tasks (Tables 2, 3, 4, 7).

and window-based attention can only aggregate the local spa-
tial information, which limits the receptive field. To address
the issue, we resort to Fourier frequency learning since the
Fourier features embrace global properties and can apply dif-
ferent weights to adjust the frequency points at different chan-
nels. To this end, we propose a multi-dimension aggregation
(MDA) mechanism, capable of effectively aggregating fea-
tures from both the channel and spatial dimensions.

By introducing ICI and MDA into a U-shape backbone, we
construct the dense fusion and multi-dimension aggregation
network (DFMDA-Net). The contributions of this paper can
be summarized in four aspects:

• We propose dense fusion and multi-dimension aggrega-
tion network for image restoration from the perspective
of both the U-shape architecture and block design.

• We propose a dense mechanism for feature fusion,
termed Integration-Compression-Integration (ICI). This
process is designed to prevent information loss by inte-
gration, maintain efficiency through compression in the
middle, and thus enhance overall information utilization.

• We propose a multi-dimension aggregation (MDA)
mechanism, capable of effectively aggregating features
from both the channel and spatial dimension, thus en-
hancing the restoration performance.

• We conduct extensive experiments on 16 benchmark
datasets for numerous image restoration tasks including
image deraining, image real denoising, Gaussian image
denoising, image motion deblurring, and image defocus
deblurring. The results demonstrate that the proposed
method achieves state-of-the-art performance, as illus-
trated in Fig. 1.

2 Related Work
Since image restoration is an ill-posed problem, earlier
model-based methods restrict the solution space by exploit-
ing handcrafted statistical priors, such as discriminative prior,

channel prior, and gradient prior. These methods are heuristic
and usually involve complex optimization problems. Limited
by approximate models and the above factors, these methods
are usually less effective, especially in complex real-world
scenarios.

2.1 CNN-based Methods

With the fast development of deep learning, deep neural
networks, especially convolutional neural networks (CNN)
have motivated numerous advanced image restoration meth-
ods [Cui et al., 2023d; Cui et al., 2023c] by learning dense
priors from large-scale datasets. In these methods, there are
several excellent convolutional designs which are commonly
employed. For example, based on residual learning [He et al.,
2016], Resblock [Nah et al., 2017] is proposed and has be-
come the basic module for many image restoration methods.
The underlying reason for the effectiveness can be attributed
to the fact that the restoration task can be seen as the pro-
cess of learning the residual between the degraded image and
the ground-truth. Spatial and channel attention, which can
enhance the desirable features and suppress the detrimental
signals, have also achieved remarkable success [Zamir et al.,
2021; Cui et al., 2023a]. Moreover, based on U-Net [Ron-
neberger et al., 2015], the U-shape (encoder-decoder) archi-
tecture has become the backbone of most successful image
restoration models.

Albeit achieving significant performance gain over model-
based methods, CNN-based methods suffer limited receptive
field and have poor content adaptation which originates from
the basic convolution operation, which is crucial for effective
image restoration.

2.2 Transformer-based Methods

Motivated by the great success of transformers [Vaswani
et al., 2017], researchers have proposed several excellent
restoration models. The self-attention mechanism, which is
a core component in transformers [Vaswani et al., 2017], can
deal well with the shortcomings of the convolution operation.
IPT [Chen et al., 2021a] applies the vanilla transformer on
local patches, and has achieved promising performance gain.
However, IPT depends on costly pretraining, and cannot be
applied to high-resolution images due to the quadratic com-
plexity of self-attention.

To address the quadratic complexity of self-attention, a
line of methods applies self-attention on windows [Liu et
al., 2021]. For example, SwinIR [Liang et al., 2021]
and Uformer [Wang et al., 2022] adopt window-based self-
attention (WSA). Although WSA reduces the complexity
from quadratic to linear compared to self-attention, it dis-
severs the global pixel dependencies. Another line of meth-
ods applies self-attention across channels instead of spatial
dimensions. Notably, Restormer [Zamir et al., 2022] pro-
poses transposed attention (TA) with linear complexity, and
has achieved remarkable success in multiple image restora-
tion tasks. In essence, TA is a kind of channel self-attention,
which aggregates the channel features with the similarity ma-
trix of channels. Therefore, it still has limited receptive field.
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Figure 2: Overall Pipeline. MDABlcok denotes the multi-dimension
aggregation block, where MDA is the proposed multi-dimension ag-
gregation mechanism. ICI is the proposed Integration-Compression-
Integration mechanism. The red dotted line denotes downsampling.
The red solid line represents upsampling.

