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Abstract
We present an approach to solving 2D human pose
estimation in videos. The problem of human pose
estimation in videos differs from estimating human
poses in static images since videos contain a lot
of motion related information. Thus, we investi-
gate how to utilize by the information of the hu-
man body movements across in a sequence of video
frames for estimating human poses in videos. To
do this, we introduce a novel heatmap regression
method what we call motion-aware heatmap regres-
sion. Our approach computes motion vectors in
joint keypoints from adjacent frames. We then de-
sign a new style of heatmap that we call Motion-
Aware Heatmaps to reflect the motion uncertainty
of each joint point. Unlike traditional heatmaps,
our motion-aware heatmaps not only consider the
current joint locations but also account how joints
move over time. Furthermore, we introduce a sim-
ple yet effective framework designed to incorpo-
rate motion information into heatmap regression.
We evaluate our motion-aware heatmap regression
on PoseTrack(2018, 21) and Sub-JHMDB datasets.
Our results validate that the proposed motion-aware
heatmaps significantly improve the precision of hu-
man pose estimation in videos, particularly in chal-
lenging scenarios such as videos like sports game
footage with substantial human motions. (Code and
related materials are available at https://github.com/
Songinpyo/MTPose.)

1 Introduction
In this paper, we address the problem of 2D human pose
estimation in videos, which aims to detect and localize the
major joints in the human body (e.g., elbows, wrists, etc.)
from a sequence of video frames. It is essential for build-
ing a wide range of intelligent systems such as video surveil-
lance systems and autonomous driving systems [Chen et al.,
2020; Munea et al., 2020; Human-Machine-Interfaces-Trend-
Report, ]. However, despite the importance of the problem,
much of the research up to now has more focused on a single-
frame based human pose estimation method [Newell et al.,
2016; Fang et al., 2017; Xiao et al., 2018; Sun et al., 2019;

Figure 1: We propose a new style of heatmaps what we call Motion-
Aware Heatmaps to reflect the motion uncertainty of each joint
keypoint for estimating human poses in videos. Our motion-aware
heatmaps not only consider the current joint locations but also ac-
count for the temporal dynamics of joint movements.

Cheng et al., 2020; Luo et al., 2021; Xu et al., 2022b], and
comparatively little attention has been paid to human pose
estimation in videos. This is probably because single-frame
based models can be directly applied to videos without any
modification, and they seem to show reasonable performance.
Such approaches, however, have missed an opportunity to im-
prove their performance by taking advantage of temporal in-
formation across video frames.

Therefore, more recently, questions have been raised about
the use of the single-frame based methods in videos for hu-
man pose estimation. The main disadvantage of the single-
frame based techniques is that their performance rapidly
drops when videos include large motions since they cause
motion blur and pose occlusions. Thus, to date, researchers
have investigated multi-frame based approaches to estimate
human body configuration in videos [Bertasius et al., 2019;
Liu et al., 2021; Liu et al., 2022; Jin et al., 2022; Feng
et al., 2023b]. This previous research attempted to uti-
lize additional temporal information from neighboring video
frames for estimating human poses in the current video
frame. One line of this research proposes to employ Re-
current Neural Networks (RNNs)-based models like Long
short-term memory (LSTM), GRU (Gated Recurrent Units)
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or 3D Convolutions to obtain better human motion repre-
sentations by aggregating the spatio-temporal features from
adjacent frames in a video sequence [Luo et al., 2018;
Wang et al., 2020]. Another line of work suggests to explic-
itly combine the joint keypoints of neighboring video frames
based on their pose heatmaps as post-processing [Liu et al.,
2021; Liu et al., 2022; Jin et al., 2022; Feng et al., 2023b;
Feng et al., 2023a].

However, previous multi-frame based studies do not take
into account to use the joint motion cue, the movements of
the human joint keypoints in human motions, that can help
improve the performance of video-based human pose estima-
tion. We believe that the joint motion cues can provide strong
evidence to detect and localize the joint keypoints, especially,
in videos with substantial motions. Therefore, in this research
we explore the ways to predict the joint configuration of the
human body in videos by leveraging this useful information
in the joint motion cues. To capture the joint motion cues,
we propose a novel heatmap regression approach using a new
style of heatmaps that we call Motion-Aware Heatmaps and
motion data intergrating architecture.

