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Abstract

Few-shot object counting aims to count the num-
ber of objects in a query image that belong to the
same class as the given exemplar images. Exist-
ing methods compute the similarity between the
query image and exemplars in the 2D spatial do-
main and perform regression to obtain the counting
number. However, these methods overlook the rich
information about the spatial distribution of simi-
larity on the exemplar images, leading to signifi-
cant impact on matching accuracy. To address this
issue, we propose a network learning Spatial Simi-
larity Distribution (SSD) for few-shot object count-
ing, which preserves the spatial structure of exem-
plar features and calculates a 4D similarity pyra-
mid point-to-point between the query features and
exemplar features, capturing the complete distribu-
tion information for each point in the 4D similarity
space. We propose a Similarity Learning Module
(SLM) which applies the efficient center-pivot 4D
convolutions on the similarity pyramid to map dif-
ferent similarity distributions to distinct predicted
density values, thereby obtaining accurate count.
Furthermore, we also introduce a Feature Cross En-
hancement (FCE) module that enhances query and
exemplar features mutually to improve the accu-
racy of feature matching. Our approach outper-
forms state-of-the-art methods on multiple datasets,
including FSC-147 and CARPK. Code is available
at https://github.com/CBalance/SSD.

1 Introduction
Visual object counting aims at counting how many times a
certain object occurs in the query image, which has received
growing attention in the past years. Existing methods often
focus on specific domains, such as crowd counting [Shu et
al., 2022; Wang et al., 2020; Abousamra et al., 2021], ani-
mal counting [Arteta et al., 2016], or car counting [Hsieh et
al., 2017]. These methods typically rely on large amounts of
data to train accurate counting models. Furthermore, they are
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Figure 1: Comparison between existing methods and our method.
Compared to the feature similarity computation process in previous
methods, our approach preserves the spatial structure of exemplars.
Each position is computed with query features, and in the subse-
quent convolutional regression process, we fully utilize the spatial
similarity distribution information between query and exemplar fea-
tures at a point-to-point level.

limited to counting objects of specific categories and cannot
generalize well to novel categories.

To overcome these limitations, a recent approach called
Few-shot Object Counting (FSC) has been introduced and
gained great attention with the emergence of a dataset [Ran-
jan et al., 2021]. FSC addresses the challenge of counting
objects from arbitrary categories using only a few exemplars.
This enables the model to generalize to unseen categories,
offering potential for application in various scene categories
beyond those encountered during training. By leveraging few
exemplars, FSC provides a more flexible and adaptable solu-
tion for object counting tasks.

As shown in Fig.1, existing few-shot object counting meth-
ods typically follow a general workflow. They first cal-
culate the similarity between query and exemplar features,
and then directly regress the similarity matrix or enhance
the query features using the similarity matrix and exemplar
features before regression. In terms of similarity computa-
tion, some methods, as demonstrated in [Ranjan et al., 2021;
Yang et al., 2021; You et al., 2023; Ðukić et al., 2023], em-
ploy exemplar features as fixed kernels to perform convo-
lution with query feature. However, in this approach, the
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Figure 2: Heatmap depicting the similarity distribution of objects at
different positions on the exemplar.

distribution of kernel features remains fixed during convolu-
tion matching, limiting its adaptability to different sizes and
shapes of object features in the query. Another approach,
such as the one used in [Shi et al., 2022; Lin et al., 2022;
Liu et al., 2022], involves pooling exemplar features to obtain
1 × 1 feature prototypes, followed by cosine similarity com-
putation between feature vector of each position in the query
and these prototypes. This method disregards the distribu-
tion information of query and exemplar features, and count-
ing performance becomes dependent on the performance of
previous feature extraction and self-attention mechanisms.

To accurately locate the center of an object and generate
an appropriate density distribution, we leverage distinct sim-
ilarity distribution characteristics between each parts, such as
object centers, edges and background, when compared to ex-
emplars. Explicitly, as shown in Fig.2, the similarity distribu-
tion of the object center in exemplars gradually diminishes
from the central position towards the surrounding regions,
while the similarity distribution at the edges exhibits varia-
tions across different locations. On the other hand, the back-
ground demonstrates generally lower similarity values across
all positions except the background area. Taking advantage
of these patterns, we propose a novel method that tries to pre-
serve the spatial structure of exemplars during similarity com-
putation, and name it as learning Spatial Similarity Distribu-
tion (SSD). Concretely, this method yields a 4D similarity
tensor, which allows for flexible extraction of point-to-point
similarity distribution information between query and exem-
plar features using convolution operations in the 4D space.
The features obtained through convolution enable precise cal-
culation of density values for each position in the query dur-
ing regression. In addition, we introduce a Feature Cross En-
hancement (FCE) module for query and exemplar features.
This employs the similarity matrices as weights to mutually
enhance the features, aiming to achieve higher matching ac-
curacy for objects belonging to the given category.