2.3 Discussions
In this part, we discuss the significance of our work. First,
most of the research focuses on exploring effective back-
bones while ignoring the architectural effects of the U-shape
backbone. This paper aims to explore an effective and ef-
ficient feature fusion paradigm for the features from the en-
coder and the decoder at the same level. Second, this pa-
per aims to aggregate desirable features (information) from
both the spatial and channel dimensions for effective image
restoration. Although Fourier domain learning is not new
in image restoration [Mao et al., 2021; Zhou et al., 2023],
these methods only achieve the aggregation of spatial infor-
mation, and fail to adaptively aggregate the features from
the channel dimension. The excellent performance of our
work demonstrates that effectively aggregating information
from both channel and spatial dimensions contributes to im-
age restoration, which is expected to motivate more future
research.

3 Methodology
3.1 Overall Pipeline
The over pipeline of the proposed dense fusion and multi-
dimension aggregation (DFMDA-Net) is given in Fig. 2. Fol-
lowing most image restoration methods [Wang et al., 2022;
Zamir et al., 2022], our DFMDA-Net is constructed based on
the hierarchical encoder-decoder architecture. The detailed
process is described as follows.

Channel Aggregation 

FFT GConv GELU GConv GELU IFFT

Figure 3: Structure of MDA. FFT and IFFT denote the fast Fourier
transform and inverse fast Fourier transform, respectively. GConv
denotes the group 1× 1 convolution.

Given an input, our DFMDA-Net first applies a 3× 3 con-
volution to obtain the embeddings. Then these embeddings
are sequentially passed through a 3-level encoder, a bottle-
neck, and a 3-level decoder. Each level consists of several
multi-dimension aggregation (MDA) blocks. After each level
of the encoder, the output features are halved in spatial size
and doubled in channel dimension with a 3 × 3 convolution
and the pixel-unshuffle operation. Before each level of the
decoder, the input features from the last level are doubled in
spatial size and halved in channel dimension with a 3×3 con-
volution and the pixel-shuffle operation. In addition, to assist
the recovery process, the output features from the same level
of the encoder and the upsampled features are fused with the
proposed Integration-Compression-Integration (ICI) module.
Finally, the output features from the last level of the decoder
are refined with a 3 × 3 convolution, and then added to the
degraded image to obtain the restored image.

In the following, we introduce the proposed MDA and ICI
mechanism.

3.2 Multi-dimension Aggregation
Analysis and Motivation
For block design, we revisit existing blocks from the perspec-
tive of information aggregation direction. Existing blocks can
be divided into two groups: 1) aggregation from the spa-
tial dimension and 2) aggregation from the channel dimen-
sion. CNN-based blocks such as the residual block [Nah
et al., 2017], and transformer-based blocks such as recently
window-based attention [Liu et al., 2021], lie in category
1. Transposed attention, i.e., applying self-attention across
channels, lies in category 2. The effectiveness of these blocks
demonstrates that aggregating information from either the
spatial or channel direction is vital for effective image restora-
tion. Therefore, joint spatial and channel information aggre-
gation is an intuitive idea to strengthen the performance.

However, directly combining the attention in categories 1
and 2 cannot well accomplish the purpose. Specifically, since
the window-based attention shares weights across channels,
it is compatible with the transposed attention, as the shared
operation limits the diversity of channel features. Moreover,
the residual block and window-based attention can only ag-
gregate the local spatial information. Therefore, to effectively
integrate information from different dimensions, the spatially
aggregated module should be equipped with the global prop-
erties and the weights on channels cannot be shared.

