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Abstract

Infrared and visible image fusion aim to inte-
grate modality strengths for visually enhanced, in-
formative images. Visible imaging in real-world
scenarios is susceptible to dynamic environmental
brightness fluctuations, leading to texture degra-
dation. Existing fusion methods lack robustness
against such brightness perturbations, significantly
compromising the visual fidelity of the fused im-
agery. To address this challenge, we propose
the Brightness Adaptive multimodal dynamic fu-
sion framework (BA-Fusion), which achieves ro-
bust image fusion despite dynamic brightness fluc-
tuations. Specifically, we introduce a Brightness
Adaptive Gate (BAG) module, which is designed
to dynamically select features from brightness-
related channels for normalization, while preserv-
ing brightness-independent structural information
within the source images. Furthermore, we propose
a brightness consistency loss function to optimize
the BAG module. The entire framework is tuned
via alternating training strategies. Extensive ex-
periments validate that our method surpasses state-
of-the-art methods in preserving multi-modal im-
age information and visual fidelity, while exhibit-
ing remarkable robustness across varying bright-
ness levels. Our code is available: https://github.
com/SunYM2020/BA-Fusion.

1 Introduction

Intelligent unmanned systems are susceptible to a decrease
in perception ability due to the interference of real dynamic
environments [Birk, 2021]. Configuring multimodal sen-
sors can effectively enhance their perception ability in com-
plex environments [Sun er al., 2022b]. Infrared and visi-
ble cameras, as a typical set of multimodal sensors, have
been widely applied in casualty searching, surveillance mis-
sions, etc. However, due to the limitations of hardware de-
vices and imaging mechanisms, visible or infrared cameras
can usually only capture partial information of the scene and
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Figure 1: Visual comparisons on fused results and pixel histograms
under dynamic brightness conditions. Our method keeps robust per-
formance under varying levels of brightness.

cannot fully represent the entire scene. Therefore, multi-
modal image fusion [Ma er al., 2019a; Zhang et al., 2021,
Xu et al., 2022] can aggregate the significant contrast in-
formation of the infrared modality and the texture detail in-
formation of the visible modality, generating fusion images
with sufficient information and good visual effects. In the
past decades, how to design advanced fusion methods has at-
tracted a lot of research attention.

Existing infrared and visible fusion methods can be di-
vided into two categories: traditional methods represented
by image decomposition [Li er al., 2020] and sparse rep-
resentation [Zhang et al., 2018], and methods based on
deep learning. Among them, deep learning-based meth-
ods can be further categorized into methods based on pre-
trained autoencoder [Li and Wu, 2018; Zhao et al., 2020;
Li et al., 2021], methods based on GAN [Ma et al., 2019b;
Ma et al., 2020], methods based on CNN [Tang er al., 2022b;
Sun et al., 2022a; Cao et al., 2023], methods based on diffu-
sion models [Zhao et al., 2023], and methods based on Trans-
former [Wang er al., 2022; Tang et al., 2022c]. However,
most of these methods directly combined the texture details


https://github.com/SunYM2020/BA-Fusion
https://github.com/SunYM2020/BA-Fusion

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

and object contrasts of different modalities using a fixed cor-
relation pattern, ignoring the dynamic changes in reality. This
makes it difficult for the models to achieve dynamically ro-
bust adaptive fusion effects when facing fluctuations in envi-
ronmental brightness. As shown in Fig. 1, the visible image is
affected by brightness interference, resulting in overexposed
or dark images. Existing methods lack the dynamic adaptive
capability to handle brightness changes, inevitably leading to
fluctuations in the fusion image quality with varying environ-
mental brightness, thereby reducing the visual fidelity of the
fusion image.

In practical applications, infrared and visible image fusion
models should possess robust adaptive capabilities to handle
variations in environmental brightness to avoid fusion results
being compromised due to brightness fluctuations. To fill this
gap, we propose an adaptive dynamic fusion framework that
can adapt to changes in brightness and achieve robust fusion
of multimodal images under dynamic variations in environ-
mental brightness. In Fig. 1, our method shows a more con-
sistent histogram distribution under different brightness con-
ditions, demonstrating the proposed method effectively bal-
ances the impact of brightness fluctuations on the model’s
learning of texture details and contrast information of differ-
ent modalities, thus achieving the most robust fusion effect.

