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Abstract
Most existing RGB-T tracking networks extract
modality features in a separate manner, which lacks
interaction and mutual guidance between modali-
ties. This limits the network’s ability to adapt to
the diverse dual-modality appearances of targets
and the dynamic relationships between the modal-
ities. Additionally, the three-stage fusion track-
ing paradigm followed by these networks signifi-
cantly restricts the tracking speed. To overcome
these problems, we propose a unified single-stage
Transformer RGB-T tracking network, namely US-
Track, which unifies the above three stages into a
single ViT (Vision Transformer) backbone through
joint feature extraction, fusion and relation model-
ing. With this structure, the network can not only
extract the fusion features of templates and search
regions under the interaction of modalities, but also
significantly improve tracking speed through the
single-stage fusion tracking paradigm. Further-
more, we introduce a novel feature selection mech-
anism based on modality reliability to mitigate
the influence of invalid modalities for final predic-
tion. Extensive experiments on three mainstream
RGB-T tracking benchmarks show that our method
achieves the new state-of-the-art while achieving
the fastest tracking speed of 84.2FPS. Code is avail-
able at https://github.com/xiajianqiang/USTrack.

1 Introduction
Visible-Thermal (RGB-T) tracking greatly expands the appli-
cation scenarios of visual object tracking by using both RGB
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Figure 1: (a) The three-stage tracking paradigm followed by existing
RGB-T tracking networks. Tracking networks performs modalities
feature extraction, fusion, and relation modeling operations in three
stages, respectively. (b) Our RGB-T tracking framework performs
joint feature extraction, fusion and relation modeling by unifying
the above three parts into a single ViT backbone. In addition, we
designed a feature selection mechanism to help us discard features
from invalid modalities.

and thermal information, significantly improving the tracking
performance under challenging conditions such as illumina-
tion variation, occlusion, and extreme weather. Therefore,
RGB-T tracking has become a research focus in recent years.

Most existing RGB-T tracking methods follow a three-
stage fusion tracking paradigm which can be shown in
Fig. 1(a). These networks separately employ two shallow
CNN [He et al., 2015] or Transformer [Dosovitskiy et al.,
2020] subnetworks to extract RGB and thermal features from
the template and search region. These features are then fused
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Figure 2: (a) Diverse dual-modality appearances of targets sampled
in VTUAV dataset. (b) During the dynamic tracking process, the
state of the RGB appearance of the target is constantly changing,
resulting in dynamic relationships between modality appearances.

using additional customized modality feature fusion modules
to obtain the fusion features. Subsequently, a relation model-
ing operation between the fusion features of the template and
search region, such as online-training [Nam and Han, 2015],
cross-correlation [Bertinetto et al., 2016], discriminative cor-
relation [Bhat et al., 2019] and cross-attention mechanism
[Hui et al., 2023], will be performed. After relation mod-
eling, the processed search region fusion features are used for
prediction. However, the separate subnetworks lead to the
lack of interaction between two modalities during the fea-
ture extraction stage. As a consequence, the network can
only extract regular features from each modality, rather than
the dynamic features based on the state of modalities. As
shown in Fig. 2, such pattern is not fit to RGB-T tracking es-
pecially in complex environments, because different targets
have diverse dual-modality appearances, and the appearances
of both modalities can change continuously with the environ-
ment. Temporary changing or missing appearances in the cor-
responding modality frequently happened due to the factors
like occlusion, illumination variation, or thermal, which leads
to the regions covered by the appearances of both modali-
ties are not always consistent. In addition, three-stage fusion
tracking paradigm greatly limits the speed improvement.

We propose a unified single-stage Transformer RGB-T
tracking network USTrack to solve the above problems. As
shown in Fig. 1(b), the core of USTrack is to unify feature
extraction, feature fusion, and relation modeling into a sin-
gle ViT [Dosovitskiy et al., 2020] backbone for simultane-
ous execution, efficiently obtaining search region fusion fea-
tures used for prediction. Specifically, we first map the im-
age patches from two modalities to appropriate latent spaces
through a dual embedding layer to align the patterns and mit-
igate the impact of intrinsic heterogeneity to feature fusion.
Then, within the attention layers of the ViT backbone, we
directly concatenate the token sequences of the four images
from the template and search region, upon which we then
apply the self-attention operation to the concatenated fea-
tures. In this self-attention operation, the attention weights
between the features of the same image are responsible for
extracting modality features, while the weights between the
features of images from different modalities are responsible
for fusing complementary modality information. The atten-
tion weights between the template images and the search re-
gion images are responsible for relation modeling. There-

fore, we can conveniently unify the three functional stages of
RGB-T tracking through the self-attention mechanism for si-
multaneous execution. This unification of feature extraction
and feature fusion alleviates the lack of modality interaction
during the feature extraction phase in traditional three-stage
RGB-T tracking frameworks, allowing us to directly extract
fused features from the template and search region under the
modalities interaction. The further unification of fusion fea-
ture extraction and relation modeling helps us achieve joint
feature extraction, fusion and relation modeling for the first
time in the RGB-T tracking networks without designing any
complex customized fusion modules, greatly simplifying the
current network architecture of RGB-T tracking. The high
parallelism of the self-attention also help USTrack achieve a
speed more than twice that of existing SoTA methods.

