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Abstract
Common approaches for image retrieval include
contrastive methods and specialized loss functions
such as ranking losses and entropy regularizers.
We present DMCAC (Divergence Minimization
with Cross-Attention Classification) which offers
a new perspective on this training paradigm. We
use self-supervision with a novel divergence loss
framework alongside a simple data flow adjustment
that minimizes the distributional divergence over
a database directly during training. We show
that jointly learning the query representation over
a database is a competitive and often improved
alternative to contrastive and other methods for
image retrieval. We evaluate our method across
several model configurations and four datasets,
achieving state-of-the-art performance in multiple
settings. We also conduct a thorough set of
ablations that show the robustness of our method
across full vs. approximate retrieval and different
hyperparameter configurations.

1 Introduction
Representing similarity between entities is critical to many
tasks such as content-based image retrieval, cross-modal
information retrieval, face recognition, and person re-
identification. A key driver behind these methods is metric
learning where the task is to learn embeddings such that their
distances preserve a notion of semantic similarity. There are
several variations on metric learning losses, which include
ideas such as sampling [Yu et al., 2019; Robinson et al.,
2021] and different schemes for grouping examples together
such as pair-based [Khosla et al., 2021; Hoffer and Ailon,
2018] and proxy-based [Kim et al., 2020a; Movshovitz-
Attias et al., 2017b]. The overall goal behind metric learning
methods is to train an embedding model to pull similar
objects together in the embedding space while (optionally)
pushing dissimilar objects apart. Similarity is often given
by a class label where all examples in a dataset of class c
are pulled together and examples of other classes are pushed
apart. Other options for determining similarity include self-
supervised learning [Caron et al., 2021b; Caron et al., 2019;
Caron et al., 2021a] where an input image is transformed

into a pair or set of views via data augmentation. Here, all
views of the same image are ”similar.” In the metric learning
for image retrieval setting, the encoder often takes one of
two forms: a convolutional neural network (CNN) [He et
al., 2015; Szegedy et al., 2014] or more recently a Vision
Transformer [Dosovitskiy et al., 2021; Touvron et al., 2021].
The goal of the encoder is to transform each input image into
a learned embedding optimized for the downstream task of
retrieval from an external set, usually called a database. An
important point to note is that the training setting is decoupled
from the retrieval setting in that there is no database present
during training so queries are not conditioned over a database.
Instead there is an auxiliary task such as a metric learning
objective which is then used for retrieval during evaluation.
Here we propose an approach that instead jointly learns query
and database representations.

We offer a novel framework for training image retrieval
systems which we call DMCAC (Divergence Minimization
with Cross-Attention Retrieval). It offers a few novel insights.
Firstly, we use a query set and database set directly during
training. We generate and embed several views of an input
query via data augmentation as is common in the self-
supervised regime. But rather than minimizing the distance
between each query view, we first compute a similarity
distribution between the query views and a separate database
set prodcing a similarity distribution for each view over the
database. Our method is motivated by distribution matching
which we empirically find to be stronger than point-wise
objectives like triplet loss. For our loss, we minimize the
divergence in this similarity distribution between views so
that our loss is conditioned from a query set over a database
set, rather than over a query set alone. This formulation
closely resembles the retrieval test setting where a query set
is used to retrieve similar sets of items from the database.

Importantly, we note that the self-supervised method is
prone to collapse [Caron et al., 2021a] where the encoder
”cheats” by simply embedding all views to the same point
because there is no grounding signal of ”correctness” such as
a class label. We overcome this issue by using the retrieved
database embeddings to also directly predict the query class
label via cross-attention. In this way, the retrieved examples
must learn some notion of semantic meaning about the query.
Our key contributions are:

• We present a novel retrieval framework that applies
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self-supervised learning to directly learn a joint
representation between a query set and a database
set. This approach offers a competitive and often
improved alternative to common metric learning
retrieval frameworks.

• We introduce a novel loss for retrieval. We minimize
divergence between query views via a Frobenius norm
and classification error via cross-attention with cross-
entropy using query images conditioned over a database
set.

• We investigate the tradeoffs between end-to-end
differentiability and efficient approximate nearest
neighbor (ANN) search alongside a thorough ablation
of hyperparameters. We show that our method is
competitive across both settings.

