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Abstract

Recent generative methods have shown promising
blind face restoration performance. They usually
project the degraded images to the latent space and
then decode high-quality faces either by single-
stage latent optimization or directly from the en-
coding. Generating fine-grained facial details faith-
ful to inputs remains challenging. Most existing
methods produce either overly smooth outputs or
alter the identity. This could be attributed to the
typical trade-off between quality and resolution in
the latent space. If the latent is highly compressed,
the decoded output is more robust to degradations
but shows worse fidelity. On the other hand, a
more flexible latent space can capture intricate de-
tails better, but is extremely difficult to optimize for
highly degraded faces. We introduce a diffusion-
based-prior inside a VQGAN architecture that fo-
cuses on learning the distribution over uncorrupted
latent embeddings. We iteratively recover the clean
embedding conditioning on the degraded counter-
part. Furthermore, to ensure the reverse diffu-
sion trajectory does not deviate from the underlying
identity, we train a separate Identity Recovery Net-
work and use its output to constrain the reverse dif-
fusion. Specifically, using a learnable latent mask,
we add gradients from a face-recognition network
to a subset of latent features that correlates with the
finer identity-related details in the pixel space, leav-
ing the other features untouched. Disentanglement
between perception and fidelity in the latent space
allows us to achieve the best of both worlds. We
perform extensive evaluations on multiple real and
synthetic datasets to validate our approach.

1 Introduction

Blind face restoration (BFR) is a challenging problem that
aims to recover a high-quality facial image from a low-quality
input. With the increasing availability of degraded images
captured in various real-world scenarios, the demand for ef-
fective BFR techniques has increased significantly in recent
years. The primary goal of BFR is to recover undegraded
facial features while preserving the person’s identity. A
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complex combination of many factors, such as low resolu-
tion, blur, noise, compressions, etc., corrupts a facial image.
Typically, traditional approaches [Baker and Kanade, 2000;
Bourlai ef al., 2011] rely on a degradation model and man-
ually designed priors, which often lead to sub-optimal re-
sults and restricted ability to handle a variety of real-life im-
ages. Recently, generative priors [Wang et al., 2021; Yang
et al., 2021] have shown remarkable improvement in restora-
tion performance. Generative priors encapsulated in a well-
trained high-quality face generator (e.g., StyleGAN [Karras
et al., 2019]) are typically exploited in such approaches. The
degraded image is first projected to the latent space to get
a ‘cleaner’ latent vector either directly or after certain re-
finement operations. The decoder projects the latent vector
back to the pixel space, producing a restored image. Instead
of dealing with a continuous latent space, [Gu er al., 2022;
Zhou et al., 2022] utilizes pretrained vector-quantized code-
books. The mechanism of vector quantization in a com-
pressed latent space reduces the uncertainty of the task, mak-
ing these methods robust to various degradations. Intuitively,
these approaches exploit information from two sources when
restoring an image. The degraded input image contains cru-
cial information about the person’s identity. On the other
hand, the pretrained decoder is utilized for a high-quality gen-
eration. Thus, ultimately, the task boils down to predicting
the corresponding clean latent given a degraded image/latent.
Using a highly compressed latent space usually reduces the
complexity of the prediction task and prioritizes high-quality
generation but fails to maintain intricate facial details essen-
tial for identity preservation. It may also lead to repeated and
less diverse texture patterns in the output. On the other hand,
using a less compressed latent space can be potentially more
expressive and flexible but is often extremely difficult to op-
timize when directly projecting the degraded image to the la-
tent space or trying to predict the correct latent code as a clas-
sification problem. A lower compression often diminishes the
advantages of latent-space-based generative models, leading
to suboptimal degradation removal from the input. Similar
behavior was recently discussed in [Gu et al., 2022], where
the trade-off between fidelity and quality depending on the
compression factor was analyzed. We argue that the perfor-
mance of such face restoration approaches mainly depends
on the nature and size of the latent space. It is non-trivial to
balance the demands of face generation and restoration us-
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ing existing latent refinement techniques. [Gu er al., 2022;
Zhou et al., 2022] deploy a highly spatially-compressed latent
space (downsampled by 32) and instead use skip-connections
to improve the fidelity, which is often counter-productive for
the output quality, as the information from the encoder is usu-
ally corrupted.

