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Abstract

Mainstream image captioning models are usually
two-stage captioners, i.e., encoding the region fea-
tures by a pre-trained detector and then feeding
them into a language model to generate the cap-
tions. However, such a two-stage procedure will
lead to a task-based information gap that decreases
the performance, because the region features in
the detection task are suboptimal representations
and cannot provide all the necessary information
for subsequent captions generation. Besides, the
region features are usually represented from the
last layer of the detectors that lose the local de-
tails of images. In this paper, we propose a novel
One-Stage Image Captioner (OSIC) with dynamic
multi-sight learning, which directly transforms the
images into descriptive sentences in one stage for
eliminating the information gap. Specifically, to
obtain rich features, multi-level features are cap-
tured by Swin Transformer, and then fed into a
novel dynamic multi-sight embedding module to
exploit both the global structure and local texture
of input images. To enhance the global modeling
capacity of the visual encoder, we propose a new
dual-dimensional refining to non-locally model the
features interaction. As a result, OSIC can directly
obtain rich semantic information to improve the
captioner. Extensive comparisons on the bench-
mark MS-COCO, Flickr8K and Flickr30K datasets
verified the superior performance of our method.

1 Introduction
Image captioning is an important cross-modal task of auto-
matically generating the descriptions of the main contents for
given images. Inspired by the procedure for neural machine
translation, encoder-decoder architecture is most widely used
for image captioning [Cornia et al., 2020], which encodes the
given image into the intermediate representation via a vision
encoder, followed by a NLP decoder to generate the captions.
As a result, the performance of the captioner largely relies on
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Figure 1: Illustration of the task-based information gap. The lan-
guage model generates sentences conditioned on the region features
of the given image from a fixed detector. The red, orange and blue
marked young man, frisbee, and soccer goal are detected by the fixed
detector. However, the detection-based region features may not suit
for the image captioning task. E.g., the scene “field” and object re-
lation “catching” are ignored by the detector, without adaption to
the descriptive contents of the image. The detected soccer goal is
noise for the captioning task. The boy and player marked in dark
red are redundantly detected for the sentence. The detected objects
are mutually independent, which loses the semantic relationship.

the representations containing information for the NLP de-
coder. Motivated by this end, the early work aim to compress
the image into the fixed-length vector [Vinyals et al., 2015] as
visual features. To enrich the compact expressions, grid fea-
tures [Zhang et al., 2021] are further generated by the CNNs
to embed more visual information. More recently, compared
with the grid features, two-stage captioners using region fea-
tures [Anderson et al., 2018] have made great progress by
capturing the salient region-level features.

It is noteworthy that the region features obtained by a fixed
detector (e.g., Faster R-CNN [Ren et al., 2015]) focus on the
detection task, which means it can hardly provide all neces-
sary descriptive information for the subsequent image cap-
tioning task [Kuo and Kira, 2022], due to the large infor-
mation gap between the two tasks. In other words, the vi-
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sual encoder in the first stage of those captioners is optimized
using the detection tags instead of sentences, which causes
the information mismatch in feature embedding. We call this
mismatch between detection-centric features and captioning-
guided features task-based information gap. This gap limits
the model to obtain a global optimization, and results in two
major issues. Firstly, region features can hardly present all the
necessary descriptive information for the target captions. For
example, misdetection, insufficient detection (e.g., the scene
“field” and the object relation “catching” are not detected), or
redundancies (e.g., “soccer goal” and “player”) are produced,
as shown in Figure 1. And more to the point, these region fea-
tures are represented independently [Hu et al., 2018], without
visual semantic connection with each other. But as a text se-
quence, the captions have clear semantic order assigned for
each word [Liu et al., 2017]. Secondly, region features are
usually presented by the deepest pooling features [Ren et al.,
2015], which may lose the local details. For example, the
man’s detail “white shirt” is missing, and the inadequate de-
scriptions will also decrease the captioning performance.

