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Abstract
Neural implicit surfaces with signed distance func-
tions (SDFs) achieve superior quality in 3D ge-
ometry reconstruction. However, training SDFs is
time-consuming because it requires a great num-
ber of samples to calculate accurate weight distri-
butions and a considerable amount of samples sam-
pled from the distribution for integrating the ren-
dering results. Some existing sampling strategies
focus on this problem. During the training, they
assume a spatially-consistent convergence speed of
kernel size, thus still suffering from low conver-
gence or errors. Instead, we introduce an error-
aware sampling method based on thin intervals of
valid weight distributions, dubbed adaptive shells,
to reduce the number of samples while still main-
taining the reconstruction accuracy. To this end,
we first extend Laplace-based neural implicit sur-
faces with learned spatially-varying kernel sizes
which indicates the range of valid weight distribu-
tions. Then, the adaptive shell for each ray is deter-
mined by an efficient double-clipping strategy with
spatially-varying SDF values and kernel sizes, fit-
ting larger kernel sizes to wider shells. Finally, we
calculate the error-bounded cumulative distribution
functions (CDFs) of shells to conduct efficient im-
portance sampling, achieving low-variance render-
ing with fewer calculations. Extensive results in
various scenes demonstrate the superiority of our
sampling technique, including significantly reduc-
ing sample counts and training time, even improv-
ing the reconstruction quality. The code is available
at https://github.com/erernan/ESampling.

1 Introduction
3D reconstruction from multi-view images is a hot research
area. Recently, neural radiance field (NeRF) [Mildenhall et
al., 2020] and its subsequent works have demonstrated great
potential for novel view synthesis. However, due to the lack
of effective constraints on geometry, the reconstructed ge-
ometry of NeRFs generally suffers from discernible noise
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and artifacts. Neural implicit surfaces [Yariv et al., 2021;
Wang et al., 2021] significantly improve the reconstruction
results by constraining the scene to signed distance func-
tion (SDF) fields, thus achieving SOTA geometry reconstruc-
tion quality. However, the implicit SDF reconstruction re-
quires hours to train multi-layer perceptron (MLP) networks
via dense sampling algorithms, limiting its applications in
practice. Some acceleration methods have been proposed to
cope with this problem, which mainly focuses on two as-
pects: sophisticated spatial coding algorithms for reducing
network parameters and accurate sampling for faster conver-
gence speed. While the adaption of several effective spatial
coding algorithms [Takikawa et al., 2021; Barron et al., 2021;
Müller et al., 2022; Fridovich-Keil et al., 2022] to SDF has
produced promising results, only one sampling algorithm is
dedicated to training neural implicit surfaces.

Representatively, VolSDF [Yariv et al., 2021] proposes
an error-bounded sampling method dedicated to Laplace
distribution-based neural implicit surfaces by mapping the
SDF values to density values. They derive the maximum
Riemann sum error of the weights along rays and iteratively
increase the number of sampling points until the maximum
error is small enough. It guarantees the accuracy of weight
distribution at the cost of more than 500 sampling points for
each ray to query the MLP, which significantly slows down
the convergence speed. Meanwhile, a large number of impor-
tance samples also prolongs the training time.

Because of the similar volume rendering process, two ad-
vanced sampling methods, i.e., the occupancy grid (occu-
pancy) and the proposal network (proposal), originally de-
signed for NeRFs can also be applied to neural implicit sur-
faces. The occupancy methods discretize the continuous SDF
field into a 3D grid. By calculating the validity of ray samples
in the grid, invalid samples are weeded out before querying
the MLP. Yet, a low grid update frequency causes inaccuracy
and a high update frequency reduces efficiency. The proposal
methods replace NeRF’s [Mildenhall et al., 2020] coarse net-
work with a lightweight network to predict the weight dis-
tribution for reducing queries of the original MLP. However,
this weight distribution is a rough approximation that leads to
erroneous reconstructions. Furthermore, these two methods
ignore the fact that the SDF fields converge from volume-like
to surface-like, but the coarse occupancy and proposal meth-
ods designed for volume-like fields might fail in surface-like
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fields, leading to reconstruction artifacts.
Different from these three methods, we consider the con-