Specifically, we propose a dynamic image fusion frame-
work with brightness adaptive gating, termed BA-Fusion,
which consists of two parts: Brightness Adaptive Gate (BAG)
and multimodal fusion backbone network. The multimodal
backbone network is composed of an encoder and a decoder,
which are used to extract features from the infrared and vis-
ible modalities and generate the fusion image, respectively.
The BAG module guides the model to dynamically select
the most relevant feature channels with respect to brightness
variations in a data-driven manner. It performs brightness
normalization on these channels to eliminate the impact of
brightness, while the brightness-independent channel features
continue to be reused to preserve structural detail informa-
tion. To train the BAG module, we designed a brightness con-
sistency loss function, which serves as a constraint by ensur-
ing the frequency domain brightness representation of fusion
results under different brightness perturbations is consistent
with that of normal fusion results. The BAG module gradu-
ally establishes the connection between brightness variations
and feature channels through alternating training strategies.
In this way, the proposed BA-Fusion has the capability of
brightness-adaptive robust multimodal fusion.

The main contributions of this paper are summarized as
follows:

* We propose a brightness adaptive dynamic image fusion
framework, which effectively mitigates the instability is-
sue in fusion effect caused by environmental brightness
fluctuations, enabling robust fusion of infrared and visi-
ble images under dynamic brightness conditions.

* We introduce a brightness adaptive gate module that
establishes the correspondence between input image
brightness and channel feature representation under the
constraint of the brightness consistency loss function.

* The proposed model dynamically balances the advan-
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tages of visible and infrared modalities in terms of tex-
ture details and contrast. Extensive experiments on mul-
tiple infrared-visible datasets clearly demonstrate our
superiority from both quantitative and qualitative per-
spectives.

2 Related Works

2.1 Infrared and Visible Image Fusion

The infrared and visible image fusion task aims to gener-
ate fused images containing richer information by learning
the multimodal superiority information [Ma et al., 2016].
DenseFuse [Li and Wu, 2018] and DIDFuse [Zhao et al.,
2020] use autoencoder to extract multimodal features and
combine them according to predefined rules for fusion. Re-
cently, some task-driven fusion methods [Sun et al., 2022a;
Liu et al., 2022; Tang et al., 2022a] establish a bridge be-
tween low-level image fusion and high-level visual tasks. Ad-
ditionally, GAN-based methods [Ma et al., 2019b; Ma et al.,
2020], Transformer-based methods [Wang et al., 2022; Tang
et al., 2022c] and Diffusion models-based method [Zhao et
al., 2023] have also gained widespread attention. Both DIV-
Fusion [Tang et al., 2023] and L2Fusion [Gao et al., 2023]
tackle the low-light fusion problem through the approach
of low-light enhancement, without considering the fluctua-
tions in fusion effect caused by dynamic changes in bright-
ness (overexposure or underexposure). PIAFusion [Tang er
al., 2022b] introduces an illumination-aware sub-network,
but its predicted results are only used for the weights of
the infrared intensity loss and visible intensity loss during
the training phase. Different from coarse-grained image-
level illumination-aware networks, our proposed BA-Fusion
constructs a channel-level brightness adaptive framework to
achieve dynamic normalization of brightness changes at a
finer granularity, ensuring stable learning of rich texture de-
tails in the visible modality and achieving robust image fusion
under dynamic illumination.