We conduct comprehensive experiments on two renowned
public benchmark datasets, i.e., FSC-147 [Ranjan et al.,

2021] and CARPK [Hsieh et al., 2017]. The results clearly
illustrate that our approach surpasses the performance of cur-
rent state-of-the-art methods. Our contributions can be sum-
marized as follows:

• We design a model based on learning the 4D spatial sim-
ilarity distribution between query and exemplar features
in Similarity Learning Module (SLM). This model is ca-
pable of obtaining accurate counting results after com-
prehensive integration of similarity distribution informa-
tion among point pairs and their surroundings.

• Before calculating the similarity between query and ex-
emplar features, we introduce a Feature Cross Enhance-
ment (FCE) module, which enhances the interaction be-
tween them, reducing the distance between the target ob-
jects and exemplar features to achieve better matching
performance.

• Extensive experiments on large-scale counting bench-
marks, such as FSC-147 and CARPK, are conducted and
the results demonstrate that our method outperforms the
state-of-the-art approaches.

2 Related Work
2.1 Class-Specific Object Counting
Class-specific object counting focuses on counting a spe-
cific class of objects, such as crowd [Stewart et al., 2016;
Liang et al., 2023; Lin and Chan, 2023; Du et al., 2023], an-
imals [Arteta et al., 2016], or cars [Hsieh et al., 2017]. In
related methods, the class information can be incorporated
into the feature extraction process without additional classi-
fication steps. Existing methods can be broadly categorized
into detection-based and regression-based approaches.

Detection-based methods detect the positions of objects in
an image to perform counting. However, counting accuracy
in these methods relies heavily on the performance of the de-
tection process, which introduces errors. This limits the effec-
tiveness of counting tasks in scenarios with densely packed
objects. To address this issue, regression-based methods have
been proposed to generate a density map, where the sum of
the density values represents the predicted object count.

Classic detection-based methods, for example, [Stewart et
al., 2016] propose a model that decodes an image into a set
of people detections, generating distinct detection hypothe-
ses directly from the input image. On the other hand, recent
research in regression-based methods, such as [Cheng et al.,
2022], utilizes locally connected multivariate Gaussian ker-
nels as replacements for convolution filters. Moreover, a re-
cent work [Liang et al., 2023] proposes knowledge transfer
from a vision-language pre-trained model (CLIP) to unsuper-
vised crowd counting tasks, eliminating the need for density
map annotation.

2.2 Few-shot Object Counting
In recent years, few-shot object counting (FSC) has gained
significant attention and witnessed a surge of interest. FSC
aims to accurately count objects in an image by leveraging
only a few exemplars as references. This ability to adapt to
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Figure 3: The whole architecture of the proposed SSD framework.

unseen categories during the testing phase is a key advantage
of FSC.

Several noteworthy methods have been proposed for FSC.
GMN [Lu et al., 2019] concatenates support features and
query features together, and regresses a predicted density
map based on this concatenation. In contrast, FamNet [Ran-
jan et al., 2021] convolves the query image with exemplars
used as convolutional kernels, generating multiple similarity
maps that provide insights into the comparison results be-
tween the query and exemplars. A predicted density map
is then regressed from these similarity maps. Another ap-
proach, BMNet [Shi et al., 2022], employs global pooling
to transform exemplars into prototypes, and replaces fixed
inner product operations with a learnable bilinear similarity
metric for comparing exemplar prototypes with query image
features. CounTR [Liu et al., 2022] introduced a transformer-
based architecture for extracting image features and utilized
cross-attention modules for effective feature matching. Re-
cently, LOCA[Ðukić et al., 2023] is proposed and considers
the exemplar shape and appearance properties separately and
iteratively adapts these into object prototypes by a new object
prototype extraction (OPE) module considering the image-
wide features.