In this paper, we integrate the intermediate representa-
tion and captions generation into a novel one-stage trainable
model to obtain a globally optimal solution. The represen-
tation misalignment between region features and descriptive
semantic features comes from the annotation gap between the
detection and captioning, which is essentially the task-based
information gap. So, we believe that only the text-annotated
optimization based on the one-stage captioner or the collab-
orative optimization on multi-tasks can close the task-based
information gap. Hence, we solve the problem with a one-
stage captioner due to its lower annotation cost. In addition,
these methods use the embedded features of fixed sight, so
they cannot flexibly capture effective visual information of
different sizes as well as discover the visual relationships of
different distances. To address the above problems, we embed
the visual features using the multi-level output of the Swin
Transformer (SwinT). We then calculate the dynamic corre-
lation between the features of different sights, so as to grasp
the interconnected visual representation. Finally, we consider
refining the features on both spatial and channel dimensions
to improve the global representation capacity of the encoder
for generating richer and more accurate captions. Overall, the
main contributions of the paper are summarized as follows:

• We first clearly define the task-based information gap
in captioners as the representation mismatch between
detection-centric and captioning-guided features. We
then propose a novel one-stage image captioner (OSIC)
with a dynamic multi-sight learner, which is dedicated
to optimizing the captioning framework and visual rep-
resentations to eliminate the gap for image captioning.

• We propose a dynamic multi-sight embedding to adap-
tively capture and fuse the global structure in large sight
and local texture in small sight. Specifically, it com-
putes the salience coefficient of the embedded features
in different sights to embed the multi-sight information
dynamically, based on the long and short distance de-
pendences of the Swin Transformer.

• In order to improve the global-interactive ability of the

SwinT, we propose a dual-dimensional refining to non-
locally enable the features interaction in spatial and
channel dimensions, so that the global representation
ability of the encoder can be fully enhanced.

2 Related Work
2.1 Pixel Level-based Representation
The early work encode the image into an vector of fixed
length as the representation for image captioning [Vinyals et
al., 2015]. The major issue caused by using this represen-
tation is its heavy compresses and mixture. Inspired by the
CNNs in visual extraction for image classification, grid fea-
tures generated by ResNets are used in captioners. For ex-
ample, the pre-trained ResNet101 generates grid features and
feeds them into Transformer [Vaswani et al., 2017] to infer
target words [Gao et al., 2022]. Recently, ViT [Dosovitskiy
et al., 2020] and SwinT are used to extract the grid features
to build one-stage image captioners. For example, to con-
sider the semantic concepts, the VitCAP [Fang et al., 2022]
introduces the visual token to predict the semantic classifica-
tion. However, ViTCAP still introduces other prior knowl-
edge (i.e., multi-label classification as the concept informa-
tion) to optimize the models. These mean that ViT and SwinT
are promising to reduce the learning gap between vision and
text. However, existing one-stage captioners embed the vi-
sual features based on the outputs with fixed sight, without
adaption to the feature embedding of different distances.

2.2 Regional Level-based Representation
The detection-based methods extract the region-level features
as the visual representation by the fixed detector. The salient
objects of the image can be captured as a set of feature vec-
tors, which greatly reduces the difficulty of visual semantic
embedding and improves the performance of image caption-
ing [Wang et al., 2022a]. For example, up-down model [An-
derson et al., 2018] encodes the input image with a set of
objects (i.e., RoI-pooled features) detected by a frozen Faster-
RCNN [Ren et al., 2015] pre-trained on Visual Genome [Kr-
ishna et al., 2016]. To further compute the spatial geometry
relationships [Hu et al., 2018] for image captioning, Object
Relation Transformer [Herdade et al., 2019] explicitly incor-
porates the relative geometric position and size with the se-
mantic relationships to enrich the embedded features. Con-
ditioned on the region features, M2 [Cornia et al., 2020] in-
fers the captions through learning a multi-level representation
of the relationship between regions to exploit low- and high-
level features. Note that those regional level-based meth-
ods learn prior knowledge based on the detection tags. So,
the task-based information gap between the detection-centric
features and the captioning-guided features makes these two-
stage captioners suboptimal, which may decrease the caption-
ing performance. Therefore, BPTOD [Kuo and Kira, 2022]
mines attributes and relationships from the Visual Genome
dataset as an auxiliary input to represent missing informa-
tion to improve performance. However, BPTOD calculates
both contextual descriptions and region features by using the
multi-modal pre-trained model and frozen detector, respec-
tively, which still is not an end-to-end trainable model.
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Figure 2: Overview of our OSIC framework, which includes two main components, i.e., standard Transformer decoder and a dynamic
multi-sight learning encoder that consists of SwinT equipped with dynamic multi-sight embedding and dual-dimensional refining.