2.2 Brightness Correction

Brightness correction helps to improve image contrast and vi-
sual appeal. Low-light image enhancement and exposure cor-
rection as typical brightness correction tasks have attracted
extensive attention from researchers [Yang er al., 2023;
Yao et al., 2023; Afifi et al., 2021]. Low-light image en-
hancement [Li et al., 2018; Zhang et al., 2022] aims to
improve image visibility and quality under low-light condi-
tions. Exposure correction [Huang et al., 2022b; Huang et al.,
2022c¢] aims to adjust brightness components (such as illumi-
nation and reflectance) from overexposed versions to normal
versions. STAN [Zhang ef al., 2022] adopts a divide-and-
conquer strategy to model the structural representation and
texture representation of low-light images separately. FEC-
Net [Huang et al., 2022b] explores the information repre-
sented by the amplitude and phase of the Fourier Transform in
exposure correction and designs an interactive module in both
frequency and spatial domains to achieve brightness correc-
tion. Multimodal image fusion tasks aiming to work round-
the-clock are naturally challenged by dynamic changes in il-
lumination. There is still a gap in how to achieve adaptive ro-
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Figure 2: The architecture of BA-Fusion. BA-Fusion consists of a
Brightness Adaptive Gate (BAG), and the multimodal fusion back-
bone network.

bust multimodal fusion based on image inputs with different
brightness levels. For the first time, we establish the dynamic
correspondence between channel-level features and bright-
ness in the multimodal fusion task, achieving brightness-
adaptive robust fusion.

3 Method
3.1 Opverall Architecture

In this paper, we propose a dynamic image fusion framework
with brightness adaptive gating, termed BA-Fusion, which
contains a Brightness Adaptive Gate (BAG) module and the
multimodal fusion backbone network. Fig. 2 illustrates the ar-
chitecture of the proposed BA-Fusion. The BAG module dy-
namically selects original and normalized features along the
channel dimensions in a data-driven manner and then com-
bines them to be passed to the decoder. The multimodal
backbone network is composed of an encoder and a decoder,
which are used to extract features from the infrared and vis-
ible modalities and generate the fusion image, respectively.
The structure of the backbone network follows [Chen et al.,
2022]. To optimize the BAG module, we also propose an al-
ternating training strategy with a brightness consistency loss
function to force the gating module to select the brightness-
related channel, which is driven by performance stability un-
der the brightness jitter operation.

In Fig. 2, a pair of infrared image I7 € and vis-
ible image Iy, € R”*W*3 are fed into the fusion encoders
Encyr to extract the multi-modal features. Among them, the
infrared and visible modalities share the weights of the en-
coder Ency. The output of the encoder has two parts: the
infrared and visible feature maps (zT and zV). Then we feed
the visible feature map x" to the BAG module to extract the
channel-reorganized feature map x). We fuse ) with the

infrared feature map x7 and feed them to the fusion decoder
Decr, which generates the fused image I € R7*Wx3,

RHXWXI
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3.2 Brightness Adaptive Gate

As shown in Fig. 2, the BAG module contains two key com-
ponents, brightness normalization for eliminating brightness-
related information and a dynamic gating module for adap-
tively selecting brightness-related channels. The BAG mod-
ule selects the feature channels that are most relevant to the
brightness change in a data-driven manner guided by dynamic
gating. Brightness normalization is then performed on these
channels to remove the effects of brightness while continuing
to reuse the brightness-independent channel features to pre-
serve structural detail information.

Brightness Normalization
Normalization has been proven to eliminate brightness-
related components, retain robust structural representations,
and effectively reduce the impact of brightness variations on
model learning [Huang et al., 2022a]. We perform channel-
wise normalization of the output features ¥ of the encoder
Encg, the formula of normalization is as follows,
Y — (Y

orm :vo_(;’,,() ) i8, ()
where j(z") and o(x") are the mean and standard deviation
calculated independently on the spatial dimension of each
channel and instance, respectively. v, 3 € R are learnable
parameters.

The normalized feature Y, . has a robust representation
irrelevant to brightness changes, which helps the model learn
robustly. However, normalization is also a double-edged
sword [Yao er al., 2023], as it inevitably loses image statisti-
cal information and affects image reconstruction accuracy.