In this work, we design an alternative approach, where we
first select a highly expressive latent space with lower com-
pression and to handle its additional complexity, we intro-
duce diffusion-based-prior to model it. We learn the clean
latent space distribution by directly modeling the gradient of
the log density of the data, known as the score function [Song
and Ermon, 2019], using a neural network. Such gradient in-
formation can be utilized in reverse by stochastic sampling
to generate diverse samples from the underlying distribution.
Unlike unconditional generation as in [Song e al., 2020, for
the current task, we model it as a conditional generation task,
where given degraded latent, we perform multi-step refine-
ment to produce the cleaner counterpart.

Our approach has several key advantages. 1. Similar to prior
state-of-the-art (SOTA) blind face restoration works [Zhou
et al., 2022], we also utilize a pre-trained VQVAE frame-
work to produce high-quality face images given correct la-
tent codes. 2. The significantly lower compression ration
allows us to maintain higher fidelity, suitable for BFR task. 3.
Compared to the single-step refinement strategy of prior arts,
multi-step conditional refinement of the corrupted latent us-
ing score-based diffusion prior is far more effective in produc-
ing the clean embedding, enabling us to use relatively mild
compression rates, achieving more faithful and sharper recon-
structions. 4. Compared to pixel-space-based diffusion mod-
els used in [Saharia et al., 2022] (DDPM), our score-based
latent-diffusion model has much better time complexity and
requires significantly fewer refinement steps (= 20x).

The diffusion prior is extremely powerful for producing a
clean latent. However, during multiple refinements, deviating
from the trajectory of correct identity is plausible. To further
constraint the refinement process, we deploy a separate Iden-
tity Recovery Network (IRN), which prioritizes recovering
identity-specific intricacies given the input image using a face
recognition loss. We utilize the output of the IRN to initialize
the iterative refinement process. Next, at each step, we uti-
lize a gradient-based score-update strategy using a pre-trained
face recognition network to steer the refinement process along
the identity recovered by the IRN. While this approach con-
siderably diminishes the risk of identity distortion, the guid-
ance signal from a face-recognition network may not align
well with the other objective of producing visually pleasing
results. Such a dilemma is observed in existing works as well
[Wang et al., 2021], where usually a small amount of iden-
tity loss is introduced while prioritizing standard perceptual
losses, which ultimately fails to recover the identity informa-
tion adequately. Instead of blindly enforcing the identity con-
straint across the entire latent space, we introduce a learnable
latent mask, where the gradient from the recognition network
is harnessed to selectively update specific latent locations that
contribute most significantly to identity information. This en-
ables us to balance the restored identity and the perceptual
quality derived from the diffusion prior.
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To summarize, our main contributions are

(1) We propose a diffusion-prior-based conditional latent re-
finement strategy for recovering the clean latent inside a pre-
trained VQVAE framework.

(2) The strong modeling capability of such iterative refine-
ment allows us to design a latent space with a lower spatial-
compression ratio (f=4), improving the overall fidelity and
sharpness of the output.

(3) We further deploy an IRN to recover identity-specific fea-
tures from the degraded input. The output of IRN, along with
adaptive guidance using a learnable latent mask, steers the
refinement process for better identity recovery without com-
promising the perceptual quality.

(4) Extensive evaluation on multiple real and synthetic
datasets demonstrates our proposed framework’s superior
perceptual and identity-preserving properties.

2 Related Works

Various priors have been proposed, including geometric pri-
ors such as facial landmarks [Kim et al., 2019; Chen et al.,
2018; Zhu et al., 2016] and parsing maps [Chen et al., 2021;
Shen et al., 2018], as well as reference-based approaches [Li
et al., 2020; Dogan et al., 2019]. However, these priors
often struggle to estimate necessary information from cor-
rupted images. Recent generative priors optimize the latent
vector for GAN inversion techniques [Menon et al., 2020;
Gu et al., 2020] or direct projection of the input image to the
latent space [Richardson et al., 2021]. [Yang et al., 20211,
and [Wang er al., 2021] exploited the generative prior inside
an encoder-decoder, with structural details from the degraded
input through skip connections. For severe degradations, such
links lead to unwanted artifacts.