vergence process from volume to surface, proposing a novel
error-aware adaptive shell. Equipped with the shell, we not
only solve the above drawbacks, that is, to obtain an accurate
weight distribution with less computation but also maintain
the accuracy of the CDF for importance sampling for fur-
ther acceleration. In particular: 1) We extend Laplace-based
neural implicit surfaces [Yariv et al., 2021] with learned
spatially-varying kernel sizes that represent the convergence
of the surface. A larger kernel size indicates a wider weight
distribution, viz., a wider range of possible surface locations.
2) We calculate the density distribution of each ray utilizing
spatially-varying kernel sizes and SDFs, then cut off ray seg-
ments corresponding to illegal densities. A similar weight
clipping operation is applied to the remaining ray segments to
determine the shell of each ray. 3) We derive the upper bound
of CDF’s bias as a function of the shell size and the num-
ber of uniform samples. Therefore, according to the adaptive
shell, we calculated the number of uniform sampling points
required. By fitting the sparsely sampled density distribution,
we obtain an accurate CDF. 4) We adaptively adjust the num-
ber of importance sampling points for each ray based on the
shell size to achieve low-variance rendering with less compu-
tation.

Through experiments of Section 4, we illustrate that our
method can significantly accelerate the training of neural
implicit fields. In the qualitative results, our reconstructed
meshes acquire fewer artifacts compared to the proposal
method and the occupancy method. The main contributions
of our work are summarized as follows:

• We propose novel adaptive shells for Laplace-based neu-
ral implicit surfaces, which reduce the number of sam-
ples in the weight calculation stage and importance sam-
pling stage together with the double-clipping strategy.

• We extend Laplace-based neural implicit surfaces with
learned spatially-varying kernel sizes and analyze dif-
ferent training strategies for network convergence.

• We derive the upper bound of CDF’s bias, which ensures
the accuracy of our sampling method.

2 Related Work
In this section, we mainly summarize some recent neural im-
plicit surfaces research and sampling methods related to neu-
ral implicit surfaces and NeRFs.

Neural implicit surfaces. VolSDF [Yariv et al., 2021] and
NeuS [Wang et al., 2021] are two classic methods of neu-
ral implicit surfaces which both have a series of follow-up
work. They are both designed under NeRF’s volume ren-
dering framework, but VolSDF applies Laplace distribution
mapping SDF values to density values, while NeuS uses lo-
gistic distribution. Meanwhile, the density mapping method
of NeuS is unbiased in planar scenes, compared with VolSDF.
[Fu et al., 2022; Yu et al., 2022b] improve reconstruction by
introducing geometric cues. [Ge et al., 2023] focus on recon-
structing objects with strong reflection. [Fan et al., 2023] not
only achieves the reconstruction of glossy objects but also

estimates the illumination and material. Similarly, [Yariv
et al., 2023] also reconstructs the material with geometry
and even achieves real-time rendering. [Jiang et al., 2023;
Azinović et al., 2022] replace RGB inputs with RGB-D in-
puts which naturally results in higher reconstruction quality.
To speed up training, [Rosu and Behnke, 2023] replaces the
voxel hash encoding with a permutohedral lattice which opti-
mizes faster. Recently, [Wang et al., 2023a] deeply combined
NeuS with Instant-NGP [Müller et al., 2022] which also sig-
nificantly reduces the training time of original NeuS. In the
popular AIGC field, implicit SDFs can also generate 3D con-
tent [Xu et al., 2023; Zheng et al., 2022].