3 Proposed Method

As shown in Figure 2, our OSIC includes a standard Trans-
former decoder and a dynamic multi-sight learning encoder,
i.e., SwinT equipped with a newly proposed dynamic multi-
sight embedding and a cascaded dual-dimensional refining.

3.1 Captioning Procedure

Conditioned an input image I , our OSIC infers and gener-
ates a descriptive sentence S. Firstly, multi-level grid features
G = {gi},(i = 1, 2, 3, 4) are learnt by SwinT from I . Then,
a linear embedding layer followed by patch-merging further
extracts the multi-sights features M from the G. Specifi-
cally,M is the concatenation of grid features {gi}. After that,
salience coefficients E of the grid features of different sights
are calculated by DMSE through the average pooling and lin-
ear projections to squeeze and dynamically excite the salient
features in relevant sights. The output of the DMSE is tiled
into a feature sequence as the input of the DDR, which con-
sists of N operation layers, performing non-local interaction
in spatial and channel dimensions. Each DDR layer is fol-
lowed by a feed-forward network [Vaswani et al., 2017] sep-
arately. Finally, the refined features are decoded by a Trans-
former decoder to generate the descriptive sentence S.

3.2 Dynamic Multi-Sight Embedding (DMSE)
Due to missing the visual details, it is inadequate to use only
the representation of global compressed (i.e., the pooling fea-
tures in the last layer of CNNs) for the input image, while the
multi-sights of grid features can have more local details ben-
efitting the captioning. Simultaneously, simply merging the
grid features of multi-sights may confuse the visual embed-
ding. Thus, the proposed DMSE first calculates the salience
coefficients of the multi-sights features by linear projecting
the global pooling of all sights. By considering the impor-
tance of global optimization for image captioning, we obtain
a group of learnable coefficients based on the global linear
projections of multi-sights. Specifically, we squeeze the grid
features in each channel by average pooling to obtain a rep-
resentative value sequence Vs, whose length is equal to the
number of feature channels. Then, we connect the sequence
Vs with the salience sequence by two layers of linear connec-
tions, so the salience coefficients E of multi-sights for subse-
quent captioning can be generated formally as:

E = Ldcc {Lcdc [(L
1
Hdv 〈M

T 〉)T ]}, (1)

where M denotes the concatenation of grid features {gi},
(·)T denotes the transpose operation, and Lji (·) denotes the
linear projection to map a tensor with embedding size i into
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that of j, c is the number of channel dimension. dc is the
number of the channel dimension of the squeezed features.

Then, the output of the DMSE module is obtained by mul-
tiplying the salience coefficients E by M as follows:

Me = Norml(M · E) +M, (2)

where Norml(·) denotes the layer normalization, which is
followed by a shortcut operation. After that, the output of
DMSE are fed into the following DRR for further processing.

3.3 Dual-Dimensional Refining (DDR)
Given the embedded features Me from the DMSE, we
further feed them into the DRR. To improve the global-
representational ability, we further refine the Me via building
non-local information interaction in both spatial and channel
dimensions. Each non-local interaction of the two dimensions
is modeled by computing the scaled dot product of them.