Diffusion and score-based models have shown improvements
recently [Saharia et al., 2022; Whang et al., 2022; Choi et
al., 2021; Yue and Loy, 2022; Chung et al., 2022]. Itera-
tive refinement strategies has been adopted by [Saharia er al.,
2022], [Whang et al., 2022] for super-resolution and motion
deblurring tasks. [Choi et al., 2021] guided the reverse pro-
cess with low-frequency information from a conditional im-
age. However, such a conditioning strategy does not trans-
late well for the BFR problem with significant degradation
and may alter the identity. [Yue and Loy, 2022] uses an un-
conditional diffusion model and starts from an intermediate
stage of the reverse diffusion process. But, as the underly-
ing diffusion model is unconditional, the identity of the re-
stored face changes considerably. If it is used for a smaller
timespan, the visual quality and sharpness of the output suffer
considerably. [Chung et al., 2022] addressed only non-blind
super-resolution tasks, and its identity-preserving capability
is yet to be tested for more difficult BFR scenarios. Our work
mainly aims to balance identity preservation and perceptual
quality for heavily degraded faces.

3 Method

Our framework has two main parts, a Vector-Quantized (VQ)
autoencoder is our backbone that maps a degraded image to
the latent space with a downsampling factor f = 4 and re-
verses this operation after refining the latent. A conditional
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Figure 1: An overview of our inference (left) and training framework (right).

diffusion model (denoising UNet) is used for the latent refine-
ment task. We pre-train the quantized autoencoder through
self-reconstruction to obtain a discrete codebook and the cor-
responding decoder for projecting the restored latent back to
pixel space. In addition, we also deploy IRN to produce an
initial estimate of the restored face, focusing on recovering
identity-specific features, which are used to steer the iterative
latent refinement process. An overview of our framework is
shown in Fig. 1. In the following sections, we describe the
details of different parts of our framework.

3.1 Learning Latent Space of Images via
Vector-Quantized Codebook

We use = and z to represent image in pixel space and the
corresponding latent representation, respectively. Our per-
ceptual compression model utilizes a variant of the Vector-
Quantize codebook called VQGAN [Esser et al., 2021]. It
learns a perceptual codebook through a combination of per-
ceptual loss [Johnson et al., 2016] and adversarial training
[Tsola et al., 20171, preventing blurriness that can occur when
relying solely on pixel-space Ly or L; losses. The model
consists of an encoder F, a decoder GG, and a codebook Z =
2K € REX4 containing a finite set of embedding vectors.
Here, K represents the codebook size, and d denotes the di-
mension of the codes. Given an input image z € R3*#xW,
we project it to the latent space as z = E(z) € R FF
Next, a spatial collection of image tokens z, is obtained using
a spatial-wise quantizer Q(-), which maps each spatial feature
2z;; into its closest codebook entry 2y,

Ze = Q(z) = (argmin|zij - Zk”g) S Rdx?x% (1)

ZLEZ
The decoder reconstructs the image from the latent, giving
Z = (G(z4). The encoder E, the decoder G and the codebook
Z are trained end-to-end via the following loss function

L= llz — [l + [|o(z) — ¢(Z)|lL + [log D(z)+

log(1 = D(2))] + [Isg(E(x)) — 2|3 + [[sg(z,) — E(w)l\g(z)
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where sg(+) stands for the stop-gradient operator, ¢(-) repre-
sents the VGG-based [Simonyan and Zisserman, 2014] fea-
ture extractor. The first three terms help reconstruct the input
image, whereas the last two terms reduce the distance be-
tween codebook Z and input feature embeddings z. As we
build upon the foundation of continuous space diffusion mod-
els, we absorb the quantization layer in the decoder. Given z,
we use the conditional diffusion model to recover the correct
latent embedding through iterative refinement. Next, quanti-
zation and the pre-trained high-quality codebook can handle
any inaccuracies in the latent prediction for producing a clean,
restored face. Compared to existing BFR works that use VQ-
VAE [Gu et al., 2022; Zhou et al., 2022], our work has two
critical differences: we use a milder compression (downsam-
ple f = 4 instead 32) and a larger codebook size (K = 8192
instead of 1024). Such an expressive yet highly complex la-
tent space can be optimally modeled by iterative diffusion-
prior-based refinement. As a result, the restored image is of
higher fidelity and realness than prior art.