In challenging scenarios, invalid modalities often provide
a large amount of noise information. At present, most
Transformer-based networks [Xiao et al., 2022; Hou et al.,
2022; Hui et al., 2023] directly concatenate or weighted sum
the fusion features from search regions of two modalities for
final prediction, which inevitably introduces noise informa-
tion for the final prediction. In order to reduce the impact of
noise information, unlike them, we propose a feature selec-
tion mechanism based on modality reliability. This mecha-
nism reduces the impact of noise information on prediction
by discarding fusion features from invalid modalities. Our
contributions are summarized as follows:

• We propose joint feature extraction, fusion, and rela-
tion modeling method. It can extract the fusion features
of templates and search regions under the interaction
of modalities, and simultaneously perform the relation
modeling. For the first time, an efficient and concise
single-stage fusion tracking paradigm has been provided
for RGB-T tracking without the need for designing any
customized and specialized feature fusion modules.

• We propose the feature selection mechanism based on
modality reliability, which can discard fusion features
of invalid modalities according to the modality reliabili-
ties of different tracking environments, thereby reducing
the impact of noise information on final prediction and
further improving tracking performance.

• USTrack exhibits new state-of-the-art performance on
benchmark GTOT [Li et al., 2016], RGBT234 [Li et al.,
2019], and VTUAV [Zhang et al., 2022a] while creat-
ing the fastest inference speed at 84.2 FPS. In particular,
MPR/MSR on the short-term and long-term subsets of
VTUAV increased by 11.1%/11.7% and 11.3%/9.7%.

2 Related Work
Due to the lack of global perception ability in CNN net-
works, complementary information cannot be directly aggre-
gated across modalities. So almost all CNN-Based RGB-
T tracking networks are designed under the three-stage fu-
sion tracking framework. In this part, we briefly summa-
rize the Transformer-based RGB-T tracking methods, which
are the most relevant works to us. With the introduction of
Transformer into RGB-T tracking, the attention mechanism
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was initially only used in the feature fusion stage. DRGC-
Net [Mei et al., 2023] and MIRNet [Hou et al., 2022] use
cross-attention to enhance discriminative features from one
modality to another, and assign adaptive weights to features
of two modalities through gating mechanism to filter redun-
dant and noise information. APFNet [Xiao et al., 2022] pro-
poses an attribute-based progressive fusion network, which
enhances the discriminative information specific to challeng-
ing attributes through cross-attention. However, the afore-
mentioned Transformer-based RGB-T tracking methods are
designed within a detection-based tracking framework[Nam
and Han, 2015]. On one hand, during the feature extrac-
tion stage, the modality features lack interaction due to the
limited global context modeling capability of convolutional
neural networks. On the other hand, although some RGB-
T tracking networks [Hou et al., 2022] based on RT-MDNet
[Jung et al., 2018] have almost achieved real-time infer-
ence speed, they still follow a three-stage tracking paradigm,
which first extracts modality features separately, then fuses
features through various attention mechanism, and finally
perform the relation modeling operation between the tem-
plate and search region through online training and continu-
ous fine-tuning, resulting in significant speed bottlenecks for
these RGB-T tracking networks.

The latest works TBSI [Hui et al., 2023] and ViPT [Zhu
et al., 2023] adopt the powerful RGB tracking network OS-
Track [Ye et al., 2022] as their base network architecture,
achieving the unification of feature extraction and relation
modeling. However, influenced by the three-stage fusion
tracking paradigm, they still design the fusion module as a
separate component, which is inserted between two Trans-
former encoders to obtain the fusion features of templates
and search regions. It is worth noting that TBSI [Hui et al.,
2023] achieves feature fusion by inserting a complex cross-
attention fusion module between Transformer encoders. This
approach alleviates the lack of interaction between modalities
during the feature extraction stage and significantly improves
the performance. However, due to the extra complex cross-
attention fusion module, TBSI has only just achieved real-
time performance. Unlike ViPT and TBSI, in order to achieve
more efficient and concise interaction between modalities
during the feature extraction stage, and to enable the fusion
tracking network to achieve faster inference speed, despite
being inspired by joint feature extraction and relation mod-
eling method [Ye et al., 2022], we completely freed our-
selves from the influence of the three-stage fusion tracking
paradigm and proposed joint feature extraction, fusion and
relation modeling for the first time. We further attempt to
unify feature extraction, feature fusion, and relation model-
ing directly through the self-attention layer within the ViT. It
not only can effectively alleviate the problem of lack of in-
teraction between modalities in the feature extraction stage
to improve tracking performance, but also fully utilizes the
high parallelism of self attention operations, simplifying and
accelerating the RGB-T tracking network.