2 Related Works
2.1 Transformers and Vision Transformers
Transformers [Vaswani et al., 2017] revolutionized natural
language processing by using self-attention and blocks of
fully-connected layers. Models such as BERT [Devlin et
al., 2019] were highly performant across a broad spectrum of
NLP tasks such as text classification and language translation.
Transformers excel in capturing local dependencies and
using them to produce global representations which made
them an attractive candidate for computer vision. The
key breakthrough came with Vision Transformers (ViTs)
[Dosovitskiy et al., 2021] which had the insight that local
tokens in an image are simply patches which can then
be fed to the Transformer architecture. ViTs match or
surpass convolutional models across tasks such as image
classification [Caron et al., 2021b; Chen et al., 2021] and
semantic segmentation [Strudel et al., 2021]. Because ViTs
lack the traditional inductive biases of CNNs, methods arose
to efficiently train ViTs [Steiner et al., 2022]. These methods
include using data augmentation [Cubuk et al., 2019b],
knowledge distillation [Touvron et al., 2021], pretraining
with larger datasets [Koppula et al., 2022], and specialized
architectural variants such as Swin Transformer [Liu et al.,
2021] which reintroduce vision specific biases.

2.2 Metric Learning
There are many approaches to Metric Learning, but here we
give an overview of pairwise and classification approaches.
Contrastive loss [Carreira-Perpiñán and Hinton, 2005;
Hadsell et al., 2006] and triplet loss [Hoffer and Ailon,
2018] are examples of pairwise losses where the goal is
to bring similar examples together while pushing dissimilar
examples away in embedding space by generating groups of
examples. Other variations such as Supervised Contrastive
Loss [Khosla et al., 2021] introduce class information that
helps create positive and negative pairs conditioned on a
semantic label. These methods can be further improved
by employing techniques such as Hard Negative Sampling
[Robinson et al., 2021] and other sampling methods [Yu et
al., 2019] to ensure that the network avoids collapse from an
oversaturated signal of easy examples during optimization.

Methods such as [El-Nouby et al., 2021a; Song et al., 2023]
show the effectiveness of combining contrastive methods
with Vision Transformers for retrieval.

Classification based approaches represent categories with
a single or multiple representative points [Movshovitz-Attias
et al., 2017a; Teh et al., 2020a; Boudiaf et al., 2021].
In these methods, a new example is compared against the
representative points, and a class is determined based on
similarity to each class representative [Zhai and Wu, 2019a;
Trivedy and Latecki, 2023]. All of these methods show
that direct classification is a viable and performant technique
for retrieval. We draw inspiration from these approaches in
designing our novel classification approach which uses cross-
attention over a database set.

2.3 Self-Supervised Learning
Self-supervised learning (SSL) constructs its learning signal
from the data itself where a model learns to predict a
portion of the input data from other parts, compelling it
to learn robust, high-level features. The key benefit here
is that this requires no labeled data and is thus a good
approach for large-scale pretraining [He et al., 2021;
Baevski et al., 2022]. Common SSL approaches include
solving pretext tasks, masking, and learning invariances to
data augmentations. SSL pretext tasks include [Doersch
et al., 2016] which predicts the relative position of image
patches, and [Noroozi and Favaro, 2017a; Noroozi and
Favaro, 2017b] which use jigsaw puzzles where a model
learns to recognize the permutation of shuffled image patches.
Masking methods such as [He et al., 2021] are trained to
reconstruct masked portions of an image. In this work, we
focus on augmentation based SSL methods such as SimCLR
[Chen et al., 2020] which generate multiple views of an
image via data augmentation and minimize the embedding
distance between them. These methods are often paired with
contrastive learning where positive pairs are two augmented
views of a single image and negative pairs are views from two
different images.

Self-supervised learning has benefited from work on
selecting performant data augmentation strategies [Cubuk et
al., 2019b; Cubuk et al., 2019a]. Reducing the embedding
distance between variations of the same image (via cropping,
color jittering, etc.), teaches a model to be invariant to these
changes while hopefully preserving the semantic meaning
of the image which leads to more robust and generalizable
features [Park et al., 2023].

3 Method
In this section, we outline the details of our approach.
In particular, we describe the building blocks for training
our model, define our dataset contruction, highlight key
design choices in our forward pass, and discuss the retrieval
mechanism and loss function.