2.3 Generalized Loss
Generalized loss function [Wan et al., 2021] is proposed for
learning density maps for crowd counting and localization,

which is based on unbalanced optimal transport. And [Wan
et al., 2021] prove that both L2 loss and Bayesian loss [Ma
et al., 2019] are special cases of the generalized loss. The
approach proposed in [Lin et al., 2022] also utilizes this loss
function and introduces a scale-sensitive generalized loss that
applies different loss computation methods to object cate-
gories of different scales.

3 Methodology
3.1 Problem Setting
In few-shot object counting, the dataset is split into base
classes Cbase and novel classes Cnovel, where Cbase and
Cnovel do not overlap. The remarkable generalization ca-
pability of Few-shot Object Counting (FSC) lies in its abil-
ity to achieve high performance on the val set and test set,
even for categories Cnovel that have not been encountered
during training on Cbase. FSC addresses the task of count-
ing the number of objects of interest present in a query image
X ∈ R3×H×W , with the assistance of K exemplars Z.

3.2 Overall Architecture
As shown in Fig.3, our entire framework follows the follow-
ing steps: (1) Feature extraction, (2) Feature Cross Enhance-
ment (FCE), (3) Similarity pyramid calculation, (4) Sim-
ilarity learning and (5) Regression decoder. Initially, the
ResNet-50 [He et al., 2016] feature extractor is used to ex-
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Figure 4: Concatenation of multi-level similarity matrices.

tract features from the image X ∈ R3×H×W , with the op-
tion of weight freezing (no fine-tuning is performed), and
generated pyramid features {Fq

l }
L

l=1
, where each level fea-

ture Fq
l ∈ RCLp×HLp×WLp (l ∈ Lp). Among all levels,

several adjacent levels have features with the same spatial
dimensions. All these levels together form a large layer
Lp (p = 1, 2, · · ·, P ). For each level in the feature pyramid,
K exemplar features Fs

l ∈ RK×CLp×h×w are extracted us-
ing the RoIAlign method [He et al., 2017]. CLp

represents
the feature channel dimension of the respective layer, while
HLp

×WLp
and h × w denote the spatial dimensions of the

query feature and exemplar features at that layer. Here we
maintain all exemplar features at a uniform size h× w.

The K exemplar features are input into the FCE module,
along with the query feature at the same level, resulting in
enhanced features Eq

l and Es
l with the same dimensions as

Fq
l and Fs

l . We partition the K exemplars, with each exem-
plar corresponding to a set of feature pyramid combinations{
Eq

l ,E
s
l,k

}L

l=1
, where Es

l,k ∈ RCLp×h×w. For pyramid fea-
ture set of each exemplar, we perform cosine multiplication
on each feature pair to generate the similarity matrix:

Sl,k (x
q, xs) = ReLU

 Eq
l (x

q) ·Es
l,k (x

s)

∥Eq
l (x

q)∥
∥∥∥Es

l,k (x
s)
∥∥∥
 . (1)

Here, xq and xs denote 2-dimensional spatial positions of
query feature map Eq

l and exemplar feature map Es
l,k, re-

spectively. ‘·’ denotes vector dot product. For each similarity
tensor, Sl,k ∈ RHLp×WLp×h×w.

As shown in Fig. 4, we concatenate the similarity ma-
trices of the same large layer Lp and partition {Sl,k}Ll=1

accordingly, transforming it into
{
{Sl,k}l∈Lp

}P

p=1
and set

it as
{
SLp,k

}P

p=1
. And each tensor in it is SLp,k ∈

R|Lp|×HLp×WLp×h×w, where |Lp| is the number of pyramid
levels. They are then fed into the Similarity Learning Module
(SLM) to produce a learned and fused feature map Mk. Fi-
nally, Mk is input into the regression decoder module to ob-
tain the density map Pk ∈ R1×H×W . The K sets of feature
pyramids correspond to the generation of K density maps.
The final predicted density map, denoted as P, is obtained by
taking the mean of these K maps:

P =

∑K
k=1 Pk

K
. (2)

3.3 Feature Cross Enhancement
The distribution of object features within the query features
of the same category is often uneven. Directly matching and
counting using the original features can result in varying den-
sity values for each object. To address this issue, we propose a
Feature Cross Enhancement (FCE) module that aims to bring
the object features within the query closer to the exemplar
features while also facilitate the exemplar features to be closer
to the center position of all object features. By enhancing the
proximity of the object features specific to a certain category,
the model is able to generate more accurate density values.