3 Unified Single-Stage RGB-T Tracking
Overview. As shown in Fig. 3, the overall architecture of US-
Track consists of three components: a dual embedding layer,

a single ViT backbone and the dual prediction heads with fea-
ture selection mechanism based on modality reliability. The
dual embedding layer uses two learnable embedding layers
to map inputs belonging to different modalities to a latent
space that is conducive to fusion, reducing the impact of in-
trinsic heterogeneity of modalities on feature fusion which is
based on attention similarity weights. We choose single ViT
as our backbone network to achieve joint feature extraction,
fusion, and relationship modeling, unifying the three func-
tional stages of RGB-T tracking and providing an efficient
single-stage network for RGB-T tracking. Feature selection
mechanism based on modality reliability includes two predic-
tion heads and two reliability evaluation modules. It will help
the network select search region fusion features generated by
the modalities that are more suitable for the current tracking
scene for final prediction, reducing the impact of noise caused
by invalid modalities on the final results.

3.1 Dual Embedding Layer
The input of USTrack is a pair of target template images
and a pair of search region images, containing four images,
namely, the RGB template image zrgb

image ∈ RHz×Wz×3, the
RGB search region image xrgb

image ∈ RHx×Wx×3, the thermal
template image zt

image ∈ RHz×Wz×3 and the thermal search
region image xt

image ∈ RHx×Wx×3. They are first split and
flattened into sequences of patches zrgb, zt ∈ RNz×(3P2) and
xrgb,xt ∈ RNx×(3P2), where P × P is the resolution of each
patch, and Nz = HzWz

P 2 , Nx = HxWx

P 2 are the number of
patches of template and search region respectively. Then,
two trainable linear layers with parameters Ergb ∈ R(3P2)×D

and Et ∈ R(3P2)×D are used to project zrgb, xrgb and zt, xt

into D dimension latent space. The output of this projec-
tion are four patch embeddings ẑrgb, x̂rgb and ẑt, x̂t. Learn-
able 1D position embeddings P z and P x are added to the
template patch embeddings ẑrgb, ẑt and search region patch
embeddings x̂rgb, x̂t separately, and Learnable 1D modal-
ity embeddings Mrgb and M t are added to the RGB patch
embeddings ẑrgb, x̂rgb and thermal patch embeddings ẑt, x̂t

separately. The patch embeddings after adding position and
modality embeddings are final features called token embed-
dings. The above operations can be represented as follows:

ẑrgb =
[
z1
rgbErgb; z

2
rgbErgb; ...; z

Nz

rgbErgb

]
+ P z +M rgb, (1)

ẑt =
[
z1
tEt; z

2
tEt; ...; z

Nz
t Et

]
+ P z +M t, (2)

x̂rgb =
[
x1
rgbErgb;x

2
rgbErgb; ...;x

Nx

rgbErgb

]
+ P x +M rgb, (3)

x̂t =
[
x1
tEt;x

2
tEt; ...;x

Nx
t Et

]
+ P x +M t. (4)

After passing the dual embedding layer, RGB template to-
ken embeddings ẑrgb, thermal template token embeddings
ẑt, RGB search region token embeddings x̂rgb and thermal
search region token embeddings x̂t will be input into the
backbone for subsequent processing.
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Figure 3: (a) The overall architecture of USTrack. The template and search region are split, flattened, and linear projected through the dual
embedding layer. Image embeddings are then concatenated and fed into Transformer encoder layers for joint feature extraction, fusion and
relation modeling. The feature selection mechanism is responsible for selecting fusion features with higher reliability for result prediction.
(b) The training of the feature selection mechanism based on modality reliability.

3.2 Joint Feature Extraction & Fusion & Relation
Modeling

The self-attention mechanism is the core component of the
ViT, and it is also the key to performing joint feature ex-
traction, feature fusion and relation modeling in a single ViT
backbone. From the perspective of the self-attention mecha-
nism, we take the RGB search region token embeddings x̂rgb

as an example to further analyze the intrinsic reasons why
the proposed network is able to realize simultaneous feature
extraction, feature fusion and relation modeling.