Dynamic Gating Module

In Fig. 2, we propose a dynamic gate module that takes vis-
ible feature maps =" as inputs and passes through a set of
neural networks to output a routing with a set of binary indi-
cators. This routing is used to guide the model in selecting
brightness-related channels, thus achieving dynamic channel
selection. Based on the routing selection result, we select
only the routed channels from the zY,.,.., while retaining the
remaining channels of the original feature V. Finally, these
channel features are recombined to obtain the output feature
x;’. This design effectively mitigates the information loss
caused by normalization. The formula of dynamic gate mod-
ule is as follows,

:L'}; = (lfw)G:cVer@:cxorm, 2)
where w represents the binary indicators across the channel
dimension, and ©® is the channel-wise multiplication. The
dynamic gating module contains a global average pooling
(GAP) layer with 2 Conv-ReLu layers, and the output of this
module is converted to a binary indicator by the binarization
function G(«) to indicate the activation or deactivation of the

channel. The G(«) is formalized as,

a2

w—G(a)—a2+€, 3)
where € is a small positive number. This function trans-
forms « to a value close to one or zero, resulting in an on-off
switch gate without requiring additional manual threshold de-

sign. The introduction of the dynamic gating module enables
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dynamic normalization of the channels, allowing the recom-
bined features to eliminate the effects of brightness while re-
taining the basic structural information of the features.

3.3 Alternating Training Strategy

To train the BAG, we propose an alternating optimization
strategy with brightness consistency loss to drive the dynamic
gating module to adaptively select brightness-related chan-
nels and retain the brightness-independent channels.

As illustrated in Fig. 2, in the first stage, we train the BA-
Fusion model based on the original visible and infrared im-
ages. During this stage, the network weights of the BAG
module are frozen, and the fusion loss £ f,sion is used to op-
timize the entire multimodal fusion framework. In the sec-
ond stage, we perform random brightness jitter on the visible
images Iy, and input the jittered images I;, along with the
infrared images /7 into the BA-Fusion network to generate
jittered fusion images I’-. In this process, to encourage the
BAG module to locate and filter out the brightness-related
channels, we freeze the model parameters of the fusion en-
coder Ency and decoder Decr and only optimize the net-
work weights of the BAG module. In the second stage, we
propose a brightness consistency loss function, which con-
strains the consistency of the brightness and structural fea-
tures of the fusion results under different brightness perturba-
tions with the feature representation of normal fusion results
in the first stage. This strategy gradually establishes the con-
nection between brightness variations and feature channels in
the BAG module, enabling the fusion model to possess dy-
namic fusion capability with brightness adaptation. During
alternate training, all model weights are shared.

Fusion Loss

According to the alternating training strategy, we divide the
network parameters into two groups based on whether they
belong to the BAG module and update them using different
loss functions. In the first step, we input the original visible
and infrared images and update the parameters outside of the
BAG module using the fusion loss function. The fusion loss
Ly formula is as follows,

Efus = ‘Cpiwel + Eg’r'ad- (4)
Among them, the pixel loss L, is defined as,

1
Epizel = W ||I]: — max (IV?II)”l ’ ®
where W and H are the width and height. We expect the
fused image to preserve the richest texture details of the im-
ages from both modalities. So the gradient loss Lg,qq is for-
mulated as,

L \VIz| —mazx (|VIv],|VIzZ])|l,, (6)

1
yrad = g7 |
where V denotes the Sobel gradient operator, which measures
the texture detail information of an image. |-| stands for the
absolute operation.
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Brightness Consistency Loss

In the second step, we apply brightness jitter to the visible im-
ages. During this step, we freeze the parameters outside the
BAG module and only update the internal parameters of the
BAG using the proposed brightness consistency loss. Consid-
ering that image brightness is related to the amplitude in the
frequency domain [Huang er al., 2022b], we introduce fre-
quency domain amplitude information to design the bright-
ness consistency loss. This encourages the network to pay
closer attention to the brightness information and effectively
select the channels that are related to brightness. The bright-
ness consistency loss L is formulated as,

Loy = |Ir — Ir|s + [A(I%) — A(IF)|2, (7)

where I’ is the generated jittered fusion images, and A
reprensents the amplitude information in frequency domain.
This enables BAG to adaptively select the brightness-related
channels to keep the performance on jittered fusion images.

