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Abstract
Prototypical part network (ProtoPNet) and its vari-
ants have drawn wide attention and been ap-
plied to various tasks due to their inherent self-
explanatory property. Previous ProtoPNets are
primarily built upon convolutional neural net-
works (CNNs). Therefore, it is natural to investi-
gate whether these explainable methods can be ad-
vantageous for the recently emerged Vision Trans-
formers (ViTs). However, directly utilizing ViT-
backed models as backbones can lead to prototypes
paying excessive attention to background positions
rather than foreground objects (i.e., the ”distrac-
tion” problem). To address the problem, this paper
proposes prototypical part Transformer (ProtoP-
Former) for interpretable image recognition. Based
the architectural characteristics of ViTs, we modify
the original ProtoPNet by creating separate global
and local branches, each accompanied by corre-
sponding prototypes that can capture and highlight
representative holistic and partial features. Specif-
ically, the global prototypes can guide local proto-
types to concentrate on the foreground and effec-
tively suppress the background influence. Subse-
quently, local prototypes are explicitly supervised
to concentrate on different discriminative visual
parts. Finally, the two branches mutually cor-
rect each other and jointly make the final deci-
sions. Moreover, extensive experiments demon-
strate that ProtoPFormer can consistently achieve
superior performance on accuracy, visualization re-
sults, and quantitative interpretability evaluation
over the state-of-the-art (SOTA) baselines. Our
code has been released at https:// github.com/zju
-vipa/ProtoPFormer.

1 Introduction
The emergence of deep neural networks (DNNs) has created
unprecedented achievements in machine learning, thanks to
their powerful capabilities of learning representations [Ta-
laei Khoei et al., 2023]. However, the lack of transparency
hinders DNNs’ wider applications in areas requiring trace-
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Figure 1: Visual comparison of prototypes on an example image
between a CNN-based ProtoPNet (ResNet34) and a ViT-based Pro-
toPNet (DeiT-Ti), and our ProtoPFormer (DeiT-Ti).

able and understandable decisions. To further explore the
interpretability of DNNs, many researchers propose various
approaches to promote the advancement in explainable artifi-
cial intelligence (XAI) [Gao and Guan, 2023]. Among these
methods, ProtoPNet [Chen et al., 2019], inspired by the hu-
man vision system, has attracted increasing research interest
and many follow-up studies with its self-explanatory prop-
erty for XAI. Considering the example image in Fig. 1, we
can identify this sample as a Painted Bunting by compar-
ing the features of its beak, wings, and feathers with exist-
ing bird species, even without expertise. Similarly, ProtoP-
Net aims to precisely perceive and recognize discriminative
parts of objects with category-specific prototypes. As shown
in Fig. 1 (a), the highest activated prototypes capture features
of the bird’s head and wings. By making predictions through
the linear combination of prototypes’ similarity with image
patches, ProtoPNet is inherently interpretable and can be an-
alyzed by visualization when post-processing.

ProtoPNet and its variants are mainly developed on con-
volutional neural networks (CNNs). While recent years vi-
sion Transformer (ViTs) [Dosovitskiy et al., 2021] have been
introduced into computer vision, challenging the domina-
tion of CNNs with their superior performance due to the
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Figure 2: Heatmaps of unit similarities in three backbones.

ability to model long-range dependencies [Liu et al., 2021;
Chen et al., 2022a]. Naturally, we want to investigate whether
prototype-based methods can be utilized for ViT-backed mod-
els with their case-based reasoning process. Disappointingly,
directly applying ProtoPNet to a ViT (removing the class to-
ken) leads to a “distraction” problem: the learned prototypes
are prone to obtain high activation scores in the background
and show scattered and fragmented activation scores in the
foreground, as shown in Fig. 1 (b). The “distraction” prob-
lem stems from the homogeneity of different units in ViTs.
Fig. 2 shows that the ViT has significantly higher unit sim-
ilarities than the CNN. The unit similarities are the average
similarities between all pairs of units or tokens in the feature
map or visual sequence, which indicates that the same pro-
totype may have high similarity with many units in the same
token sequence and generate scattered visualization results in
the ViT (more quantitative analysis experiments of unit simi-
larities are provided in the the supplementary material). The
unsatisfactory visualization results violate the idea that makes
prototypes point out critical visual evidence for each case in
ProtoPNet. The lack of intrinsic inductive bias makes proto-
types of ViTs focus less on prototypical parts and more on
long-range dependency.