In the attention layer, the token sequences x̂rgb, x̂t,
ẑrgb, ẑt from dual embedding layers are concatenated
as H =

[
x̂rgb; x̂t; ẑrgb; ẑt

]
∈ R(2Nx+2Nt)×D. Then Self-

attention operation is performed on H as follows:

M = A · V = softmax

(
QKT

√
dk

)
· V , (5)

QKT = [Qx
rgb;Q

x
t ;Q

z
rgb;Q

z
t ][K

x
rgb;K

x
t ;K

z
rgb;K

z
t ]

T ,

(6)

V =
[
V x

rgb;V
x
t ;V

z
rgb;V

z
t

]
, (7)

where M is the output of self-attention operation. A is the at-
tention weight. Q, K, and V are query, key and value matri-
ces separately. The superscripts z and x denote matrix items
belonging to the template and search region. The subscripts
rgb and t denote matrix items belonging to the RGB modality
and thermal modality. The calculation of attention weights in
Eq. (6) can be expanded to follows:

QKT = [Qx
rgbK

x
rgb

T ,Qx
rgbK

x
t
T ,Qx

rgbK
z
rgb

T ,Qx
rgbK

z
t
T ; ...]

= [W
xrgb
xrgb ,W

xrgb
xt ,W

xrgb
zrgb ,W

xrgb
zt ; ...], (8)

where the left part of Eq. (8) represents the calculation and
the output of attention weights between the RGB search re-
gion tokens and the other inputs. the output of self-attention

operation can be further written as follows:

M =[W
xrgb
xrgbV

x
rgb +W

xrgb
xt V x

t

+W
xrgb
zrgbV

z
t +W

xrgb
zt V z

t ; ...], (9)

where the left part of Eq. (9) is the output corresponding
to the RGB search region tokens after the self-attention op-
eration. W

xrgb
xrgbV

x
rgb is responsible for aggregating the RGB

search region image feature (RGB modality feature extrac-
tion). W

xrgb
xt V x

t is responsible for aggregating the thermal
modality-specific information based on semantic similarity
between two modalities features (feature fusion and modal-
ity features interaction). The attention weights can intuitively
measure the semantic similarity between modalities. Net-
work can model modality-sharing information based on this
similarity. The aggregation of complementary information
enables the network to promptly adjust the subsequent ex-
traction of features in RGB search region image. W

xrgb
zrgbV

z
t

is responsible for aggregating RGB template image feature to
further obtain the relation information between the RGB tem-
plate and the RGB search region (relation modeling based on
modality-specific information). W

xrgb
zt V z

t is responsible for
aggregating thermal template image feature to further obtain
the relation information between the thermal template and
the RGB search region (relation modeling based on modality-
sharing information). The RGB search region fusion features,
which contains relation information, can be used for predic-
tion. Therefore, with the global perception ability of the self-
attention, we seamlessly unify feature extraction, feature fu-
sion, and relation modeling into a single ViT backbone. The
network can directly extract fusion features of the template
and search region under the mutual interaction of modalities,
and simultaneously performs relation modeling between fu-
sion features of the template and search region. This allevi-
ates the lack of interaction and guidance between modalities
during the feature extraction stage, as well as the problem
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of additional fusion modules significantly affecting the infer-
ence speed of the RGB-T tracking network. Additionally, by
inheriting the advantages of relation modeling which is per-
formed by the self-attention, the network can extract more
target-specific search region fusion features for prediction un-
der the guidance of two templates.

3.3 Feature Selection Mechanism Based on
Modality Reliability

After passing the ViT backbone, two search region fusion fea-
tures can be obtained for final prediction: Thermal-assisted
RGB fusion features based on the RGB search region image,
and RGB-assisted thermal fusion features based on the ther-
mal search region image. Both fusion features contain the
fusion information of modalities and the relation information
between the template and the search region, which can be
directly used for target position prediction. To avoid the im-
pact of interference information from invalid modalities on
the final prediction. Unlike other networks that obtain fused
features based on attention operations, we do not directly con-
catenate the two fused features or perform weighted sum op-
erations. Instead, we directly discard invalid modality fea-
tures that are not suitable for the current tracking scene.