The two steps are alternately optimized by the Ly, and
L1, so the overall loss function is formulated as,

L= ﬁfus + ‘Cbcl- (8)

4 Experiments

4.1 Experimental Setting

Datasets and Partition Protocol. We conducted experi-
ments on two publicly available datasets: (M3FD [Liu et al.,
2022] and LLVIP [Jia et al., 2021]).

M?3FD: It contains 4, 200 infrared-visible image pairs cap-
tured by on-board cameras. We used 3,900 pairs of images
for training and the remaining 300 pairs for evaluation.

LLVIP: The LLVIP dataset contains 15,488 aligned
infrared-visible image pairs, which is captured by the surveil-
lance cameras in different street scenes. We trained the model
with 12, 025 image pairs and evaluated 3,463 image pairs.

Competing Methods. We compared the 9 state-of-the-art
methods on two publicly available datasets (M3FD [Liu et
al., 2022] and LLVIP [Jia et al., 2021]). In these com-
parison methods, DenseFuse [Li and Wu, 2018] and RFN-
Nest [Li et al., 2021] are the autoencoder-based methods, PI-
AFusion [Tang et al., 2022b], DIVFusion [Tang et al., 20231,
and IFCNN [Zhang ef al., 2020] are the CNN-based meth-
ods, TarDAL [Liu et al., 2022] is the GAN-based methods.
DIDFuse [Zhao et al., 2020] and DeFusion [Liang ef al.,
2022] are the deep learning-based decomposition methods.
YDTR [Tang er al., 2022¢] is the Transformer-based method.

Implementation Details. We performed experiments on a
computing platform with four NVIDIA GeForce RTX 3090
GPUs. We used Adam Optimization to update the overall
network parameters with the learning rate of 1.0 x 10~%. The
training epoch is set to 60 and the batch size is 8.

Evaluation Metrics. We evaluated the performance of the
proposed method based on qualitative and quantitative re-
sults. The qualitative evaluation is mainly based on the vi-
sual effect of the fused image. A good fused image needs
to have complementary information of multi-modal images.
The quantitative evaluation mainly uses quality evaluation
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Method SF SD MI VIF AG Qs

Method SF SD MI VIF AG Qaby

DenseFuse [Li and Wu, 2018] 0.0426 9.3800 2.6764 0.6894 3.2640 0.3093
IFCNN [Zhang et al., 2020]  0.0688 9.7633 2.9479 0.7797 5.4136 0.5845
DIDFuse [Zhao er al., 20201  0.0550 7.8074 2.5137 0.5054 3.4474 0.2436
RFN-Nest [Li ef al., 2021]  0.0300 9.7184 2.5042 0.7294 2.7853 0.2287
PIAFusion [Tang et al., 2022b] 0.0787 9.7320 3.3690 0.8860 6.0846 0.5789
YDTR [Tang et al., 2022c] ~ 0.0474 8.8701 2.9152 0.6322 3.2043 0.2907
TarDAL [Liu et al., 2022]  0.0647 9.7676 3.4655 0.7769 4.6094 0.4431
DeFusion [Liang er al., 2022] 0.0425 9.7210 3.2228 0.7901 3.4194 0.3641
DIVFusion [Tang ef al., 2023] 0.0659 9.7579 2.2851 0.8772 5.7428 0.3386
BA-Fusion 0.0812 9.8696 3.4454 0.9596 6.0597 0.6843

Table 1: Quantitative comparison of our BA-Fusion with 9 state-of-
the-art methods on the LLVIP dataset. Bold red indicates the best,
Bold blue indicates the second best, and Bold cyan indicates the
third best.

metrics to measure the performance of image fusion. We
selected 6 popular metrics, including the spatial frequency
(SF) [Eskicioglu and Fisher, 1995], standard deviation (SD),
mutual information (MI) [Qu er al., 2002], visual infor-
mation fidelity (VIF) [Han et al., 2013], average gradient
(AG) [Cui er al., 2015], and gradient-based similarity mea-
surement (Qabf) [Xydeas and Petrovic, 2000]. Moreover, we
also conducted task-oriented object detection evaluation.