To solve the aforementioned limitations, we propose pro-
totypical part transformer (ProtoPFormer) to appropriately
and effectively apply the prototype-based method with ViTs
for interpretable image recognition in two steps, as shown
in Fig. 1 (c). ProtoPFormer proposes global and local proto-
types to concentrate the “distracted” prototypes on the dis-
criminative parts to build a self-interpretable ViT-backend
model. As reported by [Raghu et al., 2021], the class to-
ken (i.e., the global branch) of ViTs progressively aggregates
information from all the image tokens and produces the high-
level abstraction of targets; on the contrary, image tokens (i.e.,
the local branch) remain strong similarities to their corre-
sponding spatial locations in inputs. Hence the global and lo-
cal prototypes are designed to compute similarity scores with
output embeddings of the class token and image tokens for
capturing and highlighting holistic and partial features of tar-
gets and fully capitalizing on the built-in architectural char-
acteristics of ViTs. Next, we gradually perform a two-step
concentration process to solve the “distraction” problem with
the proposed two types of prototypes. In the first step, the
global prototypes perceive the holistic features of targets and
devise a foreground preserving (FP) mask to guide the lo-
cal branch to selectively keep foreground-related image to-
kens and eliminate the influence of the background. In the
second step, A prototypical part concentration (PPC) loss is

designed to promote inter-prototype divergence and central-
ize scattered similarity scores, encouraging local prototypes
further focus on diverse prototypical parts as visual explana-
tions. Fig. 2 shows that ProtoPFormer significantly decreases
the unit similarities of ProtoPNet on the ViT backbone, which
mitigates the homogeneity of different units and makes the
prototypes more concentrated. Finally, the predictions from
the local and global branches are combined to make final de-
cisions jointly.

Our experiments have proved that combining the two types
of high-level abstracted features can mutually correct each
other’s decisions from their exclusive views. Moreover,
extensive experiments have demonstrated that our ProtoP-
Former not only enjoys superior performance on accuracy
and quantitative interpretability results [Kim et al., 2022b],
and faithfully reasons the decision-making processes from
both global and local perspectives, appropriately and effi-
ciently resolving the limitations of previous prototype-based
methods in ViTs. Besides, more interpretability analysis, ab-
lation studies and visualization results are presented in the
supplement. In conclusion, our contributions are summarized
as follows:

• Based on the architectural characteristics of ViTs, we
propose ProtoPFormer with global and local prototypes
to capture and highlight the holistic and partial features
of target objects complementarily.

• A two-step process is performed to progressively solve
the “prototype distraction” problem and point out visual
evidence associatively from global and local perspec-
tives.

• Extensive experiments have demonstrated that ProtoP-
Former can achieve superior performance and transpar-
ently reason the decision-making processes, benefiting
from the strategy of mutual correction and joint decision
of global and local prototypes.

2 Related Work
2.1 Interpretability with CNNs
The interpretability of the inherent decision-making process
of DNNs has become a grand challenge in computer vi-
sion. In general, previous works of model interpretabil-
ity can be divided into two groups: self-interpretable mod-
els and post-hoc analysis [Gao and Guan, 2023]. Self-
interpretable models are elaborately designed neural net-
works that have transparent reasoning processes with reg-
ularization techniques [Subramanian et al., 2018; Böhle et
al., 2022] or accountable components [Zhang et al., 2019;
Zarlenga et al., 2023]. The post-hoc analysis methods fo-
cus on undermining interpretable information of a well-
trained DNN with various techniques like visualization [By-
chkov et al., 2018], saliency analysis [Chefer et al., 2021a;
Hu et al., 2023] and gradients [Selvaraju et al., 2020; Singla
et al., 2019]. ProtoPNet [Chen et al., 2019] combines the
characteristics of both schools with faithfully reasoning the
decision-making process by the linear combination of the
prototype’s similarity scores and visualizing the importance
of discriminative parts as post-hoc analysis. Many follow-up
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Figure 3: Illustration of ProtoPFormer for image recognition interpretation. The global branch provides guidance for the local branch with
the FP mask. The strategy of mutual correction and joint decision makes them contribute complementarily to final predictions, capitalizing
on the built-in architectures in ViTs. The loss propagation of LCE is omitted for simplicity.