To this end, we resort to Fourier frequency learning with
two utilizable properties. i) According to the spectral convo-
lution theorem, the Fourier features embrace global proper-
ties. Updating a single value in the frequency domain glob-
ally affects all original spatial features. ii) Fourier transform
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can transfer the features into different frequency components,
which can be seen as a frequency disentanglement and re-
arrangement. This property allows us to selectively enhance
the necessary frequencies and suppress the detrimental fre-
quencies in different channels.

Solution
Based on the above analysis, we propose a multi-dimension
aggregation (MDA) block, capable of effectively aggregating
features from both the channel and spatial dimension, as il-
lustrated in Fig. 3. Specifically, we first transfer the input ten-
sor X into Fourier domain with fast Fourier transform. Then
we conduct two group 1 × 1 convolutions to conduct feature
transformation. A GELU activation function is followed with
each convolution. Finally, we transfer the obtained features
back into the original space with inverse Fourier transform,
and add the output features to those of the channel aggrega-
tion branch [Zamir et al., 2022] to get the result of MDA.
Mathematically, the overall process is defined as:

X̂ = IFFT
(
σ
(
C2

g

(
σ
(
C1

g (FFT (X))
))))

+XA, (1)

where C1
g and C2

g are group 1 × 1 convolutions. σ denotes
the GELU activation function. FFT and IFFT denote fast
Fourier transform and inverse fast Fourier transform, respec-
tively. XA is the result of the channel aggregation branch.

3.3 Integration-Compression-Integration
Mechanism

In most of the existing U-shape-based image restoration
methods, the features from the encoder are passed through
to the decoder at the same level. For the feature fusion prob-
lem, current methods directly conduct the concatenation op-
eration [Wang et al., 2022], the summation operation [Chen et
al., 2022a], and first concatenation and then compression [Za-
mir et al., 2022], as illustrated in Fig. 4a-c, respectively. Since
the parameters and computational cost of these transformer
blocks are proportional to C2, where C is the number of
channels, the concatenation manner (Fig. 4a) is parameter and
computation costly. For the summation operation (Fig. 4b), it
is ineffective since there exists the misaligned problem be-
tween the features of the encoder and the decoder. For the
third case (Fig. 4c), it is too rough to conduct the direct com-
pression with a 1×1 convolution to reduce channels, resulting
in information loss.

Fig. 4a Fig. 4c Fig. 4d (ICI)

Parameters O(4mC2) O(mC2) O((m+ 3m1)C
2)

MACs O(4mC2HW ) O(mC2HW ) O((m+ 3m1)C
2HW )

Table 1: Parameters and MACs comparisons of different feature
fusion methods. Assume there are m blocks used for integration.
m1 ∈ [0,m].

To alleviate this challenge, this paper revisits the existing
feature fusion mechanisms in Fig. 4a-c. By deeming the Di

which consists of stacked blocks as integration, we can ab-
stract them into two categories, i.e., Integration (Fig. 4a),
and Compression3-Integration (Fig. 4b-c). As demonstrated
above, the former is parameter and computation costly, and
the latter suffers information loss. This paper proposes
an Integration-Compression-Integration (ICI) mechanism for
feature fusion, as illustrated in Fig. 4d. Our ICI first conducts
integration to avoid information loss, then applies informa-
tion compression to maintain efficiency, and finally conducts
integration again for better information utilization. In this
way, our ICI implements effective feature fusion while keep-
ing efficient.

4 Relationship with Existing Feature Fusion
Methods

Assume there are m blocks used for integration. The param-
eters and MACs of each block is O(C2) and O(C2HW ).
Fig. 4a means that the m blocks are directly applied to in-
tegrate the features with 2C channels. Fig. 4c means that
the m blocks are used to integrate the features with C chan-
nels. We omit the analysis of the manner in Fig. 4b, since
Fig. 4b can be seen as a particular case of Fig. 4c. ICI ap-
plies m1 ∈ [0,m] blocks for the first integration, and m−m1

blocks for the second integration (Di). In other words, m1

blocks are used to integrate the features with 2C channels,
and m − m1 blocks are used to integrate the features with
C channels. Therefore, the proposed ICI is a dense feature
fusion paradigm compared to existing feature fusion manners
shown in Fig. 4a-c. We also list the parameters and MACs of
different feature fusion methods in Table 1 for better compar-
ison.