3.2 Latent Refinement Using Diffusion Prior

Given the high dimensional latent with a lower compression
ratio, existing methods encounter challenges in generating
a cleaner latent through a single pass in the encoder or a
classification-based refinement module, as elaborated in [Gu
et al., 2022]. Instead, we aim to learn the probability dis-
tribution of the clean latent space (through gradients of log
probability density functions) and map the degraded latent to
the clean space in multiple refinement steps. Our approach is
built upon the framework of [Song and Ermon, 20191, where
stochastic differential equations drive the underlying diffu-
sion process. We can represent this process using continuous
time variables z;1=}, where z represents the initial variable
(i.e., clean latent representation) and z; represents its noisy
version at time ¢. The diffusion process is defined by an It
SDE [Rogers and Williams, 2000]

dz; = f(z¢,t)dt + g(t)dwy 3)
where f(-,-) and g(-) are the drift and diffusion coefficients,
respectively, and w; denotes the standard Brownian motion.
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We denote the distribution of z; as p(z;). The SDE in Eq. 3
can be converted to a generative model by first sampling from
21 ~ N (21,0, I) and then running the reverse-time SDE as

o0 = [, 1) — 50*()V, ogp(z)ldt + g(t)dw, (4
where w, is a reverse-time standard Wiener process and dt
is an infinitesimal negative time step. As shown in [Song et
al., 20201, there exists a deterministic ordinary differential
equation (ODE), whose trajectories share the same marginal
probability densities as the SDE (Egs. 3, 4)

dzy = [f(2¢,) — g*(t) Vs, log p(z:)]dt ()

In practice, blackbox ODE solvers can be used on Eq. 5 for
faster and high quality sampling, assuming we know the score
function. The score function (V,, log p(z;)) is typically ap-
proximated using a neural network sg(z;, t) [Vincent, 2011;
Song and Ermon, 2019; Ho et al., 2020], trained to minimize
the weighted Fisher’s divergence with a positive weighting
function \ as

min By ojo,1](A(H)|[Va, log p(ze) — so (2, 1)[[3)  (6)

Conditional Diffusion for BFR

Instead of unconditionally sampling from the underlying
clean latent distribution using Eq. 5, for the task of BFR,
our goal is to predict the clean counterpart, given a degraded
latent z? of the input image x?. We are interested in p(zg|z?),
where z is the target clean latent distribution corresponding
to the image x? and z? is the condition signal. Similar to Eq.
5, we can obtain a conditional reverse-time ODE as

dz; = [f (2, t) — g*(t)Vy, log p(ze]z?)]dt @)

We need to learn the conditional score function
V., logp(z:|z?) in order to be able to sample from Eq.
7 using reverse-time diffusion. In [Song er al, 2020],
V., log p(z;|z%) was estimated using

V,, log p(z:|2%) = V,, log p(z;) + V,, log p(z7|z:)  (8)

where V,, log p(z;) is learned using an unconditional model
and V,, logp(z?|z;) is learned using a separate auxiliary
network. But, modeling such a forward process is non-
trivial for BFR, as there could be many possible z¢ given a
;. Instead, following the intuition of [Saharia et al., 2022;
Tashiro et al., 2021], we can extend the formulation of Eq. 6
to a conditional case as

minEyppo,1) (A1) Vz, logp(z4)] — so (2,2, 1)[3)  (9)

2¢~p(2?)