studies extend ProtoPNet to many areas like medical image
processing and explanatory debugging [Keswani et al., 2022;
Nauta et al., 2021; Donnelly et al., 2022; Bontempelli et
al., 2022; Gautam et al., 2023; Huang et al., 2023]. While
these CNN-based methods tend to obtain unsatisfactory re-
sults both on classification accuracies and visualization of
prototypes when directly applying to ViTs [Dosovitskiy et
al., 2021]. Besides, recently [Böhle et al., 2022] propose self-
interpretable classifiers using patch-wise similarity, which re-
quires enormous labor to define critical patches and inter-
act with machines while only conducting experiments with
CNNs. Therefore, we introduce ProtoPFormer to point out
visual evidence for ViTs automatically.

2.2 Interpretability with ViTs
Transformer[Vaswani et al., 2017] is introduced into com-
puter vision filed and has achieved impressive success [Tou-
vron et al., 2021a; Liu et al., 2021; Zhang et al., 2023].
With the wide applications of ViTs, some approaches are pro-
posed to explore their interpretability. The most intuitive way
is to analyze the attention weights [Vaswani et al., 2017;
Abnar and Zuidema, 2020]. Nonetheless, this simple as-
sumption may not be a fail-safe indicator [Serrano and Smith,
2019]. For ViTs, some reasons the decision-making process
via gradients [Yao et al., 2022; Chen et al., 2022b], attri-
butions [Chefer et al., 2021b; Yuan et al., 2021] and redun-
dancy reduction [Pan et al., 2021]. While these methods can
only attend to the global features, leaving out discriminative
parts. In particular, ViT-Net [Kim et al., 2022a] and Con-
ceptTransformer [Rigotti et al., 2021] include visual proto-
types/concepts into ViTs as visual explanations. While ViT-
Net merely adopts ViTs as backbones to extract features. The
interpretability mainly comes from the neural tree that also in-
troduces many parameters and ignores the architectural char-
acter of ViTs. ConceptTransformer adds user-defined con-
cepts (e.g., attribute annotations) to enforce an additive re-

lation between token embeddings and concepts. The user-
defined concepts require expensive and time-consuming hu-
man labeling. Comparatively, ProtoPFormer is designed pre-
cisely for ViTs and capitalize on the built-in class token and
image tokens in Transformer with category-specific proto-
types that can be automatically learned when training.

3 Preliminaries
3.1 ProtoPNets
A typical ProtoPNet is composed of three sequential mod-
ules: (1) a backbone network maps an input image to a se-
quence X ∈ Rn×d, where n is the length of the visual se-
quence and d is the embedding dimension; (2) a prototype
layer Proto(X) transforms X into a similarity score vector
s ∈ Rm, where m denotes the number of learnable proto-
types; (3) a fully connected (FC) layer FC(s) makes the pre-
diction with s. In the prototype layer, particularly, the i-th
similarity score si is the max pooled value from the similarity
map Si = Sim(X, p(i)), where p(i) ∈ P is the i-th prototype
and Sim(·, ·) computes the similarity between the given pro-
totype pi and all visual tokens, defined in [Chen et al., 2019].
Generally, ProtoPNets assign k prototypes equally for each
class and therefore m = kC (C is the number of classes).
Vision transformers. This paper focuses on ViTs
adopting the attention mechanism as the original Trans-
former [Vaswani et al., 2017]. ViTs firstly embed disjoint im-
age patches as a sequence of image tokens. Then they are ap-
pended with a class token and fed into multiple encoder lay-
ers composed of a multi-head self-attention (MHSA) module
and a multilayer perception (MLP). Given a visual sequence
X ∈ Rn×d, according to [Vaswani et al., 2017] the MHSA
layer can be rewritten as

MHSA(X) =
H∑

h=1

AhXWh, (1)
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where Ah = softmax(Ψh) is the normalized self-attention
matrix by row-wise softmax of head h (Ψh ∈ Rn×n), H is the
head number, and Wh ∈ Rd×d is the linear projection matrix.
In particular, the global information is gradually aggregated
to the class token solely for the final classification by each
MHSA layer.