To be specific, we adjust standard deviation of the Gaus-
sian kernels for each joint keypoint based on the magnitude
of a joint movement vector that represents the scales of the
each joint keypoint movements of human body. In addition,
we adjust the shape of the gaussian kernels according to the
direction of the motion vector of each joint keypoint. The
motivation behind this new style heatmap is that we observed
the previous approaches often failed to estimate human poses
in videos when they have fast-moving subjects. Especially,
in those type of videos, fast moving joints of the subjects are
likely to be hard to estimate its locations in images rather than
their motionless joints. Thus, we attempt to represent those
different difficulties (uncertainties) by adjusting the scales of
the standard deviation in our new style of heatmap. Further-
more, we adjust the shape of the Gaussian kernels to repre-
sent the direction of each joint movement since it is likely to
move in the same direction within a short period of time. Fi-
nally, we employ a simple yet effective motion intergrating
architecture MTPose (MoTion-aware Pose regression) to es-
timate the human posture in current frame by leverage motion
information from predicted motion-aware heatmaps using our
model. This study contributes to the growing area of multi-
frame based human pose estimation by introducing a novel
heatmap regression method to the existing human pose esti-
mation research in the community. We believe our motion-
aware heatmap regression can be used to build various intel-
ligent systems which require to robust estimate postures of
people in videos, even they include dynamic human motion
and pose occlusions.

The specific contributions of the paper are summarized as
follows:

• This is the first study that addresses the uncertainties of
human joint keypoints related to its movements on the
problem of 2D human pose estimation in videos.

• We propose a new style of heatmaps that reflect the mo-
tion uncertainty of each joint point, we then demon-
strate that our motion-aware based heatmap regression

method can robustly detect joint keypoints with large
movements.

• The proposed method is general and straightforward,
so that further research could easily adopt our motion-
aware heatmaps to take advantage of the useful infor-
mation from joint motion cues to improve their perfor-
mance.

2 Related Work

2.1 Single-Frame Based Human Pose Estimation

In the last few years, there has been great progress in esti-
mating 2D human poses in static images [Newell et al., 2016;
Xiao et al., 2018; Sun et al., 2019; Cheng et al., 2020; Luo et
al., 2021; Li et al., 2021; Xu et al., 2022a; Xu et al., 2022b].
Prior to the work of Tompson [Tompson et al., 2014], pre-
vious studies on this single-frame based human pose estima-
tion have been carried out to directly regress the coordinates
of joint keypoints in the images [Toshev and Szegedy, 2014;
Tompson et al., 2015]. However, these early methods suffer
from some serious shortcomings since they do not take ac-
count of uncertainty of each joint and the models are hard to
be generalized (these early models are often overfitted during
training). Thus, much of the recent research on human pose
estimation use the indirect method called heatmap regression
to infer the probability of the existence of joint keypoints at
each pixel in the images. These researches are divide into
two strategies, bottom-up and top-down. The top-down ap-
proach first employs a person detector to detect individuals
and then estimates the pose for each bounding box of person
independently. Conversely, the bottom-up approach detects
individual body parts and associates these parts with the per-
sons identified in the image.

Since these heatmap regression-based models require the
ground-truth heatmaps for training, researchers usually gen-
erate the ground-truth heatmaps by putting 2D Gaussian ker-
nels with the same standard deviation on all joint keypoints
in images based on the ground-truth annotations. However,
[Luo et al., 2021] proposed a new approach what they called
scale-adaptive heatmap regression to adaptively adjust the
standard deviation based on human scales on the images in
a bottom-up. But, scale-adaptive heatmap regression might
not help improve the performance of top-down models since
they use fixed size of person on the image frame, making the
adjustment of standard deviation according to human scale is
less impactful.

Distinctly we focus on the joint motion cue, the movements
of the human joint keypoints in human motions, to adjust of
the standard deviation instead of human scales on the images
which may not affect for top-down approaches. In addition,
we attempt to adjust the shape of the gaussian kernels accord-
ing to the direction of the joint motion cue whereas others do
not. Furthermore, our approach can be applied to the both
top-down and bottom-up human pose estimation approaches
in the same way since we adjust the standard deviation and
rotation based on the magnitude and direction of the motion
vector at the joint position.
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Figure 2: The architecture of MTPose, a simple and effective framework integrating motion information into heatmap regression.