The layer normalization is operated at the corresponding
dimension in which the dependence of pixels is computed.
The processing output of the spatial position dimension or
channel dimension in the DDR layer is obtained as follows:

M i
r = Normi

l

(
MQ
e ·
(
MK
e

)T
√
di

·MV
e

)
+Me, (3)

where i denotes the interaction in either spatial or channel
dimension, Normi

l(·) is the layer normalization operated in
i-th dimension. Then, the parallel refining can be formulated
as follows:

Mpa
r =Ms

r +M c
r , (4)

where Ms
r denotes the output from the refining layer of

single-spatial dimension, and M c
r denotes the output of the

refining layer of single-channel dimension. Furthermore, the
cascade refining calculates features as follows:

M ca
r = Normc

l

(
MsQ
r ·

(
MsK
r

)T
√
dc

·MsV
r

)
+Ms

r , (5)

where Normc
l (·) denotes the layer normalization operated in

channel dimension, MsQ
r , MsK

r , andMsV
r are the linear pro-

jection representations of the outputs from the non-local re-
fining layers of the multi-head self-attention on a spatial di-
mension, respectively, and dc is the length of the bottom row
vector MsK

r (Hdv, :) of MsK
r ∈ RHdv×dm , i.e., dm.

After that, the refined grid features M i
r are fed into the

feed-forward network and sequentially processed by repeat-
ing N times the above operation layer (where N is the num-
ber of layers). The refined features are finally decoded by a
standard Transformer decoder to generate sentences.

3.4 Objective Function
We use two objective functions for optimization in the train-
ing process, following the widely used benchmarks. It con-
sist of the cross-entropy loss (XE) for the maximum log-
likelihood training and the reinforcement learning loss us-
ing the CIDEr score as a reward for self-critical training
(SC) [Rennie et al., 2017]. For XE training, with respect to

the parameters θ and ground truth sentence y∗(1:T ), the XE
loss is calculated for the optimization as follows:

LXE (θ) = −
T∑
t=1

log
(
p
(
y∗t |y∗0:t−1, I, θ

))
. (6)

For the SC training, the model is fine-tuned continually by
optimizing the non-differentiable CIDEr score as the reward
of reinforcement learning processing formally as:

OθLSC (θ) = − 1

n

n∑
i=1

[
r
(
yi1:T

)
− b
]
Oθ log pθ

(
yi1:T

)
, (7)

where n denotes the beam size, r(·) denotes the CIDEr-D
score function, and b = (

∑
i r(y

i
1:T ))/n is the greedily de-

coded score value generated by the current model.

4 Experiments
4.1 Experimental Settings
Datasets. The experiments are mainly conducted on the
MSCOCO [Lin et al., 2014] dataset, and further generalized
on Flickr8K [Hodosh et al., 2013] and Flickr30K [Young et
al., 2014] datasets. MSCOCO is the most widely-used and
competitive benchmark, which has 164,062 images annotated
with 5 ground truth captions for each image. For the fair
comparison, we follow the Karpathy’s splits [Andrej Karpa-
thy, 2017], in which MSCOCO dataset consists of 113,287
training images, 5,000 validation images, 5,000 offline test-
ing images and 40,775 online testing images with 5 and 40
human-annotations. For training, validation and testing, the
Flickr8K dataset containing 8,091 images is split into 6,091
images, 1000 images and 1000 images respectively, and the
Flickr30K dataset (31,014 images) is split into 29,000 im-
ages, 1014 images and 1000 images respectively.

Evaluation Metrics. The generated sentences are fairly
evaluated by using the widely-used metrics, i.e., BLEU-
1/4 [Papineni et al., 2002], CIDEr [Vedantam et al., 2015],
METEOR [Banerjee and Lavie, 2005] and ROUGE-L [Lin,
2004]. They are denoted as B-1/4, C, M, and R for short.