3.2 ViT-backed ProtoPNets
To directly implement a ViT as the backbone, we remove
the class token from the sequence and feed remaining tokens
to the following prototype layer. However, unlike CNNs,
which are stacked with local perception units, e.g., convo-
lutional and pooling layers, the MHSA mechanism aggre-
gates global information to every visual token, which is con-
sequently incompatible with prototypes representing local vi-
sual parts. Furthermore, as experiments demonstrates in Sec-
tion 4.1, the ViT-backed ProtoPNet and its variants show no-
tably performance degeneration compared with CNN-backed
ProtoPNets. This phenomena can be explained by visualizing
the learned prototypes shown in Fig. 5, revealing a “proto-
type distraction” problem that the tokens with high similarity
scores are distributed irregularly and spread the whole simi-
larity map, including background positions. Hence, not only
the classification accuracy but also the interpretability coming
with the semantic meaning of prototypes suffers from the in-
compatibility between the long-range perception of ViTs and
the local visual dependency of ProtoPNets.

4 ProtoPFormer
To tackle the abovementioned problem, we propose explicitly
constraining the activated similarity map in the local branch
so that every prototype is enforced to represent an individual
visual part as intended. Moreover, employing the global in-
formation aggregated to the class token, the global branch is
proposed to model inter-class and intra-class differences con-
tributing complementarily to final predictions along with the
local prototype branch.

The overall architecture is illustrated in Fig. 3, in which
a class token tc ∈ R1×d and a feature sequence Xf ∈
R(n−1)×d are split from the visual sequence X = [tc, Xf ]
and fed into a global prototype branch and a local prototype
branch respectively. Similar to the CNN-backed ProtoPNets
settings, the global branch has mg learnable prototypes Pg =

{p(1)g , . . . , p
(mg)
g } (mc

g for each class), and the local branch

has ml learnable prototypes Pl = {p(1)l , . . . , p
(ml)
l } (mc

l for
each class). The predicted logits of the two branches are
weighted summed for generating the complementary result,
formulated as

zc = λgzg + λlzl, (2)

where zg and zl are outputs from the FC classification layer
of global and local branches in respective, and λ{g,l} are
weighted coefficients for each branch.

4.1 Concentration on the Foreground
The first step is to concentrate local prototypes on the fore-
ground and eliminate the influence of the background via
an adaptive binary mask, named foreground preserving (FP)

mask, to selectively preserve foreground-related image to-
kens and screen background-related image tokens. The global
branch provide guidance to the local branch via the FP mask,
capitalizing on the built-in class token and image tokens
in ViTs. As shown in Figure Fig. 3, we use the rollout
method [Abnar and Zuidema, 2020] to generate the FP mask
from the rollout matrix of the class token. For a ViT model,
the attention rollout matrix at the l-th layer (l ≥ 1) is defined
recursively as Ã(l)

r = A(l)Ã(l−1)
r , where A(l) is computed

based on the attention matrices A(l)
h at this layer:

A(l) = In +
1

H

H∑
h=1

A
(l)
h . (3)

The initial attention rollout matrix A(0) is predefined as the
identity matrix In. As mentioned in [Abnar and Zuidema,
2020], Ã1,i is the influence score of the i-th token to the class
token, which help us distinguish how likely it could be as a
foreground token as visualization in Figure Fig. 3.

Given a backbone ViT with L encoder layer, we extract the
rollout matrix at the (L − 1)-th layer for filtering out back-
ground tokens. Let âc ∈ Rn−1 be the rollout attention values
to the class token, we only preserve top-K foreground tokens
for computing the L-th encoder layer. More specifically, let
γ ∈ {0, 1}n−1 denote a binary foreground preserving (FP)
mask (γi = 1 represents that token i is a preserved fore-
ground token). To remove selected background tokens, we
modify the softmax normalization applied to Ψ in Eq. (1) as

Ai,j =
γj exp(Ai,j)∑n−1

k=1 γk exp(Ai,k)
. (4)

Eq. (4) cuts off the connection between the background and
the foreground, thus avoiding changing information at this
step. In the following prototype layer, only the similarity
scores generated from the foreground-related tokens are pre-
served for further class prediction. Generally, this step ten-
tatively concentrates local prototypes in the foreground with
the proposed FP mask.