Sampling methods. In general, sampling methods for neu-
ral implicit surfaces can be classified into 4 categories: error-
bounded (VolSDF) method, coarse-to-fine method, voxel-
surface guided method, sampling network method, and oc-
cupancy grid method. Except for the error-bounded method,
the rest are sampling algorithms derived from NeRFs. The
coarse-to-fine method [Mildenhall et al., 2020] guides sam-
pling by training a coarse network. They sample uniformly on
the coarse network and consider the density value of the sam-
pling point as a PDF to guide sampling on the fine network.
This sampling method is inefficient due to training an addi-
tional network. Occupancy grid methods [Li et al., 2022;
Müller et al., 2022] discretize the scene into voxels, and
query the grid to determine whether the sampling point con-
tributes to the color of rays, thereby skipping invalid areas
and achieving sampling acceleration. However, the accuracy
of the query depends on the grid resolution and update fre-
quency. A high-resolution grid takes up extra GPU mem-
ory. Also, occupancy grids require a large number of MLP
queries when updating, and low update frequency greatly re-
duces query accuracy. Voxel-surface guided method [Sun et
al., 2022] is an efficient sampling algorithm that combines
the occupancy grid with surface-guided sampling. However,
their method requires pre-reconstructed point clouds, which
limits the applicable scenarios of the algorithm. Sampling
network methods [Lindell et al., 2021; Piala and Clark, 2021;
Barron et al., 2022; Kurz et al., 2022] train neural networks to
directly sample or guide sampling alone rays with end-to-end
or pre-training manners. For end-to-end training methods,
e.g. proposal networks, gradients calculation and backprop-
agation consume additional time and the predicted weight
distribution is not accurate. For pre-trained methods, net-
work predictions for unknown scenes are unreliable. Re-
cently, [Wang et al., 2023b] introduces a sampling method
that is also based on adaptive shells. However, their method
speeds up the inference (rendering) stage, not the training
stage. Their adaptive shells are explicitly extracted through
the marching cube algorithm, while our adaptive shells are
calculated on the fly. Although they also introduce a learn-
able kernel size, they have not revealed the specific training
details, while we analyze the network training strategy.

3 Method
Given N calibrated multi-view images and corresponding
camera intrinsic and extrinsic parameters, our method aims
to reduce the number of samples to accelerate training
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Figure 1: Overview of our sampling method. (a) We first extend neural implicits with a spatially-varying kernel size β. (b) Then we
sample uniformly along the ray and calculate the densities of the sampling points utilizing βs and SDF values and clip ray segments with tiny
densities to obtain the coares shell. (c) Next, we perform another uniform sampling within the coarse to calculate the weights. The adaptive
shells are determined by clipping ray segments with tiny weights. (d) Subsequently, we conduct a coarse uniform sampling within adaptive
shells and compute the samples’ densities. Using function fitting, we generate more density samples. The weight samples are then calculated
by all density samples. The error-bounded CDF is derived from weight samples. (e) Finally, we perform adaptive importance sampling to
obtain the final importance samples according to CDF and shell size. These importance samples combined with predicted radiance are fed
into the volume rendering equation to calculate the rendering loss.

while still maintaining reconstruction accuracy (see Fig. 1).
Specifically, we extend Laplace-based neural implicit sur-
faces [Yariv et al., 2021] with learned spatially-varying ker-
nel sizes (Section 3.2). Then, a double-clipping strategy is
applied to determine the shell for each ray (Section 3.3). Fi-
nally, we utilize shell sizes and function fitting to calculate
the error-bounded CDFs within shells, then perform adaptive
importance sampling for volume rendering (Section 3.4).