2.2 Multi-Frame Based Human Pose Estimation
Single-Frame based methods show unsatisfactory perfor-
mance in estimating human poses for video inputs with heavy
motion blur and occlusions. Consequently, the development
of multi-frame has become essential to utilize the temporal
information across adjacent video frames. [Liu et al., 2021;
Dang et al., 2022; Liu et al., 2022; Jin et al., 2022; Feng et
al., 2023b; Feng et al., 2023a]. Additionally, propagation-
based methods have also been proposed to sequentially pro-
cess the prediction results [Xu et al., 2021; Nie et al., 2019;
Luo et al., 2018].

Much of this line of research concentrate on developing ex-
plicit algorithms to integrate temporal information from adja-
cent frames as a post-processing to estimate the human poses
in the current frame. For instance, Liu et al. attempted to
merge three single-frame based pose estimation results ob-
tained from their backbone model, HRNet-w48 [Sun et al.,
2019], to get the refined human poses for the current in-
put video frame by computing temporal distances between
frames [Liu et al., 2021]. Similarly, [Feng et al., 2023b;
Jin et al., 2022] proposed a Transformer-based architecture to
leverage temporal context information, utilizing the initially
estimated pose heatmaps from the backbone network. [Berta-
sius et al., 2019; Liu et al., 2022; Feng et al., 2023a] uti-
lize motion information extracted from adjacent frames in the
process of pose estimation for temporal information.This ap-
proach demonstrates the significance of motion features in
pose estimation. However, this approach increases the com-
plexity of the overall model by requiring the design of a sepa-
rate module for motion extraction and the implementation of
a loss function to train this module. In this paper, our network
directly produce distinct heatmaps considering joint motion
cues in videos. It’s applicable without complex motion ex-
traction modules or specialized loss functions

3 Proposed Method
We introduce a novel method, MoTion-aware Pose regres-
sion (MTPose), designed for the detection and localization
of human body keypoints in videos. Our focus lies in captur-
ing joint motion cues to reflect uncertainty of each joint key-
point according to human motions in the innovative form of

heatmaps, referred to as Motion-Aware Heatmaps. We then
train our model using these motion-aware heatmaps to lever-
age all useful information in the joint motion cues represented
for estimating human poses in videos.

Method Overview Given a sequence of input videos, we
first employ a person detector to identify all human bounding
boxes in each frame. Subsequently, each bounding box is ex-
panded by 25% around the detected person to ensure consis-
tent tracking within the scene. These bounding boxes serve as
inputs for the network. Following this, our MTPose processes
three consecutive frames, denoted as Ip, Ic, In, correspond-
ing to the previous, current, and next frames, respectively,
per person (bounding boxes) extracted from the input videos.
The current frame Ic is then input into a Vision Transformer
(ViT) [Dosovitskiy et al., 2020] to obtain the image feature
Fc, and two pairs of adjacent frames, namely Ip&Ic and
Ic&In, are fed into an off-the-shelf optical flow model [Jiang
et al., 2021] to obtain optical flow vectors, denoted as Vc→p

and Vc→n. Following this, the extracted features Fc, Vc→p,
and Vc→n are integrated using a cross-attention module fol-
lowed by a pose decoder to produce motion-aware heatmaps.
Finally, these heatmaps are merged via a deformable convo-
lution layer to form the final heatmap.

To train this network, we use three ground-truth heatmaps:
two motion-aware heatmaps for past and future frame move-
ments, and one conventional heatmap focusing on the current
frame’s spatial joint locations. In the next section, we explain
how to generate these ground-truth motion-aware heatmaps.

3.1 Motion-aware Heatmaps
To date, the majority of previous human pose estimation stud-
ies have utilized 2D Gaussian kernel that has the same stan-
dard deviation (σ) for all keypoints in the both x and y axes,
leading to circular-shaped heatmaps to train their deep learn-
ing models by heatmap regression. These heatmaps, referred
to as original heatmaps (Ho) in this paper, are generated using
a base standard deviation, σ0. In contrast, we design novel
motion-aware heatmaps (Hm) to represent the uncertainties
of human joint keypoints related to its movements. The basic
idea of generating the motion-aware heatmaps is illustrated
in Figure 1. Our method modifies standard deviations based
on the joint movement vectors. So, we begins generation of

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1247



ground-truth motion-aware heatmaps by computing the joint
movement vectors JM between adjacent frames. The vector
JM ∈ R2 is derived from the x and y coordinates of joint
keypoints, and is calculated as:

JMc→p = Jk
c − Jk

p , JMc→n = Jk
c − Jk

n (1)

Here, Jp, Jc, and Jn denote the human joint keypoint cor-
responding to the previous, current, and next frames, respec-
tively, and k represents its keypoint index. After that we es-
tablish a motion threshold δ to categorize the joints as either
motionless or in motion.