In the FCE module, the input features Fq
l and Fs

l are
jointly transformed into Vq ∈ RCe

p×HLp×WLp and Vs ∈
RCe

p×K×h×w through a convolutional layer. They are then
individually passed through other two convolutional layers,
with Fq

l being transformed into Q and Fs
l into K, which are

the same dimensions as Vq and Vs. Multiplying the trans-
pose of Q and K matrices results in the attention matrix Al:

Al = SoftMax
(
QTK

)
. (3)

Then we utilize Al to separately enhance Fq
l and Fs

l :

Eq
l = Fq

l +MLP (Fq
l )⊙ Trans

(
VsAT

l

)
Es

l = Fs
l +MLP (Fs

l )⊙ Trans (VqAl) .
(4)

Here, MLP (·) is a multi-layer perceptron consisting of fully
connected layers and activation functions, and used to map
the channel vector into a channel-wise feature space of sim-
ilarity relation. Trans (·) represents the convolutional layer
that transforms channel Ce

p into the original channel CLp
, and

⊙ denotes element-wise multiplication.

3.4 Similarity Learning Module
4D convolution. Several existing works [Rocco et al., 2018;
Yang and Ramanan, 2019; Min et al., 2021] have proposed
various implementations of 4D convolutions. In our frame-
work, we employ the center-pivot 4D convolution from [Min
et al., 2021] which sparsifies a significant portion of unimpor-
tant weights and computations. This method focuses solely
on the information associated with the convolution center, re-
ducing computational overhead while maintaining effective-
ness. With 4D convolutions, tensors are fused for each 4D
position based on convolution kernel weights, integrating in-
formation from the vicinity in 4D space and transforming the
vector at that position into the corresponding output dimen-
sion.

For the input set of similarity tensors
{
SLp

}P

p=1
(here we

omit the exemplar subscript k), each tensor is fed into its cor-
responding 4D convolutional module:

S′
Lp

= fe
Lp

(
SLp

)
∈ RCout×HLp×WLp×h′×w′

, (5)

where fe
Lp

(·) is an encoding module composed of multiple
4D convolutional layers, group normalization [Wu and He,
2018], and ReLU activation function. The large strides of the
4D convolution compresses the spatial dimensions h × w of
the exemplar spatial structure to h′ × w′, while embedding
the dimensions of all similarity tensors from |Lp| into Cout.
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Next, starting from the apex of pyramid
{
S′
Lp

}P

p=1
, we

proceed to fuse each subsequent layer downwards. For in-
stance, the tensor S′

LP
∈ RCout×HLP

×WLP
×h′×w′

is upsam-
pled on its dimensions HLP

×WLP
to match the correspond-

ing dimensions HLP−1
×WLP−1

of the layer below. It is then
added to the respective tensor S′

LP−1
of the layer below and

passed through a fusion module based on 4D convolution:

SMix
Lp−1

= fMix
Lp−1

(
upsample

(
S′
Lp

)
+ S′

Lp−1

)
. (6)

The structure of function fMix
Lp−1

is identical to that of function
fe
Lp

, with the difference being that the stride of fMix
Lp−1

is set
to 1, which does not alter the spatial dimensions of the tensor.
And the input and output dimensions in fMix

Lp−1
are all set to

Cout.
SMix
LP−1

is fused with the tensor S′
LP−2

in a similar man-
ner, iteratively continuing the fusion process with each sub-
sequent layer until reaching the bottom layer of the pyra-
mid S′

L1
. Consequently, we obtain the final fused tensor

SMix
L1

∈ RCout×HL1
×WL1

×h′×w′
. By calculating the mean

along the last two dimensions, we derive the fused feature
M ∈ RCout×HL1

×WL1 .

3.5 Regression Decoder
The decoder module used for regression consists of multi-
ple component modules composed of convolutional layers,
ReLU activation layers, and upsampling layers. With each
component module, the size of feature M is increased to
twice until reaching the size of the input image H ×W . Sub-
sequently, it passes through a 1 × 1 convolutional layer and
a ReLU activation layer. The output is the predicted density
map.