3.1 Preliminaries
Neural implicit surfaces share the same framework with
NeRF [Mildenhall et al., 2020], which represents a scene by
a neural network (usually an MLP). For any ray parametrized
as r(t) = o + td passing through the scene, the classic vol-
ume rendering equation takes density σ and color c of sam-
ples predicted by the neural network to provide a solution for
ray color:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (2)

where C(r) denotes the predicted color of the ray, σ(r(t))
denotes the volume density of point r(t), tn and tf are the
near and far sampling distances, T (t) denotes the accumu-
lated transmittance along the ray from tn to t. However, di-
rectly predicts the density of samples lacking geometric con-
straints. Therefore, neural implicit surfaces utilize the net-
work to predict the SDF values of samples and map SDF val-
ues to density values through the mapping function. CDF of
the Laplace distribution with zero means and β scale is one
of the commonly used equations proposed by VolSDF [Yariv
et al., 2021]:

σ(r(t)) = αΨβ (−dΩ(r(t))) , where α = (1/β) , (3)

Ψβ(s) =


1
2 exp

(
s
β

)
if s ≤ 0

1− 1
2 exp

(
− s

β

)
if s > 0

, (4)

where dΩ denotes the predicted SDF value of a sampling
point. β is a global learnable parameter that approaches zero
during training.

In practice, the continuous function integral in Eq. 1 is
discretized by the Monte Carlo integration method. N points
{pi = o + tid | i = 1, . . . , N} is sampled along the ray to
approximate pixel color:

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, (5)

Ti = exp

−
i−1∑
j=1

σjδj

 , (6)

where δi denotes the length of interval from pi−1 to pi,
αi = (1− exp (−σiδi)) is the alpha value of interval, Tiαi is
called the weight of a sampling point by convention, denoted
by ωi. It is obvious that the expected ray color is estimated
by ωi, and thus the optimal sampling distribution should be
proportional to ωi. Neural implicit surfaces consider PDF as
a piecewise function of {ωi | i = 1, . . . , N}.

fp(x) =
ωi∑N
i=1 ωi

, x ∈ [ti, ti+1). (7)

The CDF obtained by integrating this PDF is used as the final
importance sampling.

To optimize the network, the color loss Lcolor is defined as:

Lcolor =
∑
r∈R

∥C ′(r)− C(r)∥1, (8)

where R denotes a batch of training rays.
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Figure 2: Weight distributions under different βs.

3.2 Learnable Spatially-Varying Kernel Size
As we mentioned above, VolSDF [Yariv et al., 2021] trains
a learnable global kernel size β (Eq. 3, Eq. 4) that controls
the magnitude and the variation rate of density distribution.
A smaller β results in a larger maximum value and a larger
first-order derivative. According to Eq. 5 and Eq. 6, the range
of weight distribution is inversely proportional to the deriva-
tive of density distribution. Thus, as β approaches zero dur-
ing training, the surface converges to an infinitesimal interval
along with the weight distribution (see Fig. 2(b)). However,
due to the complexity of the scene, the optimal convergence
speed of different surfaces should be different. Therefore, the
same convergence speed brought by global β is inappropriate.

We modify the original MLP-based geometry network in
neural implicit surfaces to additionally predict a β for each
input point (see Fig. 1(a)):

Ngeo (Ψ (x, y, z)) = (f, β, fgeo) , (9)

where Ψ(x, y, z) is the encoding function of input point po-
sition, usually positional encoding [Mildenhall et al., 2020]
or hash encoding [Müller et al., 2022]. f and β are the pre-
dicted SDF value and kernel size of the point respectively.
These learnable betas adaptively imply variable convergence
speeds at different locations based on scene characteristics
(see Fig. 3). Notice that Eq. 9 is slightly different from the
neural implicit network in Fig. 1, Eq. 9 only formulates the
geometry network, excluding the radiance network. fgeo is a
feature vector, which is input to the radiance network com-
bined with the view direction and point position to obtain the
predicted color c. The modified geometry network can be
trained without any additional inputs, and automatically con-
trol the convergence speed concerning input points.

However, naive training strategies will result in negative
numbers in density distributions. Direct clamp beta to posi-
tive will cause a gradient vanishing problem. Through exper-
iments, we choose a simple but effective function: exp(β −
3.7), which provides reasonable initial values and gradients
of β. For other functions and initial values settings, please
refer to Section 4 for more details.