Motionless Joints (|JM | ≤ δ): If the joint keypoint’s po-
sition remains relatively stable across consecutive observed
image frames, predicting the location of the joint in the next
frame becomes more straightforward compared to joints with
high movement. Consequently, to capture this characteristic
in our motion-aware heatmaps, we generate a circular Gaus-
sian heatmap with a standard deviation of

σx = σy = σ0 +
|JM | − δ

δ
(2)

This reduced standard deviation signifies a narrowed proba-
bility range for joint existence due to its small movement.

Joints in Motion (|JM | > δ): For joints undergoing
significant motion, our method generates elliptical Gaussian
heatmaps. These heatmaps are designed to reflect both the
magnitude and direction of each joint’s movement, as illus-
trated in Figure 3. We first dynamically adjust the standard
deviations σx and σy , based on the joint’s movement:

σx = σ0 +
|JM | − δ

δ
, σy = σ0 −

|JM | − δ

δ
(3)

resulting in an elliptical heatmap shape that correlates with
the joint’s motion. The motion-aware heatmaps are then for-
mulated using the following 2D Gaussian kernel:

Gk,i,j = (e−(i−xk)
2/2σ2

x)(e−(j−yk)
2/2σ2

y )

s.t.∥i− xk∥1 ≤ 3σx, ∥j − yk∥1 ≤ 3σy

Here, Gk,i,j denotes the 2D Gaussian kernel to generate
motion-aware heatmaps to cover kth keypoint and i and j
indicate the coordinate of the keypoint in image frame.

After that the orientation of our heatmap is determined by
the joint’s movement direction. The rotation angle θJM is
calculated with this formula:

θJM = atan2(JMy, JMx) (4)

which ensures the major axis of the heatmap corresponds
with the joint’s motion direction. This alignment is crucial
for capturing the joint’s presence accurately along its mo-
tion path while reducing presence probability perpendicular
to this path. Finally, we rotate the generated Gaussian Kernels
according to the angle θJM . By implementing this method-
ology, our heatmaps effectively represent not only the spatial
location but also the directional flow of joint movements, pro-
viding a holistic view of human motion dynamics. As a re-
sult, two motion-aware heatmaps (Hm(c→p), Hm(c→n)) and
one original heatmap (Ho(c)) are generated as ground-truth
for our model.

Figure 3: This figure illustrates the generation of ground-truth
motion-aware heatmaps for moving joints by adjusting the heatmap
shape based on calculated joint movement vectors.

3.2 Motion-aware Features
A motion estimator is essential for incorporating motion in-
formation into our framework to enhance its awareness of hu-
man motions in videos. In this work, we employ an off-the-
shelf optical flow model [Jiang et al., 2021] as our motion es-
timator to acquire optical flow vectors. The optical flow mo-
tion vectors Vc→p, Vc→n ∈ R2×H/d×W/d are computed from
Ic paired with Ip and In respectively, utilizing the optical
flow model. Here, d represents the downsampling ratio of the
patch embedding layer in our ViT backbone. These vectors
are then integrated into the feature Fc extracted from the cur-
rent input frame Ic using the ViT backbone. This integration
is achieved through a Multi-Head Cross-Attention (MHCA)
layer and a Feed-Forward Network (FFN), after unifying their
dimensions via a convolution layer with a kernel size of 1 ×
1. The outcome of this process is a motion-aware feature rep-
resentation F ′:

F ′ = Fc + FFN(MHCA(Fc, V, V )) (5)

3.3 Heatmap Regression
With the motion-aware feature representation F ′,
our MTPose predicts two motion-aware heatmaps
Ĥm(c→p), Ĥm(c→n) using two deconvolution blocks.
Each block comprises a deconvolution layer, followed by
batch normalization and ReLU activation, effectively upscal-
ing the feature maps by a factor of two. The formulation for
this process can be expressed as:

Ĥm = Conv1×1(Deconv(Deconv(F ′))) (6)

After obtaining these motion-aware heatmaps
Ĥm(c→p), Ĥm(c→n), MTPose generates the final output
heatmap Ĥc using deformable convolutions with five
different dilations [Zhu et al., 2019]. Specifically, two
motion-aware heatmaps are concatenated to extract offsets O
and masks M for the deformable convolutions.