Implementation Details. For training, we first train our
model under XE loss for 15 epochs with a mini-batch size
of 8, and an Adam optimizer whose learning rate is initial-
ized at 4e-4 with the warmup-step of 20,000. The learning
rate is decayed 0.1 times from the 9-th epoch on. We in-
crease the scheduled sampling probability by 0.05 for every
3 epochs. After the XE training, we train our model by op-
timizing the CIDEr score with the SC training strategy for
another 15 epochs with an initial learning rate of 4e-5, which
is decayed 0.1 times every 4 epochs. For testing, we use the
beam search for our model with a beam size of 2. The default
random seed is set to 42. All experiments are conducted in a
single NVIDIA RTX2080Ti GPU with Pytorch 1.7 platform.

4.2 Main Results
Offline Evaluation. On the offline MSCOCO Karpathy’s
test, we show the evaluation of each method in Table 1. The
comparied methods can be roughly divided into two groups:
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Methods Cross-Entropy Loss CIDEr Score Optimization
B@1 B@2 B@3 B@4 M R C B@1 B@2 B@3 B@4 M R C

Two-Stage Methods

RFNet (iccv2018) 76.4 60.4 46.6 35.8 27.4 56.5 112.5 79.1 63.1 48.4 36.5 27.7 57.3 121.9
Up-Down (cvpr2018) 77.2 – – 36.2 27.0 56.4 113.5 79.8 – – 36.3 27.7 56.9 120.1
ORT (nips2019) 76.6 – – 35.5 28.0 56.6 115.4 80.5 – – 38.6 28.7 58.4 128.3
AoANet (iccv2019) 77.4 – – 37.2 28.4 57.5 119.8 80.2 – – 38.9 29.2 58.8 129.8
M2T (cvpr2020) – – – – – – – 80.8 – – 39.1 29.2 58.6 131.2
X-Transformer (cvpr2020) 77.3 61.5 47.8 37.0 28.7 57.5 120.0 80.9 65.8 51.1 39.7 29.5 59.1 132.8
DRT (acm mm2021) – – – – – – – 81.7 – – 40.4 29.5 59.3 133.2
RSTNet (cvpr2021) – – – – – – – 81.8 – – 40.1 29.8 59.5 135.6
S2 Transformer (ijcai2022) – – – – – – – 81.1 39.6 29.6 59.1 133.5
FutureCap (acm mm2022) – – – – – 58.2 – 82.2 – – 40.3 30.1 59.8 136.3
LightCap (aaai2023) – – – – – – – – – – 40.1 29.9 – 136.6
ConCap (aaai2023) – – – – – – – – – – 40.5 30.9 – 133.7
SCD-Net (cvpr2023) 79.0 63.4 49.1 37.3 28.1 58.0 118.0 81.3 66.1 51.1 39.4 29.2 59.1 131.6

One-Stage Methods

PTSN (acm mm2022) – – – – – – – 81.7 – – 39.7 29.5 58.6 134.7
BPTOD (cvpr2022) – – – – – – – 81.5 – – 39.7 30.0 59.5 135.9
ViTCAP (cvpr2022) – – – 35.7 28.8 57.6 121.8 – – – 40.1 29.4 59.4 133.1
OSIC (ours) 78.5 62.8 49.1 38.0 29.1 58.3 124.2 82.2 67.2 53.0 41.0 29.8 60.2 137.2

Table 1: Performance (%) comparison on the MSCOCO Karpathy’s test split.

i) Two-stage methods, which adopt offline features directly to
infer descriptions, including RFNet [Jiang et al., 2018], Up-
Down [Anderson et al., 2018], ORT [Herdade et al., 2019],
AoANet [Huang et al., 2019], M2T [Cornia et al., 2020], X-
Transformer [Pan et al., 2020], DRT [Song et al., 2021], RST-
Net [Zhang et al., 2021], S2Transformer [Zeng et al., 2022a],
FutureCap [Fei et al., 2022], LightCap [Wang et al., 2023b],
ConCap [Wang et al., 2023a] and SCD-Net [Luo et al., 2023];
ii) One-stage methods, which optimize features extracting
and captioning simultaneously, including PTSN [Zeng et al.,
2022b], BPTOD [Kuo and Kira, 2022] and ViTCAP [Fang et
al., 2022]. Our OSIC belongs to the one-stage method.