3.1 Dataset Construction
To motivate our approach we share the rationale and process
for constructing the training and testing sets, following
common practices of usual data splits. Because we want to

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1345



Figure 1: The data flow of our method when computing the Frobenius loss. In the forward pass, embeddings of different views of the same
query retrieve k nearest neighbor indices from the database. After computing the union of the indices over the query views, their associated
embeddings are retrieved and used to compute the Frobenius loss.

directly train our model on the task of retrieval, we construct
four sets which we describe here. Please see Section 4.1 for
detailed information on each dataset.

• Training Query Set: DQ

• Training Database Set: DD

• Evaluation Query Set: D′
Q

• Evaluation Database Set: D′
D

Note that the training and evaluation sets have a disjoint set
of classes. In this way, during training, we learn general
representations that can be extended easily to new classes
which is a common practice in retrieval evaluation.

3.2 Revisiting Vision Transformers
In our approach, we leverage Vision Transformers (ViTs).
Here we provide an overview of their building blocks. A
ViT operates over sequences like the original transformer
[Vaswani et al., 2017] architecture. The input sequence can
be described by

X = [xcls; x1; . . . ; xM ] ∈ R(M+1)×F (1)
Here each xi represents a patch token with dimension F
of which there are M , and the global representation for the
image is captured by xcls. The most common approach
for splitting an image into a set of patches is to create non-
overlapping patches of shape P × P to produce a sequence
of patch tensors of shape P × P × C where C is the number
of channels. Each patch is flattened to a vector of size P 2C
and embedded to dimension F via a shared linear layer. This
is equivalent to applying a square convolutional filter with
kernel size P and stride P .

After generating the sequence of patches, learnable
positional encodings are added so that the model is aware of
spatial information instead of being a pure set-to-set model.
The ViT then performs K blocks of computation consisting
of multi-head self-attention (MHSA), layer normalization
[Ba et al., 2016], feed-forward layers (FFN), and a skip
connection. The input sequence length and dimensionality
are preserved in each block. The output we use is an
embedding zcls which captures the global representation of
the input image.

3.3 Forward Pass
Here we present the data flow through our model and our
augmentation setup. We define our training objective, namely
to learn an updated encoder function ϕ via a base encoder,
training query set, and training database set.

ϕnew = F(ϕnew,DQ,DD), (2)
where initially ϕnew = ϕbase. In this case, our base encoder
model, ϕbase is a flavor of ViT that comes initialized with
pretrained weights. We first embed each example in our
training database set DD ∈ RD×C×H×W via our base
encoder, where D is the number of the training database
images.

ZD = ϕnew(DD) ∈ RD×F (3)
Here we produce ZD from our database where each of the

D rows is an image embedding with output dimension F .
This is achieved by outputting the CLS token for each image
from the penultimate layer of the ViT and concatenating each
of the tokens row-wise.

ZD = [cls1, . . . , clsD] (4)
After constructing the database embeddings, we begin

training the base encoder. We present our approach for
a single query, but the method extends naturally to the
minibatch setting. From our training query set, DQ, we select
an image and perform data augmentation to generate A views
of the image (one of them is the original image) and produce
XA ∈ RA×C×H×W , where H and W are image dimensions
and C is the number of channels. We then embed each image
view with the encoder

ZA = ϕnew(XA) ∈ RA×F , (5)
where ZA is the concatenated set of CLS tokens for each of
the views in the minibatch. As is common in other methods
[Caron et al., 2021a; El-Nouby et al., 2021a], we project the
output embedding for each view onto the unit ball for each
view xi via ϕnew(xi)/∥ϕnew(xi)∥2. We compute the same
projection for the database set so a dot product similarity
computed between the embedded query views and database
set is equivalent to cosine similarity.
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3.4 Training Retrieval Mechanism
We begin with retrieval over all database image embeddings,
ZD, using our query embeddings, ZA. Hence, the full
retrieval computes the cosine similarity exhaustively over all
database embeddings ZD

Full Retrieval Setting. We compute a similarity matrix P
as a product between the embeddings of the query views, zA,
and the transpose of ZD:

P = ZA · (ZD)T ∈ RA×D (6)

P ′ = σ(P ) =
ePij∑T

h=1 e
Pih

for i = 1, 2, . . . , D, (7)

where σ is the softmax operator, so each row of P ′ can
be interpreted as a probability distribution. We use P ′ to
compute our loss as described in Section 3.5.

Note that in this approach we receive a full gradient signal
from the database to the encoder. This setting acts as an
implicit negative sampling where the encoder receives signals
from both similar and dissimilar embeddings.