5 Experiments
5.1 Setups
Evaluation Metrics
Following most of image restoration literature [Li et al.,
2023; Zamir et al., 2022], we adopt PSNR and SSIM as
the evaluation metrics. For defocus deblurring, extra metrics
MAE and LPIPS are employed. It is worth noting that the
PSNR and SSIM values are only calculated on the Y chan-
nel in YCbCr space for image deraining. We introduce the
datasets in Appendix A.

Implementation Details
For different image restoration tasks, we train separate mod-
els. Unless otherwise specified, all the experiments are with

3Summation can be regarded as a kind of compression.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1528



Test100 Rain100H Rain100L Test2800 Test1200 Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PreNet [Ren et al., 2019] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 0.897
MSPFN [Jiang et al., 2020] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
MPRNet [Zamir et al., 2021] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.73 0.921
HINet [Chen et al., 2021b] 30.29 0.906 30.65 0.894 37.28 0.970 33.91 0.941 33.05 0.919 33.03 0.926
SPAIR [Purohit et al., 2021] 30.35 0.909 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 32.91 0.926
Restormer [Zamir et al., 2022] 32.00 0.923 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 33.96 0.935
MAXIM-2S [Tu et al., 2022] 31.17 0.922 30.81 0.903 38.06 0.977 33.80 0.943 32.37 0.922 33.24 0.933
IRNext [Cui et al., 2023c] 31.53 0.919 31.64 0.902 38.14 0.972 - - - - - -
Fourmer [Zhou et al., 2023] 30.54 0.911 30.76 0.896 37.47 0.970 - - 33.05 0.919 - -
FSNet [Cui et al., 2023b] 31.05 0.919 31.77 0.906 38.00 0.972 33.64 0.936 33.08 0.916 33.51 0.930
DFMDA-Net (Ours) 32.32 0.928 32.01 0.911 39.15 0.977 34.21 0.946 33.45 0.928 34.23 0.938

Table 2: Single image deraining results.

GoPro HIDE RealBlur-R RealBlur-J Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRN [Tao et al., 2018] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867 30.71 0.915
DBGAN [Zhang et al., 2020b] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745 - -
Suin et al. [Suin et al., 2020] 31.85 0.948 29.98 0.930 - - - - - -
SPAIR [Purohit et al., 2021] 32.06 0.953 30.29 0.931 - - 28.81 0.875 - -
MIMO-UNet+ [Cho et al., 2021] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837 - -
IPT [Chen et al., 2021a] 32.52 - - - - - - - - -
MPRNet [Zamir et al., 2021] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873 32.08 0.931
Uformer [Wang et al., 2022] 33.06 0.962 30.90 0.940 36.19 0.956 29.09 0.886 32.31 0.936
Restormer [Zamir et al., 2022] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879 32.32 0.935
SFNet [Cui et al., 2023d] 33.27 0.963 31.10 0.941 - - - - - -
GRL [Li et al., 2023] 33.93 0.968 31.65 0.947 - - - - - -
DiffIR [Xia et al., 2023] 33.20 0.963 31.55 0.947 - - - - - -
ShuffleFormer [Xiao et al., 2023] 33.38 0.965 31.25 0.943 36.34 0.958 29.19 0.890 32.54 0.939
DFMDA-Net (Ours) 34.18 0.969 32.13 0.950 36.31 0.958 29.14 0.887 32.94 0.941

Table 3: Single image deblurring results. The model is trained on GoPro, and directly applied to other datasets.

the following settings. The number of blocks [N1, N2, N3,
N4, N5, N6, N7] is set to [4, 6, 6, 8, 6, 6, 4]. The number of
attention heads and groups of 1× 1 convolution in MDA are
both set to [1, 2, 4, 8, 4, 2, 1]. The initial channel dimension
is 48. The channel expansion ratio in FFN is set to 2.66. m1

is set to 1. We adopt the progressive learning strategy [Za-
mir et al., 2022] to train our models for 300K iterations with
L1 loss. The optimizer is AdamW (β1 = 0.9, β2 = 0.999,
weight decay 1×10−4). The initial learning rate is 3×10−4,
and declines to 1× 10−6 with the cosine annealing. For data
augmentation, vertical and horizontal flips are employed. The
visual results are given in Appendix B.