3.3 Double Clipping Shell
We perform a double-clipping strategy to efficiently calculate
a tight shell for each ray through two passes of sparse sam-
plings, as shown in Figures (b) and (c) of Figure 1.

First, we sparsely sample a given ray over its near and far
ends and evaluate the SDF values and βs of these sampling
points by querying the MLP. Then we calculate a coarse den-
sity distribution of the ray based on these samples. We clip

Figure 3: The spatially variable βs (right) indicates the convergence
of different surfaces during training. Surfaces with larger β gener-
ally have higher reconstruction errors (middle). This reflects inher-
ent properties of the scene, such as edges, dark regions, or highlight
areas. Error map and β map are normalized to [0, 1] for better visu-
alization.

the sampling point with a density smaller than the valid den-
sity bound, which is the maximum value of density distribu-
tion multiplied by a tiny value ϵ. According to Eq. 5, tiny
densities lead to tiny weights. Thus clipping the ray segments
where these samples are located means skipping meaningless
areas. In particular, we first traverse all sampling points for-
ward, find the first sampling point pi whose density value is
lower than valid density bound, and discard p1 to pi−2 (in-
cluded). If density values of all sampling points are greater
than valid density bound, no samples will be discarded. Af-
ter that, we traverse the sampling points in reverse with a sim-
ilar operation. Due to the additional overhead required to cal-
culate weight distribution and the allowable error for the first
clipping, we do not directly clip the weight distribution.

After the initial clipping, we can skip most of the intervals
with zero-valued weights. However, the remaining segment
of the ray is usually not small enough to closely surround
sharp weight distributions accurately, especially when β is
small. To address this issue, We perform another sparse sam-
pling within the remaining ray segment and query their SDF
and β values. We calculate the coarse weights using these
SDF and β values and determine the weight boundary by
calculating the maximum value of coarse weights multiplied
by ϵ. Then, we apply approaches similar to the first clipping
to locate the final ray segment, which is dubbed the adaptive
shell of the ray.

3.4 Error-bounded CDF & Adaptive Sampling
In this section, we derive the error bound of the CDF men-
tioned in Section 3.1 to ensure the accuracy of importance
sampling and thereby reduce the number of sampling points.
For a set of N uniform samples S = {ti}Ni=1 , tn < t1 <
t2 < · · · < tN < tf , we denote δi = ti − ti−1, and ωi is the
weight corresponding to each sample. Due to uniform sam-
pling, δ1 = δ2 = · · · = δn = δu. Multiply the numerator and
denominator of the Eq. 7 by δu, the PDF and CDF function
is converted into (left) Riemann sum form:

fp(x) =
ωi · δu∑N
i=1 ωi · δu

, x ∈ [ti, ti+1). (10)

Fp(x) =
∑

PDF (x) (11)

=

∑i
j=1 ωj · δu∑N
i=1 ωi · δu

, x ∈ [ti, ti+1). (12)
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Theorem 1. The maximum error of (left) Riemann sum of ω,
i.e. Ŵ satisfies

max |W − Ŵ| ≤ (ωmax − ωmin) · δu, (13)

where W is the constant unbiased integral value of the weight
distribution for a given ray. ωmax and ωmax denote the max-
imum and minimum value of weight distribution respectively,
which are constants for a given ray.

The proof of Theorem 1 is provided in the supplementary.
Now consider the error bound of CDF. Obviously, both nu-
merator and denominator in Eq. 12 are Riemann sum. Ac-
cording to Theorem 1, the maximum error value of the nu-
merator is bounded by (ωmax − ωmin) ·δu, and the minimum
value of the denominator is bounded by W−(ωmax − ωmin)·
δu. Thus, the error bound of CDF is:

max |Fp(x)− F̂p(x)| ≤
(ωmax − ωmin) · δu

W − (ωmax − ωmin) · δu
, (14)

where F̂p(x) denotes CDF function estimated with Eq. 12.
Eq. 14 is a monotonically increasing function of δu. When
δu is small enough, that is, the uniform sampling is dense
enough, Eq. 14 converges to zero. In practice, ωmin and
ωmiax are hard to get, so we approximate them by the maxi-
mum and minimum value among ωi.