However, this simple setting only makes sense if all
embeddings of the database images fit into GPU memory,
which is an unrealistic assumption for larger databases. To
address this limitation, we consider an approximate retrieval
setting, where first retrieve embeddings of top-k images, and
use them to construct the loss function defined in Section
3.5. These two methods differ in that approximate nearest
neighbor retrieval uses FAISS [Johnson et al., 2019] with
cosine similarity while full retrieval computes the cosine
similarity exhaustively over all database embeddings ZD.

Approximate Retrieval Setting. Let z ∈ R1×F denotes a
deep embedding of query q, and let ZA ∈ RA×F denotes
embeddings of the query views, where row i is an embedding
of view qi with q1 = q. For each view qi of q, we retrieve
database indices of its k nearest neighbors, denoted as Si.
From here, we use set operations to generate a combined set
of retrieved indices across all views. The goal is to find the
full set of indices retrieved by all of the views together:

Sunion =

A⋃
j=1

Sj . (8)

Now Sunion is a set containing all indices of the nearest
neighbors across all A query views. We then retrieve
the associated embeddings from the database to produce
Zunion
S ∈ RT×F , where T is the cardinality |Sunion|.

Finally, we compute a similarity matrix P as a product
between the embeddings of the query views, zA, and the
transpose of Zunion

S :

P = ZA · (Zunion
S )T ∈ RA×T (9)

P ′ = σ(P ) =
ePij∑T

h=1 e
Pih

for i = 1, 2, . . . , A. (10)

Discussion. Although the retrieval of top-k images and the
set union operation on their indices are not differentiable,
the encoder transformer weights can still be updated by

the gradient backpropagation from this loss function. In
other words, we use the nearest neighbor indices to obtain
the associated embeddings from the database, compute
the similarities between these selected images, and pass a
gradient back to the encoder.

In a sense, we treat the embeddings of top-k database
images as constants. However, since they change with each
query, the gradient is informed by the dot product computed
between the query views and their top-k database images.
Since the encoder weights are updated after each minibatch,
all query views in the next minibatch, which go through a
forward pass, have new embeddings. In contrast, the database
images get new embeddings every few epochs (15 epochs in
our implementation). See supplementary materials for more
details.

The key benefit of approximate retrieval is the ability to
scale to much larger database sizes as is common in industrial
settings. As our experiments in Section 4.3 demonstrate, the
performance in comparison to full retrieval is competetive.

3.5 Loss over Query Views and Database
Here we describe our loss formulation for a given input
embedding and its views. There are two main ideas
behind our loss design: divergence minimization and cross-
attention based classification. Both of these losses compute
a representation for the query conditioned on the database.
In Section 4.3 we present a thorough ablation on the relative
importance of each term in our loss function and also provide
a discussion detailing the behavior that each term induces in
the training process.
Frobenius Loss for Divergence Minimization Instead of
directly minimizing the distance between A views of the
query, we propose to minimize the divergence between
the distributions over all pairwise views conditioned over
the database. Our intuition is that different views of the
same query should retrieve similar database images. As
described in Section 3.4, we interpret a softmax normalized
similarities P ′ as distributions, where each row gives a
similarity distribution for each view over the retrieved image
embeddings from the database. We compute a symmetric
pairwise divergence matrix L ∈ RA×A using the Jensen-
Shannon (JS) Divergence:

Lij =
KL

(
P ′
i ||

(P ′
i+P ′

j)

2

)
+KL

(
P ′
j ||

(P ′
i+P ′

j)

2

)
2

, (11)

KL(P ||R) =
∑
x

P (x) log

(
P (x)

R(x)

)
, (12)

where P and R are two distributions. Since different views of
the same query should retrieve similar database images, each
Lij ≥ 0 should be as small as possible. Hence, to compute an
overall loss, we use the Frobenius Matrix Norm [Shen et al.,
2013] of matrix L (using only the lower-triangular portion as
the JS Divergence is symmetric):

Lfrob =

√√√√ A∑
i=2

i−1∑
j=1

L2
ij . (13)
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Intuitively each entry, Lij , gives the distance between view
i and view j conditioned on the distances to the retrieved
database embeddings. So by minimizing Lfrob we want new
embeddings of views i and j to retrieve the same set of k-
nearest neighbors with corresponding similarity values being
similar. We reiterate that this loss is computed in a self-
supervised way.
Classification Loss We use two modes of classification loss.
The first computes a simple cross-entropy for each view
embedding, z. Note that the original query is included as
one of the views. Each embedding is passed through a linear
layer and softmax layer to produce an output distribution, q
over c classes. This is then passed through the cross-entropy
loss with labels y.