where we pass the condition z? directly to the denoising
UNet, making it learn the conditional score. We empirically
verify that it works well for BFR task. In [Song et al., 2020;
Kadkhodaie and Simoncelli, 2020], the noise was added to
both the target and the conditional observations, which we
found to be harmful. We follow the simplified configuration
of [Karras et al., 2022], where we set f(z;,t) = 0 and g(t) =

t. en, p(z;) can be expressed as p(zg) * t<l),
V/2t. Then, p be expressed as p N(0,21
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where * represents convolution operation and p(z) is the un-
derlying distribution of the clean or non-degraded images’ la-
tent space, which we aim to model. Once we know the score
function (using a neural network), Eq. 7 can be re-written as

dz; = —tsg(zs,2%,1) (10)

During the reverse process, we can proceed backward in time
with a black box ODE solver, such as Heun solvers [Karras et
al., 2022], to obtain the solution trajectory. The resulting z
can be considered an approximate embedding of the clean im-
age corresponding to z¢. 7 is passed through the pre-trained
decoder to produce the restored image. The decoder has the
quantization layer, which handles minor errors in the contin-
uous space prediction.

3.3 Identity Recovery Network (IRN)

Existing works typically introduce an identity-preserving loss
to the same restoration network in addition to standard per-
ceptual losses. But, often, minimizing both losses together
hampers the perceptual quality and may introduce unwanted
artifacts, especially if the coefficient for identity loss is high.
Instead, to ease the learning process, we aim to disentan-
gle these two objectives and use a separate IRN (f4) to fo-
cus on recovering the identity. We train fy, emphasizing the
identity-preserving loss, with a small amount of L loss for
better stability. The loss function for training fy is as follows:

EIRN - aLl(f(b(Xd)»X) + Dcos(farc(f¢(xd))7 farc(x()l)l

where D, denotes the cosine distance between two feature
vectors and f,,.. denotes a pre-trained ArcFace model. We
denote the second term in Eq. 11 as L,.. The IRN aims
to generate a stable approximation x*¢ that primarily recov-
ers the identity information rather than focusing on visually
pleasing sharp results. Such crucial identity features are also
transferred to the latent embedding z’?. To ensure that during
reverse diffusion process, the output does not deviate from
the already recovered identity in x*?, we add a gradient term
Vie . Larc to the estimated score at each step, where the L.
is calculated between the image obtained after projecting Z 4
to pixel-space using the pretrained decoder and x*?, 7 ; is the
denoised output at step t. It follows the intuition of classifier
guidance in [Dhariwal and Nichol, 2021]. But, we have ob-
served that simply adding the gradient for the whole latent
again deteriorates the perceptual quality. We hypothesize that
the latent embedding should have specific features that corre-
late to identity-specific details in the pixel space. We should
ideally regularize the score function of only those features
while keeping the rest untouched.

To verify this, we introduce a learnable latent mask M; €

R F*F | denoting the identity-specific latent features. We
use a stack of a few convolutional layers followed by a sig-
moid layer as fy, that takes the Z; as input and produces
M;. To train fj; , we first update the score to obtain the cor-
responding Z ; and project it back to pixel space. We use
LPIPS, cosine-distance-based ID loss on the output image,
and a sparsity constraint on M; to ensure M; selects only
the subset of identity-specific features without harming the
LPIPS score. As discussed in our ablation study, the observed



Figure 3: Qualitative comparisons on CelebA-Test set for x32 upsampling. Although the input is severely degraded, our approach works
better than existing works in restoring the face faithfully.
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Figure 2: Qualitative comparisons on CelebA-Test set for BFR.
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Methods | LPIPS | | FID| || IDST | LDM ] || PSNR T | SSIM T
GPEN 04350 | 148.39 || 0.1343 | 21.80 || 1901 | 0.5346
GFPGAN 04028 | 160.29 || 02243 | 23.10 | 19.95 | 0.5366
CodeFormer | 03565 | 73.45 || 02546 | 1124 | 19.14 | 0.4639
DifFace 03001 | 53.93 || 02892 | 8.85 | 20.12 | 0.5314
RestoreFormer | 0.4193 | 103.13 | 0.1438 | 14.10 | 1926 | 0.4581
VQER 0.4090 | 109.97 || 0.1583 | 1530 | 18.88 | 0.4220
Ours 0.2574 | 3971 || 03512 | 7.67 1877 | 04751