As the sampling range reduces, δu also decreases. Ben-
efiting from the adaptive tight shell obtained in Section 3.3,
the number of uniform sampling points Nu in the shell can
be greatly reduced while still satisfying a small error bound.
However, Nu is still large for efficient training. Therefore,
we utilize function fitting to approximate density sampling
distribution with fewer samples (see Fig. 1(d)). In practice,
we uniform sample 16 points within the shell. Then we query
MLP to get the SDF and β values of these samples to cal-
culate the density distribution. After that, we obtain a dense
density distribution by linearly interpolating the density val-
ues between each sample. Although linear interpolation is a
naive method, it already provides a sufficiently accurate ap-
proximation with a tiny computational overhead. The dense
weight distribution within the shell is then calculated by the
dense interpolated density distribution. Finally, this weight
distribution is used to compute the error-bounded CDF for
importance sampling.

Utilizing double-clipping strategy, adaptive shells, and lin-
ear interpolation, we already reduced a large number of sam-
pling points used to calculate weight distribution and CDF.
Now we take the number of importance samples into account
for further acceleration (see Fig. 1(e)). Recall that the Monte
Carlo integral operator and variance are:

FN =
1

N

N∑
i=1

f (Xi)

p (Xi)
, g (x) =

f (x)

p (x)
, (15)

V ar [FN ] = σ2
FN

=
V ar [g (x)]

N
, (16)

where FN is the Monte Carlo integral operator, N is the num-
ber of importance samples, f (x) is the integrand of x, p (x)
is the PDF of x, Xi is the samples and σ2

FN
is the variance of

VolSDF NeuS Proposal Occupancy Ours

weight calculating ↓ 512 128 352 128 / 2.048 80
rendering ↓ 64 128 48 128 / 16 32
rays /s (×103) ↑ 8.8 13.5 21.7 13.1 / 36.7 26

Table 1: The number of samples per ray and training rays per second
of different methods.

FN . Thus, rewrite the Eq. 5 into Monte Carlo integral form,
and we get the approximated variance of Ĉ(r):

σ2
Ĉ(r)

∝ V ar [ω (x)]

Ni
, (17)

where Ni is the number of importance samples, ω (x) is the
weight distribution within the shell. For a smaller β (smaller
shell), the variance of weight is larger (see Fig. 2(a)). There-
fore, we adaptive sample different numbers of importance
samples based on shell size to restrict the rendering variance
to a small value:

Ni = ⌊
(
1− 1

1 + exp (−10 · (max (l · 2, 1.0)− 0.5))

)
·32⌋,

(18)
where l is the shell size. A smaller Ni reduces the sample
count within the loose shell for acceleration, while a larger
Ni ensures low variance volume rendering within the tight
shell.

4 Experiments

w/o hash encoding w/ hash encoding

C
ha

m
fe

r
D

is
ta

nc
e
↓ Scan VolSDF NeuS Ours VolSDF NeuS Proposal Occupancy Ours

24 6.17 6.66 4.45 4.28 8.4 3.35 7.19 3.24
55 3.82 / 3.65 2.06 7.19 2.10 6.70 1.82
65 5.66 7.72 4.00 2.97 6.41 2.50 5.79 2.11
106 7.81 / 3.73 5.20 7.83 3.98 7.62 2.93
114 6.10 8.50 3.54 2.29 7.35 3.01 5.37 1.54
122 7.66 / 4.41 5.33 / 4.02 6.57 1.89
Avg 6.20 / 3.96 3.69 / 3.16 6.54 2.26

Table 2: Chamfer distance on 6 scans of the DTU dataset. By
utilizing hash encoding or not, we divide all methods into two cat-
egories, separated by a vertical bar. Our method outperforms other
methods in both categories. ”/” means that the network has not con-
verged at all and no valid value can be obtained. See the supplemen-
tary material for longer training results and more scenario results.