q = σ(Wq · z) ∈ R1×c (14)

Lce = −
c∑

m=1

yc log(qm) (15)

CAC Loss The second approach is to classify a new
representation of the input query embedding, z, which
is obtained via cross-attention over the retrieved database
embeddings, Zunion

S ∈ RT×F , where T is the total number
of retrieved embeddings. We call this the cross-attention
classification (CAC) loss. Intuitively the goal is to determine
the class of z by attending on similar examples from the
database and this setting closely resembles the category-level
retrieval task where an input image of class ci returns other
images of the same class from the database. We design our
loss as follows

Q,K, V = Wqz,WkZ
union
S ,WvZ

union
S (16)

z′ = σ(
Q ·KT

√
F

)V (17)

q = σ(Wc · z′) ∈ R1×c (18)

Lcac = −
c∑

m=1

yc log(qm), (19)

where Wq,Wk,Wv ∈ RF×F and Wc ∈ RF×c for c classes.
Note that both Lce and Lcac are computed and summed over
all query views z.
Overall Loss Our combined loss is a simple weighted sum
over each of the individual losses.

Ltotal = βfrobLfrob + βceLce + βcacLcac (20)

We note that this loss performs well without any careful
weighting and by simply allowing equal contribution for each
term. In Section 4.3, we show experiments with different
configurations for β including βi = 0, which removes the
corresponding term.

4 Experiments
We follow a commonly used protocol for training and
evaluation [Ermolov et al., 2022; El-Nouby et al., 2021a]
and compare our method to state-of-the-art approaches
across three datasets. We also share our implementation
details and a thorough set of ablations on our architecture,
hyperparameters, and loss design.

Figure 2: We show our Classification loss and Cross-Attention
Classification (CAC) loss. The CAC loss computes cross-
attention between a query embedding, z and the k-nearest neighbor
embeddings from the database. This produces a new representation
z′ for z that is conditioned on the database. This can loosely be
thought of as projecting the query to the basis produced by the
database embeddings via a simple linear combination.

4.1 Datasets
In training, we use 80-20 stratified split over classes to create
the Training Query and Training Database Sets, respectively.
Our splits follow the common approaches used in [El-Nouby
et al., 2021a; Ermolov et al., 2022].
CUB-200 [Wah et al., 2011] is a fine-grained dataset
containing 11,788 images covering 200 sub-category classes
of birds. We use the first 100 classes for training and the
remaining for testing with no class overlap between train and
test settings.
In-Shop Clothes Retrieval [Liu et al., 2016] is a clothing
dataset containing 52,712 total images and 7,896 classes.
We use the first 3997 classes for training and the remaining
classes for testing.
Cars-196 [Krause et al., 2013] is a dataset of car models
containing 16,185 total images and 196 classes. We split the
dataset into 8,054 images for training (98 classes) and the
remaining 98 classes for testing.
Stanford Online Products (SOP) [Song et al., 2016]
contains 120,053 images of 22,634 products downloaded
from eBay.com. We use the standard split of 59,551 images
(11,318 classes) for training and 60,502 images (11,316
classes) for testing.

4.2 Implementation and Evaluation Details
We use two ViT variants as encoders across experiments, ViT-
S [Dosovitskiy et al., 2021] and DeiT-S [Touvron et al.,
2021] following other transformer-based retrieval approaches
[Ermolov et al., 2022; El-Nouby et al., 2021a]. Both are
based on the ViT-S architectures and are readily comparable
across other convolutional approaches on parameter counts
(ViT-S 22M, ResNet-50 23M [He et al., 2015]). ViT-S
is pretrained on ImageNet-21k [Deng et al., 2009] which
contains 14M images and 21K classes while DeiT-S is
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Method Dim Architecture CUB-200 In-Shop Cars-196 Stanford Online Products
1 2 4 8 1 10 20 30 1 2 4 8 1 2 4 8