3.6 Generalized Loss
In previous object counting tasks, ground truth density maps
are generated by convolving dot labels with fixed Gaussian
kernels. The MSE loss function is then employed for super-
vised training of the predicted density map. In a recent study
[Wan et al., 2021], a generalized loss function was proposed
that directly measures the distance between the predicted den-
sity map and the dot labels. This loss function is based on
entropic-regularized unbalanced optimal transport cost.

We represent the predicted results as A = {(ai,xi)}ni=1,
where ai denotes the predicted density value at pixel xi ∈ R2.
Here, n represents the total number of pixels. Then we denote
the predicted density map as a = [ai]i. On the other hand,
the ground truth dot label is denoted as B = {(bj ,yj)}mj=1,
where yj indicates the location of the j-th annotation and bj
represents the number of objects represented by that annota-
tion. In general, it is assumed that b = [bj ]j = 1m. The
whole loss function can be defined as:

LC (A,B) =min
D

⟨C,D⟩ − εH (D) + τ ∥D1m − a∥22

+ τ
∥∥DT 1n − b

∥∥
1
,

(7)

where C is the transport cost matrix, with Cij represent-
ing the cost of moving the predicted density at xi to the

ground truth dot annotation yj . D is the transport matrix
that assigns fractional weights to associate each location xi

in A with its corresponding yj in B for cost calculation.
The optimal transport cost is obtained by minimizing the
loss over D. H (D) = −

∑
ij Dij logDij is the entropic

regularization. The intermediate density map representation
â = D1m is constructed from the ground truth annotations,
while b̂ = DT 1n is the reconstruction of the ground truth dot
annotations.

3.7 Dynamic Image Scale
Certain sample images may contain objects that are small
sizes or densely distributed, leading to challenges in effec-
tively distinguishing between individual objects. This re-
sults in overlapping density within the predicted density map,
thereby impacting model performance. To address this is-
sue, we dynamically resize the input images based on the
size of exemplar boxes before entering the backbone. This
resizing is performed proportionally to the dimensions of the
exemplar boxes, allowing the model to better recognize sam-
ples containing smaller objects. For an input image X, we
compute the average length and width of K exemplar boxes
B ∈ RK×2:

B̄ =

∑K
k=1 Bk

K
. (8)

If min
(
B̄
)

is below a threshold γ , we calculate the scale of
image expansion:

scale =
γ −min

(
B̄
)

η
+ 1, (9)

where both γ and η are hyperparameters to be tuned. Finally,
the image size and exemplar boxes B are simultaneously ex-
panded by the determined scale value before being input into
the model.

4 Experiments
4.1 Datasets and Metrics
Datasets. FSC-147 is a comprehensive multi-class few-shot
object counting dataset. It comprises a total of 6,135 im-
ages covering 89 distinct object categories. The images in
the dataset exhibit significant variations in terms of object
counts, ranging from as low as 7 to as high as 3,731 objects,
with an average count of 56 per image. Notably, each im-
age in the dataset is accompanied by three or four exemplar
images that are annotated with bounding boxes. To facilitate
experimentation, the dataset is further divided into training,
validation, and testing subsets, with each subset containing
29 non-overlapping object categories.

CARPK is a class-specific car counting dataset, which
consists of 1448 images of parking lots from a bird’s view.
These images are captured from four different parking lots,
encompassing various scenes. The training set comprises
three scenes, while a separate scene is designated for test.

Metrics. We employ Mean Average Error (MAE) and
Root Mean Squared Error (RMSE) as performance metrics
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Methods Backbone
3shot 1shot

Val Test Val Test
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GMN [Lu et al., 2019] ResNet-50 29.66 89.81 26.52 124.57 — — — —
MAML [Finn et al., 2017] ConvNet 25.54 79.44 24.90 112.68 — — — —
FamNet [Ranjan et al., 2021] ResNet-50 23.75 69.07 22.08 99.54 26.55 77.01 26.76 110.95
CFOCNet [Yang et al., 2021] ResNet-50 21.19 61.41 22.10 112.71 27.82 71.99 28.60 123.96
LaoNet [Lin et al., 2021] VGG-19 — — — — 17.11 56.81 15.78 97.15
BMNet+ [Shi et al., 2022] ResNet-50 15.74 58.53 14.62 91.83 17.89 61.12 16.89 96.65
SAFECount [You et al., 2023] ResNet-18 15.28 47.20 14.32 85.54 — — — —
SPDCN [Lin et al., 2022] VGG-19 14.59 49.97 13.51 96.80 — — — —
CounTR [Liu et al., 2022] ViT/ConvNet 13.13 49.83 11.95 91.23 13.15 49.72 12.06 90.01
LOCA [Ðukić et al., 2023] ResNet-50 10.24 32.56 10.79 56.97 11.36 38.04 12.53 75.32
SSD(ours) ResNet-50 9.73 29.72 9.58 64.13 11.03 34.83 11.61 71.55