Methods FID| |LPIPS] || IDST | LDM | || PSNR 1 | SSIM 1
GPEN 101.12 | 0.3362 || 0.4022 | 10.76 22.43 0.6009
GFPGAN 99.03 | 0.2812 || 0.4633 | 10.49 22.50 0.6060
PSFRGAN 64.81 0.2513 || 0.3983 6.51 21.75 0.5450
CodeFormer 54.41 0.2288 || 0.5009 | 5.85 22.35 0.5736
DifFace 52.18 | 0.2061 0.4833 | 5.40 22.74 0.6116
RestoreFormer | 59.51 0.2899 || 0.4041 7.65 21.73 0.5256
VQFR 60.75 | 0.3147 0.37 8.32 21.02 0.4931
Ours 46.15 | 0.1868 || 0.5667 | 5.00 21.66 0.5652

Table 1: Quantitative evaluation on 3000 images of size 512 x 512
from the CelebA-Test (BFR). Bold and underline indicate the best
and the second best performance.

improvement after introducing the latent mask validates our
design choice. For all the cases, straight-through gradient es-
timator [Esser er al., 2021] is utilized to copy the gradients
from the decoder to the continuous latent embedding to han-
dle the non-differentiable quantization operation.

4 Experimental Results

4.1 Training Dataset

The FFHQ dataset [Karras et al., 2019] contains 70,000 high-
quality face images at 1024 x 1024 resolution. We resized
the images to 512 x 512 for training. We synthesized de-
graded images on the FFHQ dataset using the degradation
model proposed in [Yang er al., 2021; Wang et al., 2021;
Wang et al., 2022; Chen et al., 2021]: 2¢ = ((z @ k) |
—|—ng)q. Here, z, 2%, k, n,, s, and q are the clean face im-
age, the corresponding degraded image, the blur kernel, the
Gaussian noise with standard deviation o, downscaling fac-
tor, and the JPEG-compression quality factor, respectively.
We randomly and uniformly sampled o, s, and ¢ from [0,20],
[1,32], and [30,90], respectively. We evaluated our approach

1294

Table 2: Quantitative evaluation on 3000 images from the CelebA-
Test for extreme upsampling (16 — 512). Bold and underline indi-
cate the best and the second best performance.

on 3,000 synthetic images from CelebA-Test dataset [Kar-
ras et al., 2017]. The degraded images in this dataset were
synthesized using the same degradation range as our training.
Additionally, we tested our method on real-world datasets:
WebPhoto-Test [Wang er al., 2021] (407 images), WIDER
Face [Yang et al., 2016] (970 images), Celeb-Child [Wang et
al., 2021] (180 images) and TURB. For the TURB dataset,
we randomly sampled 139 images from the BRIAR [Cornett
et al., 2023] and LRFID [Miller et al., 2019] datasets, which
provided a more challenging scenario as our models were not
trained on severe turbulence-affected images.

4.2 Evaluation Metrics

To assess the quality of the restored images quantitatively,
we primarily rely on the Frechet Inception Distances (FID)
[Heusel er al., 2017] and Learned Perceptual Image Patch
Similarity (LPIPS) [Zhang et al., 2018] metrics. We also
compute PSNR and SSIM for completeness, although they
often fail to capture visual quality. To evaluate the face recog-
nition performance of the restored images, we calculate the
cosine similarity between the features of the restored image
and the paired GT image (IDS). Higher cosine similarity val-
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Figure 4: Qualitative comparisons on real-world datasets. The first two rows represent images from WIDER face dataset, the third row

represents images from WebPhoto, respectively.
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Figure 5: Qualitative comparisons on real-world images from CelebA-Child for image colorization.