4.2 Concentration on Prototypical Parts
With selected foreground tokens, the local prototypes can be
forced to concentrate on heterogeneous visual parts with ex-
plicit supervision. For achieving such a purpose, we model
the similarity map (reshaped to a two-dimension array like
image patches) with regard to each local prototype as a bi-
variate Gaussian function:

Gaussian(x|µ,Σ) = 1

2π|Σ| 12
e−

1
2 (x−µ)⊤Σ−1(x−µ), (5)

where x ∈ R2 represents the position on the similarity map;
µ ∈ R2 and Σ ∈ R2×2 are the parameters controlling the
center position and dispersion in respective. On the one hand,
by minimizing the eigenvalues of Σ, we are able to dissolve
the distraction problem. On the other hand, to promote the
divergency of prototypes, we can supervise the prototypes by
pushing the centers away from each other.

Gaussian fitting. When achieving N data points D =
{(xi, si)}Ni=1 (xi represent the position of the similarity
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Method DeiT-Ti DeiT-S CaiT-XXS-24
CUB Dogs Cars CUB Dogs Cars CUB Dogs Cars

Base 80.57 5.56M 81.05 5.55M 86.21 5.56M 84.28 21.74M 89.00 21.71M 90.06 21.74M 83.95 11.80M 85.62 11.79M 90.19 11.80M

ProtoPNet 81.36 5.95M 81.47 5.79M 86.84 5.94M 84.04 22.12M 86.85 21.97M 88.21 22.12M 84.02 12.18M 84.62 12.03M 88.87 12.18M

ProtoTree 68.50 5.70M 68.46 5.70M 70.02 5.70M 70.57 21.89M 72.73 21.89M 74.95 21.89M 72.33 11.94M 73.69 11.94M 73.15 11.94M

TesNet 77.72 6.38M 76.54 5.97M 84.69 6.36M 81.36 22.56M 75.08 22.15M 87.31 22.54M 81.52 12.62M 77.01 12.21M 88.12 12.60M

Def. ProtoPNet 75.79 7.86M 79.26 6.99M 82.01 7.82M 79.53 25.93M 79.59 24.45M 87.42 25.86M 81.09 14.10M 80.67 13.23M 87.51 14.05M

CT 74.71 5.84M N/A N/A 79.74 22.75M N/A N/A 78.81 12.08M N/A N/A

ViT-Net 81.98 10.42M 80.96 10.08M 88.41 10.41M 84.26 26.66M 88.21 26.30M 91.34 26.64M 84.51 16.32M 84.67 16.32M 91.54 16.65M

ProtoPFormer 82.26 6.33M 82.20 5.91M 88.48 6.13M 84.85 22.50M 89.97 22.09M 90.86 22.30M 84.79 12.57M 86.26 12.15M 91.04 12.36M

Table 1: The acc@1 performance comparison (%) between seven SOTA baselines and our ProtoPFormer on three datasets averaged over six
runs. Here, “Params” refers to parameter numbers of corresponding ViTs averaged on adopted datasets, please refer to Appendix for detailed
model sizes. Bold fonts and blue fonts are used to indicate the best and the second best accuracy, respectively.

value si on the heatmap S) along with the FP mask γ, we
are able to estimate the parameters of the Gaussian model
Gaussian(·|µ,Σ). Precisely, by removing background to-
kens, µ and Σ can be estimated by

µ̂ =

∑N
i=1 γisixi∑N
i=1 γisi

,

Σ̂ =

∑N
i=1 γisi(xi − µ)(xi − µ)⊤∑N

i=1 γisi − 1
.

(6)

Then we propose a prototypical part concentration (PPC)
loss to make local prototypes concentrate on different and
centralized representative parts for each class. By constrain-
ing tr(Σ̂), the trace of Σ̂, the PPC loss minimizes the sum of
eigenvalues of Σ̂. In the meantime, this loss also encourages
prototypes belonging to the same class to have diverse µ̂. The
PPC loss can be computed as LPPC = λµLµ

PPC + λσLσ
PPC,

where Lµ
PPC is defined as

Lµ
PPC =

1

ml
cm

l
c

∑
i̸=j

max(tµ − ∥µ̂c
i − µ̂c

j∥2, 0), (7)

and Lσ
PPC can be written as

Lσ
PPC = tr

(
max(0, Σ̂− tσ)

)
. (8)

Here tµ and tσ are two predefined thresholds to guarantee that
the PPC loss only penalizes too close center coordinates and
encourages small covariance values for concentrating c-class
private local prototypes to learn and make decisions on differ-
ent distinctive visual concepts. λµ and λσ represent their fac-
tors. The final optimization objection of ProtoPFormer is to
minimize L = LCE + LPPC, LCE is the conventional cross-
entropy loss.