5.2 Results on Image Deraining
The image deraining results on five datastets (Test100 [Zhang
et al., 2020a], Rain100H [Yang et al., 2017], Rain100L [Yang
et al., 2017], Test2800 [Fu et al., 2017], and Test1200 [Zhang
and Patel, 2018]) are given in Table 2. On all five datasets,
our DFMDA-Net achieves the best results on PSNR. Com-
pared with the best transformer-based method, Restormer,
our DFMDA-Net brings 0.27 dB PSNR improvement on
average. When paying attention to the individual dataset
Rain100H, our DFMDA-Net achieves 0.55 dB PSNR im-
provement. Compared with the frequency method Fourmer,

our DFMDA-Net achieves a performance gain of more than
1 dB on three datasets including Test100, Rain100H, and
Rain100L. Moreover, compared with the recent method FS-
Net, our DFMDA-Net brings 0.72 dB PSNR improvement on
average. When paying to the individual datasets Test100 and
Rain100L, the improvements are up to 1.27 dB and 1.15 dB,
respectively.

5.3 Results on Motion Deblurring
We gives the image motion deblurring results on datastets
(GoPro [Nah et al., 2017], HIDE [Shen et al., 2019], and
Realbur [Rim et al., 2020] (Realbur-R and Realbur-J)) in Ta-
ble 3. Compared with Restormer, our DFMDA-Net brings the
PSNR improvement as large as 0.62 dB on average. When
averaged across all the datasets, our DFMDA-Net achieves
0.40 dB PSNR improvement over the global ShuffleFormer.
Moreover, compared with the global modeling method, GRL,
which simultaneously models the pixel, region, and global
level interactions, our DFMDA-Net achieves 0.25 dB and
0.48 dB improvements on GoPro and HIDE, respectively.

5.4 Results on Defocus Deblurring
Table 4 presents the results of image defocus deblurring
on the DPDD [Abuolaim and Brown, 2020] dataset. Our
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Indoor Scenes Outdoor Scenes Combined
Method PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DMENet [Lee et al., 2019] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
DPDNet [Abuolaim and Brown, 2020] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC [Son et al., 2021] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN [Lee et al., 2021] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DeepRFT [Mao et al., 2021] - - - - - - - - 25.71 0.801 0.039 0.218
DRBNet [Ruan et al., 2022] - - - - - - - - 25.73 0.791 - 0.183
Restormer [Zamir et al., 2022] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
NRKNet [Quan et al., 2023] - - - - - - - - 26.11 0.810 - 0.210
GRL [Li et al., 2023] 29.06 0.886 0.024 0.139 23.45 0.761 0.049 0.196 26.18 0.822 0.037 0.168
FocalNet [Cui et al., 2023a] 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210
FSNet [Cui et al., 2023b] 29.14 0.878 0.024 0.166 23.45 0.747 0.050 0.246 26.22 0.811 0.037 0.207
DFMDA-Net (Ours) 29.35 0.891 0.024 0.129 23.52 0.760 0.049 0.189 26.36 0.824 0.037 0.160

Table 4: Single image defocus deblurring results on the DPDD dataset.

Set12 BSD68 Urban100
Method σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DnCNN [Zhang et al., 2017a] 32.67 30.35 27.18 31.62 29.16 26.23 32.28 29.80 26.35
FFDNet [Zhang et al., 2018] 32.75 30.43 27.32 31.63 29.19 26.29 32.40 29.90 26.50
IRCNN [Zhang et al., 2017b] 32.76 30.37 27.12 31.63 29.15 26.19 32.46 29.80 26.22
DRUNet [Zhang et al., 2021] 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
Restormer [Zamir et al., 2022] 33.35 31.04 28.01 31.95 29.51 26.62 33.67 31.39 28.33
DFMDA-Net (Ours) 33.39 31.09 28.05 31.96 29.52 26.63 33.82 31.60 28.62

Table 5: Gaussian grayscale image denoising results.