NSoftmax [Zhai and Wu, 2019b] 512 R50 61.3 73.9 83.5 90 86.6 97.5 98.4 98.8 84.2 90.4 94.4 96.9 78.2 90.6 96.2 -
ProxyNCA++ [Teh et al., 2020b] 512 R50 69.0 79.8 87.3 92.7 90.4 98.1 98.8 99.0 86.5 92.5 95.7 97.7 80.7 92.0 96.7 98.9
A-BIER [Opitz et al., 2020] 512 GoogleNet 57.5 68.7 78.3 86.2 93.1 95.1 96.9 97.5 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8
ABE [Kim et al., 2018] 512 GoogleNet 60.6 71.5 79.8 87.4 87.3 96.7 97.9 98.2 85.2 90.5 94.0 96.1 76.3 88.4 94.8 98.2
SM [Suh et al., 2019] 512 GoogleNet 56.0 68.3 78.2 86.3 90.7 97.8 98.5 98.8 83.4 89.9 93.9 96.5 75.3 87.5 93.7 97.4
Proxy-Anchor [Kim et al., 2020b] 512 Inception-BN 68.4 79.2 86.8 91.6 91.5 98.1 98.8 99.1 86.1 91.7 95.0 97.3 79.1 90.8 96.2 98.7
SoftTriple [Qian et al., 2019] 512 Inception-BN 65.4 76.4 84.5 90.4 - - - - 84.5 90.7 94.5 96.9 78.6 86.6 91.8 95.4
HORDE [Jacob et al., 2019] 512 Inception-BN 66.8 77.4 85.1 91.0 90.4 97.8 98.4 98.7 86.2 91.9 95.1 97.2 80.1 91.3 96.2 98.7
XBM [Wang et al., 2020] 512 Inception-BN 65.8 75.9 84.0 89.9 89.9 97.6 98.4 98.6 82.0 88.7 93.1 96.1 79.5 90.8 96.1 98.7
MS [Wang et al., 2019] 512 Inception-BN 65.7 77.0 86.3 91.2 89.7 97.9 98.5 98.8 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
HTL [Ge et al., 2018] 512 Inception-BN 57.1 68.8 78.7 86.5 80.9 94.3 95.8 97.2 81.4 88.0 92.7 95.7 74.8 88.3 94.8 98.4
IRT R [El-Nouby et al., 2021b] 384 DeiT-S 76.6 85.0 91.1 94.3 91.9 98.1 98.7 98.9 - - - - 84.2 93.7 97.3 99.1
Sph-DeiT [Ermolov et al., 2022] 384 DeiT-S 76.2 84.5 90.2 94.3 89.6 97.2 98.0 98.4 81.7 88.6 93.4 96.2 82.5 92.9 97.1 99.1
Sph-DINO [Ermolov et al., 2022] 384 ViT 78.7 86.7 91.4 94.9 90.1 97.1 98.0 98.4 86.6 91.8 95.2 97.4 82.2 92.1 96.8 98.9
Sph-ViT [Ermolov et al., 2022] 384 ViT(IN21k) 85.1 90.7 94.3 96.4 90.4 97.4 98.2 98.6 81.7 89.0 93.0 95.8 82.1 92.5 97.1 99.1
Hyp-DeiT [Ermolov et al., 2022] 384 DeiT-S 77.8 86.6 91.9 95.1 90.5 97.8 98.5 98.9 86.4 92.2 95.5 97.5 83.3 93.5 97.4 99.1
Hyp-DINO [Ermolov et al., 2022] 384 ViT 80.9 87.6 92.4 95.6 92.4 98.4 98.9 99.1 89.2 94.1 96.7 98.1 85.1 94.4 97.8 99.3
Hyp-ViT [Ermolov et al., 2022] 384 ViT(IN21k) 85.6 91.4 94.8 96.7 92.5 98.3 98.8 99.1 86.5 92.1 95.3 97.3 85.9 94.9 98.1 99.5
DMCAC-DeIT 384 DeiT-S 78.4 87.0 92.3 95.0 91.1 98.5 98.8 99.1 84.4 89.2 94.9 97.5 84.2 93.6 97.4 99.1
DMCAC-ViT 384 ViT (IN21k) 86.2 92.0 94.7 96.7 92.7 98.2 98.9 99.3 88.5 93.9 96.7 98.0 86.3 95.2 97.5 99.5

Table 1: Recall@k metrics comparing across state-of-the-art methods on the CUB-200, In-Shop, Cars-196, and Stanford Online Products
datasets. DMCAC (ours) performs competitively across architectures and outperforms all previous methods in several settings.