4.2 Evaluation on the LLVIP Dataset

Quantitative Comparisons. The quantitative results of the
different methods on the LLVIP dataset are reported in Ta-
ble 1. Our method outperforms all the compared methods
on 4 metrics and achieves the second best results on the re-
maining 2 metrics, respectively. Specifically, the highest SF
we achieved indicates that the proposed method preserves
richer texture details in the multi-modal images. As well
as the highest SD also indicates that our fusion results can
contain the highest contrast information. @5y denotes the
complementary information and edge information transferred
from multi-modal images to a fused image, respectively, and
our highest results on the metrics indicate that our method
can learn more valuable information from multi-modal im-
ages. Moreover, the highest VIF also means that our method
can generate the most appealing fused images that are more
suitable for human vision. These qualitative results demon-
strate that BA-Fusion achieves the most superior fusion per-
formance due to its ability to adapt dynamically to brightness.

Qualitative Comparisons. According to Fig. 3, this de-
picts an actual nighttime road scene with various brightness
regions. Our proposed BA-Fusion, with its ability to adapt
dynamically to brightness levels, generates the fusion image
with the best visual effects. Specifically, for the road traffic
markings in the image, our fusion result presents the clearest
texture details. On the other hand, the DIVFusion method,
which possesses low-light enhancement capability, suffers
from severe overexposure in this particular scene, causing
blurred ground texture and weak learning of the thermal infor-
mation of the car body. Furthermore, all competitive methods
exhibit some degree of performance degradation in this ex-
ample. Qualitative comparisons indicate that our method can
dynamically fuse images based on their illumination, effec-
tively preserving the advantages of both visible and infrared
images, resulting in the fusion image with the highest infor-
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DenseFuse [Li and Wu, 2018] 0.0364 8.5987 2.9524 0.6572 3.0700 0.3838
IFCNN [Zhang et al., 2020]  0.0599 9.2456 2.9954 0.7522 5.0932 0.5755
DIDFuse [Zhao et al., 20201  0.0420 9.3409 2.9955 0.7382 3.5668 0.4342

RFN-Nest [Li eral., 20211 0.0345 9.2984 2.9301 0.7806 3.1698 0.3772

PIAFusion [Tang ef al., 2022b] 0.0707 10.1228 3.8337 0.8447 5.6560 0.5540

YDTR [Tang ez al., 2022c] ~ 0.0496 9.2631 3.2128 0.7276 3.8951 0.4812

TarDAL [Liu er al., 2022] ~ 0.0528 9.6820 3.2853 0.8347 4.1998 0.3858
DeFusion [Liang et al., 2022] 0.0347 8.9771 2.9505 0.6752 2.8871 0.3310
DIVFusion [Tang et al., 2023] 0.0656 9.7279 2.8612 0.9569 5.5956 0.4302
BA-Fusion 0.0687 10.1264 3.8431 0.9786 5.6246 0.6652

Table 2: Quantitative comparison of our BA-Fusion with 9 state-of-
the-art methods on the M®FD dataset. Bold red indicates the best,
Bold blue indicates the second best, and Bold cyan indicates the
third best.

mation content and best visual effects.

4.3 Evaluation on the M?FD Dataset

Quantitative Comparisons. Table 2 presents the results of
the quantitative evaluation on the M?3FD dataset, where our
method achieves the best in 4 metrics and the second best per-
formance in the remaining metrics, respectively. In particu-
lar, it shows overwhelming advantages on MI, VIF, and Qs ,
which indicates that our fusion results contain more valuable
information and are more beneficial to the visual perception
effect of human eyes. The highest SD and the second-best
two metrics (SF & AG) also show that our fusion results re-
tain sufficient spatial frequency, texture details, and contrast.
Benefiting from the dynamic learning of brightness adapta-
tion, our method can learn sufficient texture details and con-
trast information from both infrared and visible source im-
ages, avoiding the interference of visible brightness on the fu-
sion results. Quantitative experiments on M®FD also demon-
strate the state-of-the-art fusion performance of our proposed
framework by dynamic adaptation of brightness.