CBSD68 Kodak24 McMaster Urban100
Method σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

IRCNN [Zhang et al., 2017b] 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91 33.78 31.20 27.70
FFDNet [Zhang et al., 2018] 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18 33.83 31.40 28.05
DnCNN [Zhang et al., 2017a] 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
DSNet [Peng et al., 2019] 33.91 31.28 28.05 34.63 32.16 29.05 34.67 32.40 29.28 - - -
DRUNet [Zhang et al., 2021] 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
Restormer [Zamir et al., 2022] 34.39 31.78 28.59 35.44 33.02 30.00 35.55 33.31 30.29 35.06 32.91 30.02
DFMDA-Net (Ours) 34.40 31.79 28.60 35.49 33.07 30.06 35.62 33.39 30.35 35.22 33.11 30.29

Table 6: Gaussian color image denoising results.

DFMDA-Net achieves basically consistent performance gain
on both scene categories. Compared with Restormer, our
DFMDA-Net brings 0.38 dB PSNR improvement on the com-
bined category. When paying attention to the indoor scene
category, our DFMDA-Net achieves 0.48 dB PSNR improve-
ment. Compared with GRL, our DFMDA-Net achieves a per-
formance gain of 0.18 dB on the combined category. More-
over, compared with the recent FSNet, our DFMDA-Net
brings 0.047 LPIPS improvement on average. When paying
to the outdoor scene category, the improvement is up to 0.057.

5.5 Results on Image Denoising
For image denoising, we conduct the experiments on both
synthetic and real datasets.

Gaussian Image Denoising
For Gaussian image denoising, we generate the synthetic
benchmark datasets by adding additive white Gaussian
noise on DIV2K [Agustsson and Timofte, 2017], Flickr2K,
BSD500 [Arbelaez et al., 2010] and WED [Ma et al.,

2016]. The testing datasets are Set12 [Zhang et al., 2017a],
BSD68 [Martin et al., 2001], Urban100 [Huang et al., 2015],
Kodak24, and McMaster [Zhang et al., 2011]. We list the
results in Table 5 for grayscale images and Table 6 for color
images. Following DRUNet [Zhang et al., 2021], three noise
levels (15, 25, and 50) are tested. Overall, our DFMDA-
Net has consistent performance gain on different datasets and
noise levels. Compared with Restormer, our DFMDA-Net
brings 0.29 dB and 0.27 dB PSNR improvement on the chal-
lenging 50 noise level on grayscale and color images of Ur-
ban100, respectively.

Real Image Denoising

We conduct the real image denoising on the SIDD [Abdel-
hamed et al., 2018] dataset, and the result is shown in Ta-
ble 7. Compared with the recent best method, Restormer,
our DFMDA-Net achieves 0.30 dB PSNR improvement.
Compared with the recent global model, ShuffleFormer, our
DFMDA-Net brings 0.32 dB PSNR gain.
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Method DnCNN BM3D VDN MIRNet MPRNet HINet NBNet
[Zhang et al., 2017a] [Dabov et al., 2007] [Yue et al., 2019] [Zamir et al., 2020] [Zamir et al., 2021] [Chen et al., 2021b] [Cheng et al., 2021]

PSNR 23.66 25.65 39.28 39.72 39.71 39.99 39.75
SSIM 0.583 0.685 0.956 0.959 0.958 0.958 0.959

Method DAGL Uformer Restormer MAXIM-3S CAT ShuffleFormer DFMDA-Net
[Mou et al., 2021] [Wang et al., 2022] [Zamir et al., 2022] [Tu et al., 2022] [Chen et al., 2022b] [Xiao et al., 2023] Ours

PSNR 38.94 39.89 40.02 39.96 40.00 40.01 40.32
SSIM 0.953 0.960 0.960 0.960 0.960 0.960 0.963

Table 7: Real image denoising results on the SIDD dataset.