4.1 Experiment Settings
Dataset. We use 6 scenes from the DTU dataset [Jensen et
al., 2014]. These scenes contain different geometry struc-
tures and materials and are commonly used to evaluate neural
implicit surfaces. We train the neural implicit surface model
with our sampling method to represent the full scenes and ex-
tract meshes with the provided masks to remove noisy back-
grounds. Note that all scenes are mostly observed from the
front view, so reconstructions of the back of the model are
not meaningful.
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Figure 4: Qualitative results on DTU dataset with 1.3 minutes training. The left side of the dotted line shows results without hash
encoding, while the right side shows results with hash encoding. ”N/A” indicates no valid reconstruction result.

Figure 5: Comparison of Chamfer distance between our method
and proposal under the same training time. Training time is dis-
tributed between 0.3 minutes and 2 minutes.

Implementation Details. We implement our method based
on VolSDF [Yariv et al., 2021] within the SDFStudio [Yu
et al., 2022a] framework. The structure of the radiance net-
work is the same as that of VolSDF [Yariv et al., 2021]. The
geometry network is extended with a spatially-varying β as
discussed above. The radiance network consists of 4 hidden
layers with a hidden size of 256 while the geometry network
consists of 8 hidden layers with the same hidden size. We also
train the network with hash encoding [Müller et al., 2022], in
which the geometry and radiance networks are all reduced to
2 hidden layers with a hidden size of 256. We sample 64
points during the double-clipping stage (32 for a single pass),
and 16 points during the linear interpolation stage. As for the
final volume rendering stage, 32 samples combining uniform
samples and importance samples are taken into account (See

Table 1). The batch size of all experiments is 1, and the num-
ber of sampling rays in each batch is 1024. All experiments
are deployed on a single Tesla-V100s GPU.

Baseline. We compared our sampling method with the fol-
lowing methods: (1) Error-bounded (VolSDF) [Yariv et al.,
2021], (2) Hierarchical (NeuS) [Wang et al., 2021], (3) Pro-
posal Network (proposal) [Barron et al., 2022] (4) Occupancy
Grid (occupancy) [Müller et al., 2022]. Both VolSDF and
NeuS are trained with and without hash encoding, while oth-
ers are only trained with hash encoding because the non-hash
networks converge too slowly to be meaningful for compari-
son. The proposal and occupancy sampling method are built
based on NeuS. All methods are implemented by SDFStu-
dio. We only modified the number of rendering samples
of VolSDF to 64 for faster convergence. Note that SDF-
Studio uses hash coding to train proposal sampling, which
greatly enhances its sampling accuracy, and the occupancy
method calls NerfAcc [Li et al., 2023] API, which is a cuda-
accelerated version.

Evaluation metrics. We use Chamfer distance (CD) to
measure the accuracy of geometry reconstruction quantita-
tively.

4.2 Comparisons
Sample count and training speed. The main time cost of
sampling is querying the MLP. To assess the efficiency of
sampling methods, we first counted the number of samples
taken by different sampling methods on each ray. Fewer sam-
pling points mean fewer MLP queries. As shown in Table 1,
our method only samples 80 sampling points in the weight
distribution calculation stage, which is smaller than VolSDF,
NeuS, and proposal. The occupancy method is supposed to
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use the NeuS sampling method for warmup in the first 2000
iterations to obtain the initial SDF field. Therefore, the sam-
ple count of our method is still less than occupancy at this
stage. In the following iterations, the occupancy method up-
dates the SDF value of the 1283-resolution grid every 1000
iterations, averaging 2.048 samples per ray per iteration. It
should be noted that although the proposal uses 352 sample
points per ray, these sampling points query a network with a
smaller number of parameters, rather than the MLP of the ge-
ometric network. So the actual calculation overhead is not
much higher than our method. As for the volume render-
ing stage, our method achieves the lowest number of sam-
ples except for the occupancy method after 2000 iterations.
Reducing the number of these sampling points further im-
proves training speed because of evading additional radiance
network queries and gradient calculations. Training rays per
second in Table 1 shows that our method achieves the highest
training efficiency compared to all other methods within 2000
iterations. Although the occupancy method trains faster after
2000 iterations, our method already achieves much better re-
sults at 2000th iteration, which will be discussed later.