Table 1: Comparison with state-of-the-art approaches on the FSC-147 dataset. ‘—’ means the result is not reported.
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Figure 5: Qualitative results on the FSC-147 dataset.

for evaluating the SSD method, as these metrics are widely
utilized in counting tasks.

MAE =
1

N

N∑
i=1

∣∣Ci
pred − Ci

∣∣ ,
RMSE =

√√√√ 1

N

N∑
i=1

(Ci
pred − Ci)2,

(10)

where N is the number of all the query images, Ci and Ci
pred

are the ground truth and the predicted number of objects for
i-th image respectively.

4.2 Implementation Details
Architecture Details. Our approach involves resizing the in-
put image initially to 384 × 576. Then the image is dynami-
cally resized to the suitable scale, followed by the application
of the pre-trained ResNet-50 backbone, utilizing features ex-
tracted from the final three layers. The number of features at
each layer, denoted as |Lp|, is 4, 6, and 3, with correspond-
ing feature channel dimensions of 512, 1024, and 2048, re-
spectively. The size of exemplar features extracted from each
layer is uniformly resized to 16 × 16. In the FCE module,
the embedded channel dimension is set to half of dimension
of the input feature. In the Similarity Learning module, the

4D convolution module consists of three component modules
with output dimensions of 32, 128, and 256, respectively. To
fuse the three layers of similarity tensors, two fusion modules
are required, each containing three component modules, and
all the output dimensions are 256. γ and η in DIS method are
set to 32 and 12.

Training Details. We apply AdamW [Loshchilov and Hut-
ter, 2017] as the optimizer with a learning rate of 1×10−4 and
the learning rate decays with a rate of 0.95 after each epoch.
The batch size is 4 and the model is trained for 100 epochs.

4.3 Comparison with State of the Art
We evaluate the proposed SSD on the FSC-147 dataset with
several state-of-the-art methods. the results are summarized
in Tab.1. We conduct both 3-shot and 1-shot experiments on
the dataset. SSD consistently outperforms existing methods
in terms of performance.

In the 3-shot scenario, even compared to the recent state-
of-the-art method LOCA [Ðukić et al., 2023], SSD demon-
strates superior performance on the val set with a 5.0% im-
provement in MAE and an 8.7% improvement in RMSE. No-
tably, SSD also exhibits better performance on the test set
with a 11.2% improvement in MAE.

In the 1-shot scenario, SSD surpasses all previous state-of-
the-art methods. This underscores the minimal dependence of
SSD on reference samples, showcasing its robust adaptability
to scenarios with limited available data.

Qualitative Results. In Fig.5, we visualize and compare
the predicted density maps of BMNet, LOCA, and SSD. The
results demonstrate that SSD has higher accuracy compared
to the other two methods.

4.4 Cross-dataset Generalization
Following [Ranjan et al., 2021], we validate the general-
izability of SSD on the CARPK dataset. The model is
trained on the FSC-147 dataset and then tested on the CARPK
dataset, with the car category samples excluded during train-
ing. During testing, we randomly select twelve annotations
from the CARPK dataset as exemplars to count cars in im-
ages. The experimental results is presented in Tab.2. SSD
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Methods BackBone Test
MAE RMSE

FamNet [Ranjan et al., 2021] ResNet-50 28.84 44.47
BMNet [Shi et al., 2022] ResNet-50 10.44 13.77
LOCA [Ðukić et al., 2023] ResNet-50 9.97 12.51
SSD(ours) ResNet-50 9.58 12.15

Table 2: Comparison with the state-of-the-art approaches on the
CARPK dataset.