Method MDA ICI PSNR Params (M) MACs (G)

baseline × × 33.16 11.74 64.29
baseline1 ✓ × 33.34 12.10 70.54
baseline2 × ✓ 33.26 12.49 69.23
Ours ✓ ✓ 33.45 12.86 75.58

Table 8: Ablation study for each module.

m1 0 1 2 3 4 5 6

PSNR 33.34 33.45 33.47 33.48 33.49 33.49 33.50
Params (M) 12.10 12.86 13.62 14.39 15.15 15.91 16.68
MACs (G) 70.54 75.58 80.62 85.66 90.70 95.74 100.78

Table 9: Ablation study for ICI.

5.6 Ablation Study
In this section, we first ablate the proposed two modules, ICI
and MDA. Then we investigate the design choices of these
modules. The models are trained on the GoPro [Nah et al.,
2017] dataset for 150K iterations. The initial channel dimen-
sion is set to 32. Unless specified otherwise, other model
configurations and training settings are the same as those in
Section 5.1.

Effectiveness of Each Module
The results are given in Table 8. The baseline model is
Restormer [Zamir et al., 2022], and achieves 33.16 dB PSNR.
When equipped with MDA and ICI, the models bring 0.18 dB
and 0.10 dB performance gains over the baseline model. With
the introduction of both MDA and ICI, the model achieves
33.45 dB PSNR. The above results demonstrate the effective-
ness of the proposed two modules.

Number of Blocks (m1) in ICI
We investigate the effects of the number of blocks (m1) used
for the first integration in ICI. Table 9 lists the results. As
m1 increases, the performance boosts rapidly when m1=1,
and then tends to saturate when m1=4. This phenomenon
demonstrates that without the first integration, the perfor-
mance drops significantly. However, applying all the blocks
(m1=6) is parameter- and complexity-costly. These results
demonstrate the effectiveness and necessity of the proposed
ICI. Considering the performance and efficiency, we empiri-
cally choose m1=1.

Number of Groups in 1× 1 Convolution in MDA
We investigate the effects of the number of groups in 1 × 1
convolution. The results are given in Table 10. 1 represents

Group 1 H 2H 4H

PSNR 33.42 33.45 33.41 33.25
Params (M) 14.23 12.86 12.68 12.59
MACs (G) 79.36 75.58 72.40 70.82

Table 10: Ablation study for MDA.

Method Fig. 4a Fig. 4b Fig. 4c ICI (Ours)

PSNR 33.50 33.27 33.34 33.45
Params (M) 16.68 12.06 12.10 12.86
MACs (G) 100.78 70.27 70.54 75.58

Table 11: Results of alternatives to ICI.

that the regular 1×1 convolution is employed. H denotes that
the number of groups is the same as the number of heads in
self-attention. 2H denotes that the number of groups is twice
the number of heads in self-attention, and the same meaning
for 4H. As can be seen, the H case achieves the best result.

Alternatives to ICI
We also give the results of different alternatives of ICI in Ta-
ble 11. As can be seen, our ICI achieves a better trade-off
between performance and efficiency.

6 Conclusions
This paper presents a dense fusion and multi-dimension ag-
gregation network (DFMDA-Net) for image restoration. For
the fusion of features between the encoder and the decoder
at the same level, we propose an Integration-Compression-
Integration (ICI) mechanism. ICI effectively conducts dense
fusion, and achieves a better trade-off between effective-
ness and efficiency. In addition, we also propose a multi-
dimension aggregation (MDA) mechanism, capable of effec-
tively aggregating features from both the channel and spa-
tial dimensions. Extensive experiments on 16 benchmark
datasets demonstrate that DFMDA-Net achieves state-of-the-
art performance on image restoration tasks including image
deraining, image motion deblurring, image defocus deblur-
ring, real image denoising, and Gaussian image denoising.
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