Methods WIDER Face | WebPhoto | CelebA-Child
PSFRGAN 49.85 88.45 107.40
GPEN 46.99 81.77 109.55
GFPGAN 39.76 87.35 111.78
CodeFormer 39.21 78.87 116.18
VQFR 44.54 75.46 105.68
DifFace 37.49 85.52 110.81
Ours 34.25 75.05 104.40

Table 3: Quantitative comparisons of FID (] ) on real-world datasets
in terms of FID. Bold and underline indicate the best and the second
best performance, respectively.

ues indicate better recovery of the identity information. We
use the same evaluation metrics and pre-trained models for
LPIPS, FID, and ArcFace as used in the prior art [Wang et al.,
2022; Wang et al., 2021]. We also adopt landmark distance
(LMD) as the fidelity metric, following [Gu et al., 2022].

4.3 Comparisons with State-of-the-Art Methods

We compare with the following state-of-the-art (SOTA) meth-
ods: PSFRGAN [Chen et al., 2021], GPEN [Yang et al.,
2021], GFPGAN [Wang et al., 2021], CodeFormer [Zhou et
al., 2022], RestoreFormer [Wang et al., 2022], DifFace [Yue
and Loy, 2022] and VQFR [Gu et al., 2022]. We use the offi-
cial results and checkpoints provided by the authors.
Synthetic BFR: We reported restoration accuracy on the syn-
thetic CelebA-Test dataset for BFR task in Table 1. Our ap-
proach achieves a much better balance between fidelity (IDS,
LDM) and perceptual metrics (LPIPS, FID).

Extreme Upscaling: We tested the algorithms under extreme
BFR conditions, where we applied a fixed downscaling factor
of x32to 512 x 512 images, resulting in degraded images of
size 16 x 16. To make the task more challenging, we added
noise and blur to the images. The quantitative results can be
found in Table 2. Despite the limited information in the in-
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Methods LPIPS| | FID| | IDST | PSNRT
VQVAE-Rec (I=32) 0.0550 | 22.76 | 00.9012 | 29.46
VQVAE-Rec (f=4) 0.0068 | 9.02 | 0.9903 | 35.72
VQVAE-Rest (f=4) 02127 | 81.69 | 0.5258 | 19.09
IRN 0.3344 | 127.53 | 0.5155 | 24.26
IRN!D 0.3109 | 118.50 | 0.5849 | 24.16
Diff. Prior 0.1901 | 4791 | 05107 | 21.06
IRN'P + Diff. Prior 02004 | 5322 | 05712 | 2234
IRN’P + Diff. Prior + M, | 0.1868 | 46.15 | 0.5667 | 21.66

Table 4: Quantitative comparison of different ablations of our net-
work on CelebA-Test set. ID represents: ArcFace [Deng et al.,
2019] based identity loss. The first two-row represents reconstruc-
tion of GT images using VQ-VAE/GAN.

put, our approach outperforms other algorithms in terms of
perceptual quality and recognition accuracy.

Real-World Cases: Our approach outperforms existing
GAN-based methods like GPEN and GFPGAN in terms of
producing more realistic and faithful reconstructions on real-
world degraded datasets. CodeForm, VQFR’s outputs show
visible artifacts or repetitive skin/hair texture due to highly
compressed latent space. DifFace outputs are less sharp and
may alter facial details as the underlying model is uncondi-
tional. In contrast, our approach achieves superior results
with fewer artifacts, even for low to medium degradation lev-
els. Real-world colorization examples are shown in Fig. 5,
for which we finetune our network for colorization. We also
report the accuracy for the downstream face-recognition task
on the TURB dataset in Table 5. Our approach comfortably
outperforms prior arts for recognition, as well.

S Ablation Analysis

In Table 4, we analyze the effect of individual compo-
nents of our approach on the perceptual quality and identity-
preserving aspect. We use CelebA-Test with 512 x 512 im-
ages for our ablation. We empirically found that the IRN is
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Figure 6: (Left): Reconstruction performance of VQVAE. (Right): Restoration performance of VQVAE, GD, IRN and our final model using

latent space refinement.