As shown in Fig. 3(b), during the training phase, we equip
each fusion feature with a prediction head and a reliability
evaluation module. We set the same loss for each prediction
head and let each reliability evaluation module output a adap-
tive weight as the modality reliability for the loss of the cor-
responding prediction head. Then, they are combined into a
final total loss function for end-to-end training. This method
allows the modality that is not suitable for the current scene
to produce inferior results, which will result in larger losses,
and then uses the difference between two predictions to guide
the modality reliability evaluation module to assign smaller
weights to the larger loss by minimizing the overall loss func-
tion. Conversely, for fusion features that are more suitable for
the current scene, it assigns larger weights. During the test-
ing phase, the network will simultaneously output two results
and evaluate the reliability of both modalities. Based on the
reliability RRGB and RT , we select the predicted results with
higher reliability scores as the final output.

We adopt the prediction head of OSTrack [Ye et al., 2022]
directly as our prediction head. The detailed information and
corresponding settings can be found in OSTrack. The loss
corresponding to the two prediction heads are set as follows:

LRGB = LclsRGB
+ λgiouLgiouRGB

+ λL1L1RGB
, (10)

LT = LclsT + λgiouLgiouT
+ λL1L1T , (11)

where LRGB and LT are the loss for each prediction head,
LclsRGB

and LclsT are the weighted focal loss for classifica-
tion, L1RGB

and L1T are the L1 loss, LgiouRGB
and LgiouT

are the generalized IoU loss, and λgiou = 2 and λL1 = 5 are
the regularization parameters. On the basis, a modality reli-
ability evaluation module is added to each search region fu-
sion features. The evaluation module is a fully convolutional
neural network, which consists of several stacked Conv-BN-
ReLU layers. Two modality reliability evaluation modules
will output the reliability scores RRGB , RT ∈ R respectively.
In order to prevent the model from directly making the weight

RRGB and RT zero to minimize the overall loss during the
training process, we softmax the reliability scores to obtain
the adaptive weight λRGB and λT and overall loss as follows:

λRGB , λT = softmax(RRGB , RT ), (12)
Ltotal = λRGBLRGB + λTLT , (13)

where modality reliabilities λRGB and λT are used as the
adaptive weights of the loss of the two prediction heads, and
the two losses with adaptive weights are combined together
as the overall loss to train the model.

4 Experiment
4.1 Experiment Settings
We compare our method with previous state-of-the-art RGB-
T tracking methods on three benchmarks including VTUAV,
RGBT234, and GTOT. GTOT and RGBT234 use success rate
SR and precision rate PR as evaluation metrics. VTUAV use
Maximum Precision Rate MPR and Maximum Success Rate
MSR as evaluation metrics. SR measures the ratio of tracked
frames, determined by the Interaction-over-Union (IoU) be-
tween tracking result and ground truth. With different over-
lap thresholds, a success plot (SP) can be obtained, and SR
is calculated as the area under curve of SP. MSR adopts the
maximum overlap in frame level as the final score. PR mea-
sures the percentage of frames whose distance between the
predicted position and the ground truth is less than a certain
threshold τ . Similar to MSR, MPR adopt the smaller center
distance as the final score. τ is set to 20 in our experiment.

Our model is implemented based on Python 3.8, Py-
Torch 2.0.0. All experiments are conducted on one NVIDIA
RTX3090 GPU. We adopt AdamW as the optimizer with 1e-4
weight decay. The learning rate is set as 4e-5 for the backbone
and 4e-4 for other parameters. The search regions are resized
to 256×256 and templates are resized to 128×128. Each batch
size is set to 24, and each epoch contains 30k image pairs. In
order to fairly compare our method with other SoTA meth-
ods, we aligned our experimental conditions with other meth-
ods. We pretrained the network on RGB tracking datasets
such as COCO [Lin et al., 2014], LaSOT [Fan et al., 2018],
GOT-10k [Huang et al., 2018], and TrackingNet [Muller et
al., 2018]. When testing on the GTOT and RGBT234, we
only used LasHeR as the training set. When testing on the
short-term and long-term testing sets of VTUAV, we only use
the training set of VTUAV for training.

4.2 Comparison with SoTA Methods and Analysis
We test our network USTrack on three popular RGB-T track-
ing benchmarks, comparing performance and speed with the
SoTA trackers, such as FSRPN, mfDimp, DAFNet , DAP-
Net, MANet, CAT, CMPP, JMMAC, MANet++, ADRNet,
SiamCDA, M5LNet, TFNet, DMCNet, MFGNet, APFNet,
HMFT, MIRNet, ECMD, ViPT and TBSI, to validate the ef-
fectiveness of our method. The test results on three datasets
show that our method has achieved significant improvements
in both performance and inference speed.
Evaluation on VTUAV Dataset. VTUAV dataset is the lat-
est and largest RGB-T tracking dataset, which is currently the
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Figure 4: Visualization between our method and other RGB-T track-
ers on four representative sequences which include multiple chal-
lenge attributes from VTUAV dataset.