Qualitative Comparisons. As shown in Fig. 4, in complex
nighttime scenes, visible images suffer from imaging blur
and uneven brightness issues, making it difficult for most fu-
sion methods to generate satisfactory results in such scenes.
Traditional autoencoder-based methods, such as DenseFuse,
DIDFuse, and RFN-Nest, exhibit severe contrast weakening.
Additionally, most methods struggle to accurately restore the
texture details of cars in the images, as seen in methods like
DeFusion, YDTR, and PIAFusion. DIVFusion blindly ap-
plies low-light enhancement in this type of scene, leading to
severe overexposure issues and fusion failure. Encouragingly,
our method achieves the optimal fusion result by leveraging
the advantage of adaptive brightness. Our approach effec-
tively preserves the contrast information of pedestrians and
cars from the infrared modality while learning all the texture
information from the visible images. These qualitative re-
sults fully demonstrate that our method dynamically achieves
adaptive brightness fusion by establishing the correspondence
between brightness and channel features, thereby achieving
optimal fusion performance.

4.4 Ablation Study

We construct ablation studies on the LLVIP dataset, which are
mainly used to verify the effectiveness of the proposed three
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Figure 3: Qualitative comparisons of various methods on representative images selected from the LLVIP dataset.
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Figure 4: Qualitative comparisons of various methods on representative images selected from the M3FD dataset.

Method SF SD Ml VIFE AG Qs

w/o BAG  0.0810 9.8555 3.4241 0.9553 6.0504 0.6825
w/o BC-Loss 0.0811 9.8553 3.4352 0.9573 6.0585 0.6841
w/o ATS  0.0810 9.8545 3.4232 0.9556 6.0472 0.6832
BA-Fusion 0.0812 9.8696 3.4454 0.9596 6.0597 0.6843

Table 3: Ablation studies on LLVIP datasets. BAG denotes bright-
ness adaptive gating module, BC-Loss denotes brightness consis-
tency loss function, and ATS denotes alternate training strategy.

core components(brightness adaptive gating module, bright-
ness consistency loss function, and alternate training strat-
egy). The results of the ablation studies are shown in Table 3.

Brightness Adaptive Gating. To verify the effectiveness of
Brightness Adaptive Gating (BAG), we removed the bright-
ness adaptive gating module from BA-Fusion and replaced
it with a common instance normalization operation, leaving
other components unchanged. The experimental results are
shown in Table 3. Without brightness adaptive gating, all
evaluation metrics failed to match the performance of BA-
Fusion, indicating that normalizing all features may damage
texture structure information, leading to a decrease in perfor-
mance. This also demonstrates that the proposed BAG mod-
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ule is the key to the excellent performance of BA-Fusion.

Brightness Consistency Loss. To verify the effectiveness
of the Brightness Consistency Loss (BC-Loss), we remove
the brightness consistency loss in the alternate training phase,
and accordingly, we train the brightness adaptive gating in
the second stage using only the fusion loss consistent with
the first stage. The experimental results show that remov-
ing the brightness consistency loss results in a correspond-
ing overall decrease in the performance of the model, but the
magnitude of the decrease is less compared to the other com-
ponents. This is mainly because brightness constraints can be
constructed even if only the fusion loss is used, it is just that
these constraints are not as direct and effective as our pro-
posed brightness consistency loss. The experimental results
fully demonstrate the effectiveness of the proposed brightness
consistency loss.

Alternate Training Strategy. To verify the effectiveness of
the alternating training strategy, we keep the other compo-
nents unchanged while canceling the two-step training, we no
longer freeze the weights of the different components in BA-
Fusion, and we train all components directly. We include the
images generated by brightness jitter as part of the dataset and
participate in the training of the whole model online, while
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Figure 5: Channel visualization on dynamic brightness conditions.