model agnostic, and any SOTA restoration network results in
a comparable accuracy boost. We provided detailed compar-
isons of possible options for IRN in the supplementary. We
finally select SwinIR [Liang et al., 2021] that keeps a good
balance between performance and accuracy. We design our
VQ backbone with the following settings: f=4, codebook =
8192, latent = 3 x 128 x 128, feat = 128 (x 1, x2, x3). For the
diffusion model, we have used 40 time steps with heun sam-
pler [Karras et al., 2022] and a UNet-based denoiser based on
GD !. More implementation and network details, additional
results are provided in the supplementary material.
Compression Factor: First, we compared VQVAE models
with different latent sizes: f = 32 and f = 4. The f = 32
models, commonly used in previous works [Gu et al., 2022],
resulted in poor reconstruction quality due to significant spa-
tial compression to 16 x 16. In contrast, the f = 4 models
achieved superior reconstruction quality, as shown in Fig. 6
(Left). We have verified that it is satisfactorily accurate in re-
constructing degraded images as well (PSNR=37.9). Higher
spatial compression led to the loss of fine facial details and
overly smooth outputs. For example, in the first row, the eye
color was changed, and in the second row, both the eye and
hair patterns were altered in the f = 32 models.

Latent Refinement: We attempted to fine-tune the VQVAE
model (with f = 4) directly for restoration, but it often failed
to remove degradation effectively, as reported in [Gu er al.,
2022]. To address this issue, we developed a modified ver-
sion called VQVAE-Rest. This variant takes both the de-
graded image and the coarse estimate from the IRN as in-
puts, enabling it to focus on recovering residual details. How-
ever, even with this modification, the output of VQVAE-Rest
still exhibited lower quality and noticeable artifacts (Figure 6
(Right), Column 2). These results show the need for appropri-
ate latent-space refinement to achieve satisfactory restoration
outcomes. We also compare with Guided-Diffusion (GD) for
pixel-space-based diffusion (DDPM), which is run for 1000
timesteps in Figure 6 (Right). As can be observed, it is not
only computationally intensive due to large no. of time steps,
but also fails to reconstruct the image properly starting from
pure noise. The outputs of the IRN shown in Figure 6 (Right),
Column 4, may lack sharp details. However, it recovers cru-
cial facial locations like eye, nose, etc.

ID Loss: Table 4 demonstrates the significance of the Arc-
Face [Deng et al., 2019] based identity-preserving loss for
the IRN (IRN’P vs. IRN), which prioritizes the recovery of
identity-specific features, which are valuable for regularizing
the diffusion process.

Adaptive Mask: While the diffusion model alone can

'GD: https://github.com/openai/guided-diffusion
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Methods Top-1 (1) | Top-3 () | Top-5 (1)
GPEN 32/50.6 50/72 62/81
GFPGAN 26/57 58/79 60/85
CodeFormer 28/61 52177 58/82
RestoreFormer 20/62 50/81 62/88
VQFR 34/60 60/79 64/87
Ours 34/68 68/81 72/90

Table 5: Face recognition accuracy using pre-train ArcFace [Deng
et al., 2019] on real-world BRIAR/LRFID dataset. Our method per-
forms best for such downstream task as well.

achieve good perceptual quality, it may inadvertently alter
certain identity-specific facial features. Adding IRN’”-based
gradient improves the IDS, but is detrimental for perceptual
metrics. The final output could be slightly different from
the output of IRN as we regularize only a subset of the la-
tent in the diffusion stage. Our final model, combining the
strengths of the Diff. Prior, IRN?? and the learnable latent
mask M, achieves superior accuracy both in terms of per-
ceptual metrics and fidelity. Inference time(s) for GFPGAN,
CodeFormer, DifFace, Guided-Diffusion and ours are: 0.5,
0.15, 6,30, 0.61. Our design is still much faster than ex-
isting diffusion-based BFR methods, and can potentially be
further accelerated by reducing the number of steps using
knowledge-distillation techniques [Song er al., 2023]. We
also have comparable or less parameters (16M) compared to
VQFR (76.3M), DifFace (17.5), RestoreFormer (12M).

6 Conclusions

We propose a iterative latent-space refinement technique us-
ing diffusion prior for restoring severely degraded face im-
ages, achieving a better balance between restoration quality
and identity recovery compared to existing methods. How-
ever, the performance of our approach is limited by the IRN’s
ability to preserve identity information. To improve effi-
ciency, we plan to explore the development of a recognition-
model-free reverse algorithm in future research.
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