only dataset that provides a test for long-term tracking per-
formance of RGB-T tracking methods. Long-term sequences
can effectively demonstrate the differences in the target ap-
pearances of different modalities, and the persistent changing
relationships of two appearances during the tracking process.
As shown in Tab. 1 and Fig. 4, despite USTrack being a short-
term tracking network with no template updating or local-to-
global strategies for long-term tracking, we still conduct tests
on the short-term and long-term subsets of VTUAV to verify
the performance of USTrack. The results were very satis-
factory. Compared to the SoTA methods HMFT and HMFT-
LT, we achieved 11.1%/11.7% and 11.3%/9.7% increases in
MPR/MSR on the VTUAV short-term dataset and VTUAV
long-term dataset, respectively. Our speed was also 2.78
times and 10.4 times faster than the SoTA method HMFT
and HMFT-LT [Zhang et al., 2022a], significantly surpassing
the baseline methods of VTUAV. To our knowledge, HMFT-
LT is currently the only long-term RGB-T tracking method.
In comparison, we have achieved significantly better perfor-
mance, with a tracking speed that is ten times faster than it.

In order to validate that USTrack can adapt well
to the diverse dual-modality appearances of targets and
the dynamic relationships between modalities, we ana-
lyzed the performance of USTrack across all challeng-
ing attributes on both short-term and long-term sub-
sets of VTUAV. As shown in Tab. 2 and Tab. 3, in
terms of the evaluation metrics MPR/MSR scores on
the short-term and long-term datasets of VTUAV, US-
Track achieved the highest performance improvements of
23.8%/22.6%&10.5%/10.1%, 39.8%/33.4%&19.1%/16.3%,
20.1%/18.9%&12.2%/10.8%, 11.1%/11.9%&14.9%/13.5%,
12.3%/12.6%&10.6%/9.2% and 5.7%/6.4%&19.7%/16.4%
on the challenge attributes deformation (DEF), scale varia-
tion (SV), full occlusion (FO), partial occlusion (PO), ther-
mal crossover (TC), and extreme illumination (EI), respec-
tively. For more experimental results of USTrack on VTUAV
attributes, please refer to the Appendix. In particular, the
DEF and SV attributes effectively demonstrate the differences

Final Output

RGB

Thermal
710th frame pair

ReliabilityRGB=0.7271

#710

#710

ReliabilityT=0.2729
Compare

Discard

Select

Invalid Output

Predictions
Ground Truth Predictor 1 Predictor 2

(a) Predictor1 represents the prediction result based on the fusion
features of RGB search region image, while Predictor2 represents
the prediction result based on the fusion features of thermal search
region image. ReliabilityRGB and ReliabilityT represent the relia-
bility evaluations of the two modalities respectively.

Pedestrian_024
Template

Pedestrian_161
Template

RT=0.7294#0010 RRGB=0.2706

RT=0.7293#2050 RRGB=0.2707

RT=0.7266

#4610

RRGB=0.2734

RT=0.7192#1170 RRGB=0.2808

RT=0.3261#2840 RRGB=0.6739

RT=0.4558#0340 RRGB=0.5442

(b) RRGB and RT represent the reliability evaluations of the two
modalities respectively.

Figure 5: (a) This flowchart illustrates the inference process of the
feature selection mechanism based on modality reliability on frame
710 of the VTUAV bus 007 video sequence.(b) This figure shows
that the feature reliability evaluation module can provide real-time
reliability evaluation for each modality in continuous video frames.

in the dual-modality appearances of the targets. The FO,
PO, TC, and EI attributes can cause the appearance of the
corresponding modality to change or disappear, effectively
demonstrating the dynamic relationship between two appear-
ances of the target during the tracking process. The most
significant performance improvement achieved by USTrack
in these attributes effectively proves that the joint feature ex-
traction, fusion and relation modeling method can adapt to di-
verse dual-modality appearances of targets and the dynamic
relationships between modalities by alleviating the lack of
modality interaction in the modality feature extraction stage
of the three-stage fusion tracking paradigm. Moreover, with
the help of the unified single-stage fusion tracking paradigm,
USTrack, through a simple network structure and the high
parallelism of self-attention operations, has created the fastest
inference speed 84.2FPS for RGB-T tracking to date.
Evaluation on RGBT234 Dataset. RGBT234 is currently
the most widely used large-scale RGB-T tracking benchmark
dataset, consisting of 234 highly aligned videos with about
234K image pairs in total. As shown in Tab.1, Unlike ViPT
and TBSI, which also use pure ViT as the backbone but still
design customized complex fusion modules under the three-
stage fusion tracking paradigm, we provide a novel single-
stage fusion tracking paradigm that achieves joint feature
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Method Pub GTOT RGBT234 VTUAV-short VTUAV-long Speed
PR SR PR SR MPR MSR MPR MSR FPS