pretrained using the ImageNet-1k subset containing 1.3M
images and 1K classes. DeiT is trained via distillation using a
ResNet teacher model, more details can be found in [Touvron
et al., 2021]. Both encoders output embeddings of size 384.
We use 224 × 224 input resolution across datasets. During
training, we resize to 256 on the smaller size and take a
random crop of size 224 × 224 while during testing we take
a center crop of 224 × 224. We compute Recall@K as our
evaluation metric during testing and use the embeddings z
as described in Equation 5 projected to the unit ball. We
choose RandAugment for query augmentation [Cubuk et
al., 2019b] across all experiments. This is chosen over
learnable augmentation methods [Cubuk et al., 2019a] for
computational efficiency. Unless otherwise stated, we use
A = 6 to generate A views of a query (which includes
the query as one of the views) during training and use the
approximate retrieval approach with k = 12 rather than the
full retrieval approach. There is no augmentation applied
during testing. Unless otherwise stated, we use βfrob =
βce = βcac = 1 as described in Equation 20. We use AdamW
[Loshchilov and Hutter, 2019] with learning rate 3× 10−5 as
the optimizer with weight decay 0.01. We use batch size of
256 for all datasets except SOP where we use 128 and number
of steps as 250, 600, 2500, and 25000 for CUB, Cars, In-
Shop, and SOP respectively.

4.3 Results
We present results across a variety of settings and compare
to other state-of-the-art methods across each of our datasets.
In Table 1 we compare our method, DMCAC, against other
state-of-the-art approaches that use both convolutional and
ViT based backbones. Across the four datasets, the ViT based
methods outperform their convolutional counterparts despite
using a lower embedding dimension. For our DMCAC-DeiT
method, we consistently outperform the other DeiT methods
across all four datasets and are pushing the state-of-the-art
results even against the ViT (ImageNet-21K) models which
are pre-trained on a much larger dataset. Using our DMCAC-
ViT method, we achieve several state-of-the-art results across

Method Betas Recall@k
1 10 20 30

Proxy-Anchor - 91.5 98.1 98.8 99.1
Hyp-DINO - 92.4 98.4 98.9 99.1
DMCAC-DeIT [1,1,1] 91.1 98.5 98.8 99.1
DMCAC-ViT 92.7 98.2 98.9 99.3
DMCAC-DeIT [1,0,1] 91.2 98.6 98.6 99.0
DMCAC-ViT 92.7 98.3 98.8 99.4
DMCAC-DeIT [1,1,0] 91.0 98.3 98.5 98.9
DMCAC-ViT 92.4 98.3 98.7 99.3
DMCAC-DeIT [0.5,0.5,1] 91.4 98.5 98.9 99.3
DMCAC-ViT 93.0 98.4 98.9 99.5
DMCAC-DeIT [0.5,0,1] 91.4 98.6 98.8 99.2
DMCAC-ViT 93.1 98.5 98.9 99.4
DMCAC-DeIT [1,0.5,0.5] 91.3 98.2 98.9 99.3
DMCAC-ViT 92.9 98.5 98.8 99.4
DMCAC-DeIT [1,0.5,0] 90.2 97.9 98.2 98.4
DMCAC-ViT 91.9 96.9 97.2 97.8
DMCAC-DeIT [0,0.5,1] 90.3 97.5 98.3 98.6
DMCAC-ViT 91.7 96.9 97.9 98.1

Table 2: We compare the effect of tuning the loss weights Betas=
[βfrob, βce, βcac] against the existing SOTA methods using both
convolutional and ViT backbones on the In-Shop dataset. Overall we
find that our base configuration of equally weighting terms already
outperformed other methods making our method a good choice to
use out-of-the-box, but there were minor gains made by careful
tuning of these terms.

the datasets and are comparable to existing ViT methods
[Ermolov et al., 2022]. We perform especially well on CUB-
200, In-Shop, and Stanford Online Products. We hypothesize
that this is because our approach can better distinguish
between birds, clothing, and eBay products, which have more
varied geometries and color patterns than the examples in
Cars-196, though we are competitive there as well. We
also make a similar observation to the one in [Ermolov et
al., 2022] that there is a large gap in performance between
DMCAC-DeiT and DMCAC-ViT on CUB-200, which is
likely because ImageNet-21k contains bird classes, which
yields better separability for DMCAC-ViT.
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Views DMCAC-DeIT DMCAC-ViT
3 78.6 86.0
6 78.4 86.2
9 78.3 86.3
12 78.2 86.1
15 77.9 86.1
20 77.7 86.0

Table 3: Ablation showing Recall@1 on CUB-200 when varying the
number of views generated per query. The default choice is 6 views.