Quantitative results. We evaluate the Chamfer distance
metric of our method with SOTA methods on 6 scans of
the DTU [Jensen et al., 2014] dataset. All scans are trained
for 1.3 minutes with different sampling methods. Table 2
shows that our method outperforms other methods in both
settings —w/o hash encoding and w/ hash encoding. Simi-
lar to VolSDF, NeuS also introduces a learnable global kernel
size for SDF-density mapping and weight calculation. How-
ever, NeuS fixes the kernel size during sampling, causing
the sampled PDF to be far different from the real PDF. The
large number of samples further slows down the convergence
speed, leading to the worst reconstruction results. The occu-
pancy method uses the NeuS sampling method before 2000
iterations, so the reconstruction result is also unacceptable.
Although the VolSDF method calculates an accurate weight
distribution, the excessive number of sampling points hinders
training. The proposal method takes advantage of a reason-
able simple count and a shallow sampling network with hash
encoding which predicts a relatively accurate weight distribu-
tion. However, compared with our method, their CDF is still
not accurate enough. Meanwhile, our adaptive sampling fur-
ther reduces the number of importance sampling points, thus
achieving better reconstruction results. In Fig. 5, we addi-
tionally compare our method with other methods with hash
encoding on scan 122. As we can see, our method converges
significantly faster than the remaining methods and achieves
better results all the time. NeuS has no valid results within
the two-minute training.

Qualitative results. As can be seen in Fig. 4, our method
yields promising improvements in geometry reconstruction.
NeuS and occupancy can only reconstruct the rough outline
of the model with 1.3 minutes of training. Although VolSDF
performs some details, each model has incorrect reconstruc-
tions. The proposal causes collapsed artifacts and excessive
detail in the reconstruction. Thanks to the efficient and ac-
curate sampling algorithm, our method achieves impressive
reconstruction results regardless of model structure or details.

4.3 Ablation Studies
In Fig. 6, we conduct an ablation study on the number
of linear interpolation points that are used for calculating
weight distributions and CDF. When the interpolation points
are reduced, the reconstruction results suffer from loss of de-
tails and holes, which proves the effectiveness of our error-
bounded CDF.

Figure 6: Ablation study on the number of linear interpolation
points. LI represents the number of linear interpolation points be-
tween every two samples.

Fig. 7 shows the ablation study of importance sampling
strategy. The total sample count of the three strategies is 32.
The all-uniform samples method reconstructs the wrong ge-
ometry with basically no details. As for fixing the importance
sample count to 8 and 16, the results show collapsed artifacts
due to the high variance of the volume rendering.

Figure 7: Ablation study of importance sampling strategy. From
left to right, they are our adaptive sampling method, full uniform
samples method, and method fixed at 8 and 16 importance samples.

Please refer to the supplementary material for additional
ablation studies and results.

5 Conclusion
In this paper, we introduce an efficient error-aware sam-
pling method for neural implicit surfaces based on spatially-
varying kernel size. First, we extend the Laplace-based neu-
ral implicit surfaces with a learnable spatially-varying kernel
size. Secondly, based on the kernel size and efficient double-
clipping strategy, we determine the adaptive shell for each
ray. Then, we derive the error bound of the sampling CDF
within the shell and perform function fitting to reduce CDF
bias. Finally, we conduct efficient importance sampling ac-
cording to the variance of volume rendering. The experi-
ments demonstrate the superiority of our sampling technique,
including significantly reducing sample count and improving
reconstruction quality within the same training time.
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