5 Experiments
5.1 Experimental Settings
Datasets. We conduct experiments on three widely-used
datasets including CUB [Welinder et al., 2010], Dogs [Khosla

et al., 2011] and Cars [Krause et al., 2013]. All images are
resized to 224× 224 pixels without cropping.
Backbones. Three popular vision Transformers: DeiT-
Ti [Touvron et al., 2021a], DeiT-S [Touvron et al., 2021a],
and CaiT-XXS-24 [Touvron et al., 2021b], are adopted as
the ViT backbones, initialized with the official pre-trained
weights on ImageNet-1k [Russakovsky et al., 2015].
Parameters. All models are trained for 200 epochs with
AdamW optimizer [Loshchilov and Hutter, 2019] and cosine
LR scheduler. The weighted coefficients λµ, λσ are set to 0.5,
0.1, and the two thresholds tµ, tσ are 2 and 1. We use 10 local
prototypes for all datasets, and 10, 5, and 5 global prototypes
for CUB, Dogs and Cars datasets, respectively. K is 81 for
CUB and Dogs, and 121 for Cars. FC layers are non-trainable
in ProtoPFormer.
Baselines. We compare the proposed ProtoPFormer with
the classic and state-of-the-art (SOTA) prototype-based ap-
proaches. (1) Base represents the vanilla ViT model, serving
as the non-interpretable counterpart of our method. (2) Pro-
toPNet [Chen et al., 2019] is the first work that interprets
DNNs’ decisions through a linear combination of similarity
scores of prototypes. (3) ProtoTree [Nauta et al., 2021] com-
bines prototypes with decision trees for hierarchical reason-
ing. (4) TesNet [Wang et al., 2021] introduces a transpar-
ent embedding space with class-aware basis concepts. (5)
Def. ProtoPNet [Donnelly et al., 2022] designs spatially
flexible prototypes for handling images with pose variations.
(6) CT [Rigotti et al., 2021] stands for ConceptTransformer
which utilizes attributes as visual concepts. This method can-
not be applied to Dogs and Cars which lack visual attribute
labels. (7) ViT-Net [Kim et al., 2022a] integrates ViTs and
trainable neural trees based on ProtoTree, which only em-
ploys ViTs as feature extractors without fully exploiting their
architectural characteristics. For fair comparison, we rerun
all baselines with three ViT backbones and use grid search to
turn their hyperparameters.

5.2 Performance Comparison
In Section 4.1, we report the top-1 accuracy and parame-
ter numbers of ProtoPFormer and our competitors on in-
volved datasets with three ViT backbones. Generally, it can
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be observed that our proposed method consistently achieves
superior performance compared to baseline methods and
economizing parameters. Specifically, Base, as the non-
interpretable counterpart, steadily shows upper-middle per-
formance than other self-interpretable baselines, which im-
plies that previous SOTA prototype-based methods are con-
fronted with the trade-off between accuracy and transparency
for ViT-backed models. ProtoPNet, TesNet, and Def. Pro-
toPNet suffer from varying degrees of performance degra-
dation with Transformer backbones on three datasets, indi-
cating that these approaches, designed based on CNN mod-
els, are unsuited for learning prototypical parts from token
embeddings in Transformers. CT obtains worse results than
our method with visual concepts defined by user-defined at-
tributes on CUB, which require time-consuming labeling and
rely on human judgment. In contrast, our prototypes are au-
tomatically learned along with the training process, faithfully
reflecting the discriminative information for the decisions of
ViTs. ViT-Net has comparable accuracy with our method but
introduces significant extra parameters with the neural trees.
Comparatively, ProtoPFormer solely adds small additional
parameters, the global prototypes, to achieve the necessary
improvement for ViTs. In summary, extensive experiments
have verified that our ProtoPFormer outperforms seven base-
lines on adopted datasets with three ViTs, meanwhile avoid-
ing increasing too many overheads.