FCE G-Loss DIS Val Test
MAE RMSE MAE RMSE

✗ ✗ ✗ 18.96 64.44 16.75 108.12
✓ ✗ ✗ 18.56 61.69 16.39 108.64
✗ ✓ ✗ 15.14 54.75 14.99 107.40
✗ ✗ ✓ 13.68 45.53 14.25 91.17
✓ ✓ ✗ 13.92 51.08 14.43 106.84
✗ ✓ ✓ 10.50 31.86 11.38 74.45
✓ ✗ ✓ 13.37 39.26 12.90 82.16
✓ ✓ ✓ 9.73 29.72 9.58 64.13

Table 3: Ablation studies on the FSC-147 dataset. ‘G-Loss’ means
Generalized Loss. ‘DIS’ denotes Dynamic Image Scale.

outperforms three other methods, achieving an improvement
of 3.9% in MAE and 2.9% in RMSE compared to the most
recent state-of-the-art method LOCA.

4.5 Ablation Study
We design a series of experiments to validate the individual
contributions of the FCE module, generalized loss, and dy-
namic image scale on the performance improvement. In the
absence of the FCE module, the model directly computes the
similatity between Fq

l and Fs
l . When excluding the general-

ized loss, we replace it with the more commonly used MSE
loss. Each component undergoes four sets of comparative ex-
periments with and without that component.

FCE module. Analysis of the four sets of experiments in-
volving the FCE module reveals a consistent improvement in
model performance. The addition of the FCE module results
in a performance boost ranging from 2% to 19% in MAE and
up to 14% in RMSE. This indicates that FCE module sig-
nificantly enhances the ability of model to recognize objects
within a given category by minimizing the distance between
individual object features and exemplar features, leading to
improved accuracy and uniformity in similarity and final den-
sity predictions across object positions.

Generalization loss. The contribution of generalization
loss is pronounced to performance improvement. The four
sets of comparative experiments show performance gains
ranging from 10% to 27% in MAE and 1% to 30% in RMSE.
The substantial improvement attributed to the generalization
loss is due to the more precise recognition capabilities com-
pared to MSELoss. By measuring point-to-point distance loss
between predicted values and ground true labels, the gener-
alized loss effectively guides the model to accurately locate
object center positions.
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(a) Channel ratio in FCE mod-
ule

1 2 3 4 5
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11
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1

(b) Number of component mod-
ules in fusion module

Figure 6: Ablation study of channel ratio in FCE module and num-
ber of component modules in fusion module. The vertical coordi-
nates are the values of MAE on the val set.

Dynamic image scale. The utilization of dynamic image
scale also significantly improves model performance, partic-
ularly for dense samples. Expanding image scales proves
effective in distinguishing between individual objects and
counting them separately. Application of this method results
in performance improvements ranging from 15% to 35% in
MAE and 14% to 43% in RMSE.

Channel ratio in the FCE module. The query features
and example features are embedded into another channel be-
fore they enhance each other. We conduct a series of experi-
ments to determine the optimal ratio of the embedded channel
length to the original channel length, setting various ratios at
1
8 , 1

4 , 1
2 , and 1. We then train the model to achieve the best

performance and present the experimental results in Fig.6 (a).
It is observed that as the ratio increases, the model perfor-
mance peaks at a ratio of 1

2 and then begins to deteriorate.
Number of component modules in fusion module. The

fusion module used to integrate tensors from different levels
of the similarity pyramid is composed of several component
modules. We set the number of component modules to range
from 1 to 5 and conduct experiments on the FSC-147 dataset,
with the results displayed in Fig.6 (b). The line graph in the
figure indicates that as the number of component modules
increases from 1 to 3, the performance of the model gradu-
ally improves, peaking at 3, and then begins to decline. This
decline could be attributed to an increase in the number of
model parameters due to more component modules, leading
to overfitting and negatively affecting model performance.

5 Conclusion
We propose a novel few-shot object counting method, SSD,
which leverages a point-to-point 4D space to learn the spa-
tial similarity distribution between query and exemplar fea-
tures. In contrast to existing methods, we exploit the dis-
tribution information of similarity, enabling accurate identi-
fication of the position and precise prediction of the count
for objects of arbitrary classes. Additionally, we introduce
a Feature Cross Enhancement (FCE) module that enhances
the interaction between query and exemplar features, reduc-
ing the feature distance within the same class for improved
matching. Experimental results on datasets such as FSC-147
and CARPK demonstrate that SSD outperforms state-of-the-
art methods.
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