FSRPN [Kristan et al., 2019] ICCVW’19 89.0 69.5 71.9 52.5 65.3 54.4 36.6 31.4 36.8
mfDimp [Zhang et al., 2019] ICCVW’19 83.6 69.7 84.6 59.1 67.3 55.4 31.5 27.2 34.6
DAFNet [Gao et al., 2019] ICCVW’19 89.1 71.6 79.6 54.4 62.0 45.8 25.3 18.8 20.5
DAPNet [Zhu et al., 2019] ACM MM’19 88.2 70.7 76.6 53.7 - - - - -
MANet [Lu et al., 2020a] TIP’20 89.4 72.4 77.7 53.9 - - - - 2.1

CAT [Li et al., 2020] ECCV’20 88.9 71.7 80.4 56.1 - - - - -
CMPP [Wang et al., 2020] CVPR’20 92.6 73.8 82.3 57.5 - - - - -

JMMAC [Zhang et al., 2020] TIP’21 90.2 73.2 79.0 57.3 - - - - -
MANet++ [Lu et al., 2020b] TIP’21 88.2 70.7 79.5 55.9 - - - - 25.4
ADRNet [Zhang et al., 2021] IJCV’21 90.4 73.9 80.7 57.1 62.2 46.6 23.5 17.5 25.0

SiamCDA [Zhang et al., 2022b] TCSVT’21 87.7 73.2 79.5 54.2 - - - - 24.0
M5LNet [Tu et al., 2021] TIP’22 89.6 71.0 79.5 54.2 - - - - 9.0
TFNet [Zhu et al., 2022] TCSVT’22 88.6 72.9 80.6 56.0 - - - - -

DMCNet [Lu et al., 2020c] TNNLS’22 - - 83.9 59.3 - - - - -
MFGNet [Wang et al., 2021] TMM’22 88.9 70.7 78.3 53.5 - - - - 3.0
APFNet [Xiao et al., 2022] AAAI’22 90.5 73.7 82.7 57.9 - - - - 1.9

HMFT [Zhang et al., 2022a] CVPR’22 91.2 74.9 78.8 56.8 75.8 62.7 41.4 35.5 30.2
HMFT LT [Zhang et al., 2022a] CVPR’22 - - - - - - 53.6 46.1 8.1

MIRNet [Hou et al., 2022] ICME’23 90.9 74.4 81.6 58.9 - - - - 30.0
ECMD [Zhang et al., 2023] CVPR’23 90.7 73.5 84.4 60.1 - - - - 18.0

ViPT [Zhu et al., 2023] CVPR’23 - - 83.5 61.7 - - - - -
TBSI [Hui et al., 2023] CVPR’23 - - 87.1 63.7 - - - - 36.2

USTrack (Ours) - 93.4 78.3 87.4 65.8 86.9 74.4 64.9 55.8 84.2

Table 1: Comparison with state-of-the-art methods on GTOT, RGBT234, VTUAV short-term subset and long-term subset.

Attribute FSRPN DAFNet mfDimp ADRNet HMFT USTrack
DEF 53.8/47.3 43.7/35.1 60.0/52.1 45.1/31.7 68.4/59.7 92.2/82.3
EI 60.1/47.7 67.6/49.4 63.3/49.4 66.4/48.5 74.7/58.8 80.4/65.2
FO 45.4/39.1 32.1/27.5 38.5/32.3 36.2/26.9 37.8/32.1 85.2/72.5
PO 54.2/46.1 51.4/37.9 54.9/46.2 48.9/36.5 64.8/53.7 84.9/72.6
SV 66.8/65.9 53.2/39.6 65.9/55.8 53.0/39.6 72.9/61.8 85.2/74.4
TC 48.2/40.4 41.9/34.5 52.6/47.4 45.5/38.1 56.4/48.7 67.5/60.6

Table 2: Top six attributes with improvement on VTUAV short-term.