5.3 Visualization Analysis
Reasoning Process. Fig. 4 shows a typical reasoning pro-
cess of ProtoPFormer. The global and local branches make
complementary predictions contributing to the final decision.
Prototypes of each branch compute corresponding similarity
scores with token embeddings and produce the final points
with linearly combined scores. In this case, when classify-
ing an Indigo Bunting, global prototypes mistakenly have a
slightly larger response with the holistic features of the Boat
Tailed Grackle class than Indigo Bunting. Meanwhile, lo-
cal prototypes successfully discover that the test bird reveals
many close parallels with the Indigo-Bunting’s exclusive pro-
totypes: the indigo features covered the bird’s head, belly, and
black feet. Pointing out prototypical visual evidence helps lo-
cal prototypes make sound judgments and correct the global
branch. With the mutual correction and joint decision strat-
egy, global and local prototypes capture holistic and partial
features of target objects in a complementary way, benefiting
the final decisions of ProtoPFormer.
Visual Comparison. In this subsection, we analyze the in-
terpretability of ProtoPFormer through visualizing local pro-
totypes after training and compare the results with five base-
lines, illustrated in Fig. 5. The bounding box covers the top
5% similarity scores in the same map, and heat maps are gen-
erated by up-sampling and mapping the activation maps to
the pixel space, following the same visualization process in
ProtoPNet. It can be observed that previous prototype-based
competitors obtain unsatisfied visualization results: similar-
ity scores are distributed irregularly and spread throughout
the whole similarity map while paying excessive attention on
the background. For example, two prototypes of ProtoPNet
show high similarity with the background when classifying
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Figure 4: The reasoning process of our ProtoPFormer in classifying
the species of a bird with DeiT-Ti, where ⊕ denotes summation of
similarity scores.

the Red Winged Blackbird, which dramatically impairs its
self-explanatory. Nevertheless, ViT-Net and Def.ProtoPNet
train prototypes to capture features of the greensward for
identifying two dog breeds, as dogs often appear accompa-
nied by the grass. We ascribe this phenomenon to the vulner-
ability of previous CNN-based baselines to ViT backbones,
which mistakenly learn the misleading information related
but not congruent with objects and ignore targeting cues. By
contrast, ProtoPFormer preciously captures diverse discrimi-
native prototypical parts with the two-step concentration. No-
tably, the high activated prototypes of ProtoPFormer show
significant activations with a central tendency, e.g., the birds’
head and under-surface and the dogs’ head and belly.

5.4 Analysis of Interpretability for ProtoPFormer
Interpretability Evaluation of Prototypes with HIVE. We
follow HIVE [Kim et al., 2022b], a interpretability evaluation
method, to quantitatively evaluate the visual interpretability
of the learned local prototypes through two evaluation tasks,
i.e., a agreement and distinction task, on four SOTA methods
and ProtoPFormer. Specifically, the agreement task is used
to examine users’ confidence in model predictions based on
their explanations provided by prototypes, and the distinction
task is used to identify the correct predictions based on ex-
planations provided by five methods. We separately compare
three sets of 30 examples and 10 examples for the agreement
and distinction task with 186 participants (remaining anony-
mous) on CUB with DeiT-Ti. As shown in Table 2, our pro-
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Figure 5: Visual demonstration of the two most activated local prototypes in heat maps and bounding boxes on example images (randomly
chosen from the CUB and Dog datasets) of five prototype-based baselines and ProtoPFormer with DeiT-S.

CUB ProtoPNet ProtoTree TesNet ViT-Net Ours
Correct 33.54 51.67 50.83 23.13 66.88

Incorrect 63.78 47.07 46.37 75.49 34.98

(a) Agreement task results.
CUB ProtoPNet ProtoTree TesNet ViT-Net Ours

8.89 1.67 2.67 10.00 56.67

(b) Distinction task results.

Table 2: Interpretability evaluation (%) of local prototypes.

posed ProtoPFormer obtains the highest correct scores on the
agreement task compared to other methods, indicating that
the local prototypes in our method can make local prototypes
pay attention to different local parts and capture the represen-
tative object parts with Transformer-backed models. More-
over, in the distinction task, we present the activation maps
of the five prototype-based methods for the participants and
require them to choose the correct explanations for the test
images. Table 2 also shows that the activation maps provided
by ProtoPFormer are considered as the most discriminative
explanation among the competitors by participants.

6 Conclusion

In this paper, we propose ProtoPFormer for appropriately
and effectively applying the prototype-based method with
ViTs for interpretable image recognition. Experiments have
demonstrated that our ProtoPFormer can achieve the supe-
rior performance and capture the representative visual ev-
idence through learned prototypes, benefiting Transformer-
backed models with the self-explanatory characteristic. In
future work, we plan to investigate the potential applications
of ProtoPFormer in other critical areas like model debugging
and medical image diagnosis.
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