Method | People Car  Bus Motor Lamp Truck | mAP

Visible modality 68.4 91.0 91.3 73.7 81.3 79.0 | 80.8
Infrared modality 80.8 90.1  90.1 67.7 67.7 69.0 | 77.5
DenseFuse [Li and Wu, 2018] 83.9 91.5 903 756 82.0 747 | 83.0
IFCNN [Zhang et al., 2020] 83.3 91.9 90.5 74.9 86.4 76.9 | 84.0
DIDFuse [Zhao et al., 2020] 82.3 909 90.1 753 83.2 76.1 | 83.0
RFN-Nest [Li et al., 2021] 7.7 906 914 720 79.8 74.0 | 80.9
PIAFusion [Tang et al., 2022b] 83.5 929 0913 71.9 85.4 80.0 | 84.2
YDTR [Tang et al., 2022c] 82.3 92.2 909 73.8 87.0 774 | 839
TarDAL [Liu et al., 2022] 80.9 91.6 915 735 81.1 78.7 | 829
DeFusion [Liang et al., 2022] 83.2 90.8  89.0 724 76.7 73.7 | 81.0
DIVFusion [Tang et al., 2023] 76.4 90.5 884  69.1 81.8 78.4 | 80.8
BA-Fusion 85.0 932 91.7 793 871 804 | 86.1

Table 4: Task-oriented object detection evaluation of our BA-Fusion
with 9 state-of-the-art methods on the M3FD dataset. Bold red in-
dicates the best, Bold blue indicates the second best, and Bold cyan
indicates the third best.

applying the fusion loss and the brightness consistency loss
to the different training image sources. The experimental re-
sults show that this mixed online training approach does not
achieve the same fusion performance as alternating training,
mainly because the fluctuation of image brightness confuses
the learning of the model, making it difficult for the model
to construct the relationship between brightness and channel
features, leading to a degradation of the fusion performance,
which also verifies the effectiveness of the proposed alternat-
ing training strategy.

4.5 Visualization

We visualize the channel features selected by the BAG mod-
ule under different brightness conditions. As shown in Fig. 5,
the proposed BAG module effectively selects the brightness-
related channels and retains the brightness-independent chan-
nels. It demonstrates the effectiveness of our method in dy-
namically perceiving and correcting brightness variations in
different regions of the image.

4.6 Discussion

To further verify that our BA-Fusion can realize dynamic ro-
bust fusion with brightness adaptation, we use color jitter
to generate brighter and darker inputs. As shown in Fig. 6,
our method can keenly perceive the change of brightness and
maintains a consistent fusion effect under varying levels of
brightness. The proposed method exhibits compatibility with
downstream high-level vision tasks, particularly object detec-
tion. We train the YOLOV5 [Jocher, 2020] model and evalu-
ate the detection performance using mAP as metrics. The task
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Figure 6: Visual effects on fused result under dynamic brightness
conditions. Our brightness adaptive framework (BA-Fusion) keeps
the robust performance under varying levels of brightness.

evaluation results provided in Table 4 show that our method
achieves the best performance on the object detection task.

5 Conclusion

In this paper, we propose a brightness-adaptive dynamic
image fusion framework, BA-Fusion, which consists of a
Brightness Adaptive Gate (BAG) module and a multi-modal
image fusion backbone network. The proposed BAG module
effectively mitigates the interference of environmental bright-
ness changes on multi-modal image fusion while preserving
the structural information of the features. Through alternating
training strategies, this module establishes a correspondence
between image brightness and channel feature representation
under the constraints of the proposed brightness consistency
loss function, enabling robust multi-modal image fusion un-
der dynamic illumination conditions. BA-Fusion can dynam-
ically balance the advantages of the two modalities in terms
of texture details and contrast, maintaining robust fusion per-
formance in the face of brightness variations. Experimental
results on several challenging datasets demonstrate that the
proposed BA-Fusion outperforms state-of-the-art methods in
terms of visual effects and quantitative metrics.
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