We first compare our method with the two-stage methods
in Table 1. By closing the task-based information gap, our
OSIC gains with 41.0 (+1.2%) in B-4 and 137.2 (+0.44%)
in CIDEr respectively. Our proposed OSIC compares fa-
vorably with all previous methods across almost all metrics.
This proves the effectiveness of our proposed OSIC. Then,
we compare our method with the one-stage models, includ-
ing PTSN, BPTOD and ViTCAP. In spite of additional infor-
mation used in these methods (e.g., retrieved text and image
conditioning from pre-trained CLIP [Radford et al., 2021]
for BPTOD, and multi-label classification for ViTCAP), our
OSIC achieves better performance by using the proposed
DMSE and DDR. Note that our model is only trained on
the image-text pairs, without other additional information,
which has a lower annotation cost of the dataset than them.
Moreover, ConCap and LightCap have introduced large vi-
sion and language models (LVLM), such as pretrained Clip
and Bert [Devlin et al., 2018], respectively. Compared with
these LVLM-based captioners, our OSIC is still competitive.

GT1: The motorcycle has a large cargo box attached to the seat.
GT2: A blue motorcycle with a luggage compartment parked at
a driveway.
GT3: Amotorcycle is parked on a sidewalk in front of a yard
Baseline: a motorcycle parked on a street
OSIC: a blue motorcycle parked on the side of a street

GT1: a dog and a bike sitting next to a red wall
GT2: a dog sitting on a sidewalk with a bike near by
GT3: A bike and a dog on the sidewalk outside a red
building
Baseline: a dog sitting on a bicycle next to a bicycle
OSIC: a dog standing next to a bike in front of a red
building
GT1: a cat sleeping against a stuffed polar bear.
GT2: a black and white cat sleeps next to a stuffed bear.
GT3: a white teddy bear with a cat sleeping beside it.
Baseline: a stuffed bear sitting next to a teddy bear
OSIC: a black and white cat laying next to a stuffed teddy
bear

GT1: A couple of small birds standing on top of a table.
GT2: Two birds perched on a table near a plate of food.
GT3: two little sparrows standing on a table by a knife
Baseline: a plate of food on a table
OSIC: two birds sitting on a table next to a bottle of wine

Figure 3: Visualization of some captioning examples

Online Evaluation. We further evaluate our OSIC on the
official COCO test by submitting our generated captions to
the online test server * in Table 2. It is noteworthy that the
performances of our OSIC are reported with a single model,
without using any ensemble models. From the observations,
our OSIC again surpasses all the single models across all met-
rics. Moreover, the single model of our OSIC even attains

*https://competitions.codalab.org/competitions/3221
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Methods B@1 B@2 B@3 B@4 METEOR ROUGE CIDEr
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Ensemble Model

GCN-LSTM [Yao et al., 2018] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
AoANet [Huang et al., 2019] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
XT (Res-101) [Pan et al., 2020] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
M2T [Cornia et al., 2020] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
CtxAdpAtt [Wang et al., 2022b] 81.0 95.2 65.5 91.0 51.5 81.7 39.3 70.9 29.4 39.0 59.6 75.1 128.5 131.0
UAIC [Fei et al., 2023] 81.9 96.3 66.5 91.1 51.8 83.0 39.6 72.9 29.2 38.9 59.2 74.7 129.0 132.8

Single Model

CAVP [Liu et al., 2018] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
SGAE [Yang et al., 2019] 80.6 95.0 65.0 88.9 50.1 79.6 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
CMAL [Guo et al., 2021] 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
SAIC [Yan et al., 2021] 80.0 94.5 64.1 88.2 49.2 78.8 37.2 67.8 28.0 36.8 57.7 72.4 121.4 123.7
VASS [Wei et al., 2021a] 79.9 94.7 64.6 88.8 50.0 79.9 38.0 69.4 27.9 37.0 58.1 73.3 120.7 123.2
SCD-Net [Luo et al., 2023] 80.2 95.1 64.9 89.3 50.1 80.1 38.1 69.4 29.0 38.2 58.5 73.5 126.2 129.2
OSIC (ours) 81.6 95.7 66.6 90.6 52.0 82.1 39.9 71.9 29.3 38.8 59.4 74.7 130.5 133.1

Table 2: Leaderboard of various captioning models on the online MS COCO test server.