Recall @ k
Dataset Method 1 2 4 8
CUB-200 DMCAC-DeIT 78.4 87.0 92.3 95.0

DMCAC-ViT 86.2 92.0 94.7 96.7
DMCAC-DeIT - FR 78.6 87.2 93.0 95.5
DMCAC-ViT - FR 86.8 92.3 94.9 96.7

Cars-196 DMCAC-DeIT 84.4 89.2 94.9 97.5
DMCAC-ViT 88.5 93.9 96.7 98.1
DMCAC-DeIT - FR 84.8 89.2 94.9 97.5
DMCAC-ViT - FR 89.2 94.0 97.0 97.9

Table 4: We present an ablation of our approximate retrieval
setting compared to the full retrieval setting (FR). We mostly see
improvement in the FR setting compared to approximate retrieval,
but the difference is relatively minor.

In Table 2 we present the effect of tuning our loss weights
for each term in Ltotal, namely [βfrob, βce, βcac]. We
highlight that our method works competitively out-of-the-box
with the default configuration of equally weighting each loss
term. This is clearly shown in Figure 3, where as training
progresses, query examples learn to attend to the database
examples of the same class. We find that with careful tuning
of loss weights on the In-Shop dataset, we incrementally
increase our already state-of-the-art retrieval performance.

We find that when we completely remove or down-weight
Lce relative to βfrob and βcac, retrieval performance stays
stable compared to the baseline of equal weighting. However,
if we remove either βfrob or βcac as shown in the last two
runs, performance drops drastically. This shows that both
divergence minimization and cross-attention classification
are necessary design choices in order to make our method
work, and removing either significantly decrease retrieval
performance. We hypothesize that this is because both
terms have a synergistic relationship in the following way.
As βfrob decreases, the encoder learns both robustness to
augmentations and to retrieve similar embeddings from the
database across each augmented view. Simultaneously, the
cross-attention operation used in βcac re-encodes each input
view as a linear combination of the retrieved embeddings
which are treated as basis vectors. A correct classification can
then reasonably be achieved via a simple linear combination
only if the retrieved embeddings capture the semantic
meaning of the query. This is the very goal of category level
retrieval.

In Table 3 we perform an ablation on the number of
views generated per image and how this affects Recall@1
for CUB-200. There is a tradeoff between the computational
complexity of generating more views and the benefits of

Figure 3: Cross-Attention maps between the validation query and
database sets at iteration 5 (left) and 100 (right) for CUB-200 with
DMCAC-ViT. Entry (i,j) shows the similarity of query of class i
to database of class j. As training progresses, queries attend to
database examples of the same class shown by the diagonal line.

learning invariances over a greater number of augmentations.
The effective batch size increases proportionally to the
number of generated views which can be limiting depending
on available GPU memory. However, we find that retrieval
results stayed stable across the DMCAC-ViT settings and
degraded for more views when using DMCAC-DeiT. Thus
we find that our method is relatively stable to the number of
augmentations used and thus is accessible and performs well
even in low-memory environments.

In Table 4 we compare our approximate retrieval setting
against full retrieval (FR) on CUB-200 and Cars-196. Due
to the increase in memory and computational complexity of
FR we reduce the relative size of the database compared
to the query set during training. The testing setting
remains unchanged. For CUB-200 we use a stratified 90-
10 query-database split during training and a stratified 95-
5 split for Cars-196 during training. We see that the
FR outperforms approximate retrieval across both datasets
and models in most cases, but the difference is relatively
minor. We hypothesize that this is because FR is end-to-end
differentiable which means a gradient signal gets passed back
to the encoder from all of the database embeddings rather
than just from the subset of top-k examples. This acts as
a sort of negative sampling where the encoder sees the full
database distribution, including the long tail of low-similarity
examples for a given query.

5 Conclusions
We offer a new perspective on image retrieval using self-
supervision with a novel loss formulation. We hypothesize
that our distribution matching objective learns better query
representations than point-wise objectives which can suffer
from sampling noise. We instead learn a full mapping from
the queries to the database via Lfrob. We also hypothesize
that cross-attention classification (CAC) is better aligned to
retrieval than cross-entropy classification (CEC). In CAC,
each query is projected to a “database space” as an attention-
weighted linear combination of the database images and
is correctly classified if its “database space” representation
accurately captures its class.
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