Attribute FSRPN DAFNet mfDimp ADRNet HMFT-LT USTrack
DEF 35.1/29.4 24.7/20.3 40.8/34.8 18.7/13.7 67.1/58.2 77.6/68.3
EI 32.8/27.1 20.8/15.5 23.1/21.1 20.0/14.9 47.3/40.3 67.0/56.7
FO 26.3/22.1 25.4/18.4 29.4/24.0 25.1/17.2 43.8/37.1 62.9/53.4
PO 33.0/27.3 20.3/14.8 26.6/22.8 19.6/13.7 55.8/47.2 68.0/58.0
SV 37.7/32.3 23.0/17.7 31.7/27.9 21.3/16.2 53.9/46.7 64.5/55.9
TC 30.4/22.4 21.0/13.9 20.1/13.5 20.6/13.0 45.9/35.6 60.8/49.1

Table 3: Top six attributes with improvement on VTUAV long-term.

extraction, fusion, and relation modeling for the first time
without the need for any additional feature fusion modules,
greatly simplifying the RGB-T tracking network architec-
ture while bringing speed and performance improvements.
Compared to the most advanced trackers ViPT and TBSI.
We have improved PR/SR on RGBT234 by 3.9%/4.1% and
0.3%/2.1% respectively. TBSI has a speed of 36FPS, while
our speed has reached 84FPS. Both performance and speed
can prove the effectiveness and efficiency of our method.
Evaluation on GTOT Dataset. GTOT is the first stan-
dard dataset in the field of RGB-T tracking. It contains 50
RGB-T video sequences and 7 challenge attributes. We also
conducted testing on this dataset and achieved SoTA per-
formance. The test results are shown in Tab. 1. compared
with the SoTA methods CMPP and HMFT, our PR/SR scores
improved by 0.8%/4.5% and 2.2%/3.4% respectively, while
maintaining the fastest inference speed.

Model PR SR

Single embedding layer 85.6 63.2
Dual embedding layer (Ours) 87.4 65.8

Table 4: Results of the ablation of dual embedding layer.

Model PR SR

Based on RGB search region 86.2 64.2
Based on Thermal search region 86.3 64.7
Based on weighted concatenation 86.8 64.2

Based on weighted summation 86.1 63.9
Dual prediction head with selection (Ours) 87.4 65.8

Table 5: Comparison with different prediction head structures.

4.3 Ablation Experiment and Analysis
Ablation of Dual Embedding Layer. To verify the effec-
tiveness of the dual embedding layer structure, we conducted
ablation experiments on the RGBT234 dataset. As a compar-
ison, we have all inputs use the same embedding layer. The
results are shown in Tab. 2. The single embedded layer struc-
ture resulted in a performance decrease of 1.8% and 2.6% in
PR and SR scores. The results show that the use of two inde-
pendent embedding layers can map the features of two modal-
ities into the latent space conducive to fusion, which can al-
leviate the impact of the intrinsic heterogeneity of modalities
on feature fusion based on attention weight.
Ablation of Feature Selection Mechanism. In order to ver-
ify the effectiveness of the feature selection mechanism based
on modality reliability, we conducted comparative experi-
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ments between our dual prediction head structure with feature
selection mechanism and several common prediction head
structures on RGBT234. We set up the following compar-
ative experiments, namely, single prediction head based on
the fusion features from a single modality search region, sin-
gle prediction head based on the weighted concatenated fu-
sion features from two search regions, and single prediction
head structure based on weighted summation of fusion fea-
tures from two search regions. All prediction heads have the
same structure. To ensure the fairness of the comparative ex-
periment, the weight module used for weighted summation or
concatenation of fusion features has the same structure as the
modal reliability evaluation module. The experimental results
are shown in Tab. 3. Compared to other prediction heads, our
dual prediction head structure with feature selection mecha-
nism based on modality reliability performs better. As shown
in Fig. 5, we also visualized the actual test sequence, and the
visualization showed that our modality reliability had a good
correspondence with the real scene, which intuitively reflects
the reliability of each modality in the current tracking scene.
USTrack will select the fusion features from the search region
with high reliability scores to output better prediction results.

5 Conclusion
In this paper, we propose an efficient unified single-stage
transformer RGB-T tracking network, USTrack. The core of
USTrack is the introduction of the joint feature extraction,
fusion and relation modeling approach to address the lack
of modality interaction during the feature extraction phase in
traditional three-stage fusion tracking paradigms, thereby en-
hancing the adaptability to diverse dual-modality appearances
of targets and the dynamic relationships between modalities.
Furthermore, we introduce the feature selection mechanism
based on modality reliability. This mechanism discards fu-
sion features generated from ineffective modalities, thereby
reducing the impact of noise information on the final predic-
tion to achieve better performance. USTrack has achieved
SoTA performance on three mainstream datasets and set a
new record for the fastest RGB-T tracking inference speed
at 84.2 FPS. Notably, on the VTUAV dataset, which is cur-
rently the largest RGB-T tracking dataset, evaluation metrics
MPR/MSR has increased by 11.1%/11.7% and 11.3%/9.7%.
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