Methods Flickr8k Flickr30k
B@1 B@2 B@3 B@4 M R C B@1 B@2 B@3 B@4 M R C

ATT-FCN [You et al., ][2016] – – – – – – – 64.7 46.0 32.4 23.0 18.9 – –
SCA-CNN [Chen et al., 2017] 68.2 49.6 35.9 25.8 22.4 – – 66.2 46.8 32.5 22.3 19.5 – –
Adaptive [Lu et al., 2017] – – – – – – – 67.7 49.4 35.4 25.1 20.4 – 53.1
DA [Gao et al., 2019] – – – – – – – 73.8 55.1 40.3 29.4 23.0 – 66.6
SDCD [Ding et al., 2020] 67.2 45.1 30.5 21.5 – – – 66.3 43.7 29.2 21.1 – – –
G-NIC+P+D Att [Yu et al., 2021] 68.4 50.3 37.0 22.8 22.6 – – 69.7 46.1 35.5 23.7 20.4 – –
VASS [Wei et al., 2021a] – – – – – – – 73.2 56.0 41.5 30.6 22.7 50.8 66.0
OSIC (ours) 73.8 56.7 41.9 30.2 24.9 53.7 82.9 76.8 59.4 44.9 33.6 24.8 54.0 83.6

Table 3: Performance (%) comparison on the Flickr8K and Flickr30K.

competitive performances with the ensemble version of some
captioners (e.g., GET and UAIC), which proves the advan-
tage of our proposed one-stage captioner.
Qualitative Results. We show some examples predicted by
the baseline and our OSIC in Figure 3. In this paper, the base-
line is set as extracting visual features only from the last layer
of the SwinT, followed by the standard Transformer decoder.
Clearly, our OSIC catches additional details and generates
more descriptions with accurate semantic relationships, since
our OSIC model can directly and dynamically embed more
visual sources of multi-sights. For example, our model accu-
rately captures the key scene in the top picture (i.e., ”in front
of a red building”), while the baseline misses it.
Generalization on other datasets. Recently, the caption-
ers tend to be rarely evaluated on the Flickr8K and Flickr30K,
since that: 1) The number of images in them is much less
than the MSCOCO; 2) Their images focus on human activ-
ities, which makes the captioner difficult to describe images
on large scale scenes. However, it still remains an effective
benchmark for evaluating the generalization of models. As
shown in Table 3, our OSIC achieves the best results on all
standard metrics, and outperforms the current models by a

large margin, which proves its well-generalization.

4.3 Ablation Study
Ablation on single DMSE and DDR. From the first and
second rows of Table 4, as adding the DMSE into the base-
line, the performance is greatly improved across all metrics
over the baseline, which proves the effectiveness of the pro-
posed DMSE. As shown in the 3rd to 6-th rows in Table 4, we
study the effectiveness of the DDR, which contains the non-
local interactions in spatial/channel dimension, or combines
them in a parallel/cascade mode, respectively. Clearly, our
OSIC largely benefits from refining the features on spatial or
channel dimension, with improvements of at least +11.8% in
Bleu-1 and +29.3% in CIDEr over baseline. All the above
demonstrates that the performance gain indeed comes from
the DMSE and DDR, which largely raised the metrics.

Ablation on joint DMSE and DDR. We incorporate the
DMSE and the DDR with four kinds of non-local modes into
the baseline, as shown in the 7-th to 10-th rows in Table 4.
Clearly, OSIC with both DMSE and DDR can further deliver
better results. Especially, cascaded non-local interactions in
spatial and channel dimensions generally perform the best.
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BaselineMulti-sight
embedding

Feature refining
Spatial Channel Parallel Cascade B@1 B@2 B@3 B@4 M R C

X 68.8 53.8 40.3 29.4 23.6 53.1 92.2
X X 77.9 62.1 48.2 37.2 28.8 57.8 122.2
X X 76.9 60.9 47.2 36.3 28.5 57.0 119.2
X X 77.2 61.1 47.2 36.2 28.5 57.2 119.3
X X 77.5 61.5 47.6 36.6 28.5 57.4 119.9
X X 77.5 61.6 47.8 36.8 28.6 57.4 120.9
X X X 78.0 62.4 48.6 37.6 29.0 58.0 123.1
X X X 78.2 62.4 48.6 37.5 28.9 58.0 122.6
X X X 78.6 63.0 49.1 38.0 28.9 58.2 123.1
X X X 78.5 62.8 49.1 38.0 29.1 58.3 124.2

Table 4: Ablation study on the importance of each module. DDR is further ablated as four modes: singlely refining in spatial/channel
dimension, and combining them in parallel/cascade way. The result is obtained by XE Loss training on the MSCOCO Karpathy’s test split.

(b) DMSE Module (c) DDR Module(a) Swin Transformer

1.0

0.0

Figure 4: Heatmaps of the correlations between features at different
levels. The heavier the color, the closer the pairwise relationship.

Since the slight outperformance, our model in a cascade mode
is illustrated in Figure 2. We also visualize the heatmaps of
correlations between features to analyze the effectiveness of
DMSE and DDR in Figure 4. Specifically, DMSE builds rela-
tively explicit independence of features. DDR further refines
the relationship among features globally. The sparsification
in heatmaps denotes few correlations among features on the
global scale. As additional modules are added, the value in
dense regions denotes higher connections with other features,
while that in sparse regions denotes fewer connections. For
example, for the local features in the top left corner in Fig-
ure 4, DMSE supplements and enriches the originally missed
connections, and also weakens the unnecessary connections.
Based on DMSE, the DDR further refines the embedded fea-
tures. That is, important connections are strengthened and
unimportant connections are weakened, without changing the
overall feature distributions. From the above ablation studies,
we conclude that both the DMSE and DDR are important to
ensure the effectiveness of our OSIC for image captioning.

Impact of the DDR settings. We ablate our OSIC with dif-
ferent settings on the modes and the number of the DDR
layer, as shown in Figure 5. We vary the number of refin-
ing layers from 0 to 6. From the observation, in parallel and
cascade modes, the model with only 1 layer of refining can
perform better. We see that parallel refining generally per-
forms the worst among different modes. It can also be seen
that our OSIC with only 1 layer cascade refining outperforms
other cases. That is, cascading the spatial and channel dimen-
sions is the best setting to obtain the best performance, which

Figure 5: CIDEr of different refinings, various numbers of layers.

is used in all the experiments of this paper. It demonstrates
that OSIC works better without needing lots of parameters,
which benefits the fast inferring and text generating.

5 Conclusion
We first define the task-based information gap that exists in
current two-stage captioners, and address it by presenting a
novel one-stage image captioner called OSIC. OSIC directly
captures the different sight of representations of the image
by a new dynamic multi-sight learning encoder refined by a
dual-dimensional refining, then decodes the features into cap-
tions. The visual representation is improved by building non-
locally dual-dimensional interaction. Extensive simulations
demonstrated the effectiveness of our OSIC attributed to the
dynamic multi-sight embedding and dual-dimensional refin-
ing, in comparison to other related methods. We also conduct
extensive ablation studies to explore the contribution of mod-
ules and settings. In the future, we will explore more efficient
and robust image captioners under complex real-world condi-
tions, such as describing the rainy images [Wei et al., 2021b;
Wei et al., 2022] or blur scenes [Zhao et al., 2022].
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