Od = Conv3×3(Concat[Ĥm(c→p), Ĥm(c→n)])

Md = Conv3×3(Concat[Ĥm(c→p), Ĥm(c→n)])
(7)

where d corresponds to each of the five dilation levels.
Simultaneously, the average of the two motion-aware

heatmaps, Ĥm(avg), is computed to encapsulate both spatial
and temporal information. This Ĥm(avg) is then serves as the
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input for the Deformable Convolution (DCNv2) process. Ap-
plying DCNv2 across various dilations, the convolution re-
sults are aggregated to form Ĥo(c), the final heatmap. This
aggregation is achieved through a weighted summation:

Ĥo(c) =
1

5

∑
d∈3,6,9,12,15

DCNv2(Ĥm(avg),Od,Md) (8)

By utilizing Ĥm(avg), representing the overlapping area of
the two motion-aware heatmaps, along with the offset and
mask obtained using the two motion-aware heatmaps for
DCN, the final heatmaps can be regressed, incorporating mo-
tion information from the continuous frame.

3.4 Loss Function
To train our network, we utilize a standard heatmap esti-
mation loss, which is formulated to minimize the Euclidean
distance between the predicted heatmaps generated by our
model and the corresponding ground-truth for each joint. The
loss function is formulated as follows:

L(H, Ĥ) =
1

N

N∑
i=1

vi × ||Hi − Ĥi||2

Ltotal = L(Hm(c→p), Ĥm(c→p)) + L(Hm(c→n), Ĥm(c→n))

+γ ∗ L(Ho(c), Ĥo(c))
(9)

In this equation, N represents the total number of joints, v
the visibility of each joint, i the index of the joint, and γ the
weighting factor of the loss.

It is noteworthy that we can instruct the model to recog-
nize the movement of keypoints using a standard loss function
and training procedure, eliminating the need for complex loss
functions or models. This is made possible by leveraging the
proposed motion-aware heatmaps. This introduces a novel
aspect to comprehend joint movements in the learning pro-
cess, utilizing the familiar heatmap format widely employed
in prior approaches. Consequently, this enhances the model’s
ability to accurately predict human poses in videos, even in
the presence of substantial human motions.

4 Experiments
4.1 Datasets and Evaluation Metrics
We conducted three sets of experiments on the three different
public benchmark datasets to evaluate the proposed motion-
aware heatmap regression approach.

PoseTrack For our evaluation, we utilized two versions of
the PoseTrack dataset: PoseTrack2018 [Iqbal et al., 2017]
and PoseTrack21 [Doering et al., 2022]. These datasets are
key benchmarks in multi-person pose estimation and track-
ing within video contexts. PoseTrack2018 comprises 1,138
videos, enriched with 153,615 pose annotations. It offers
a comprehensive platform for assessing the performance of
pose estimation models in diverse scenarios. PoseTrack21
is a extension of previous dataset, this version expands the
dataset by including annotations for smaller figures and in-
dividuals in crowded settings, totaling 177,164 pose annota-
tions. Both PoseTrack datasets were originally developed to

address two core tasks: multi-person pose estimation (Task
1) and multi-person pose tracking (Task 2). Our research fo-
cuses exclusively on Task 1, using the Average Precision (AP)
metric for evaluation purposes.

Sub-JHMDB The Sub-JHMDB dataset [Jhuang et al.,
2013] is a subset of the larger JHMDB collection. It encom-
passes 316 videos, each averaging 35 frames, across 12 action
classes, all with accompanying pose annotations. For assess-
ing 2D pose estimation performance, we apply the Percentage
of Correct Keypoints (PCK) metric. This metric calculates
the proportion of predicted keypoints that are within a cer-
tain threshold distance from their actual locations. We have
adopted thresholds of 0.2, 0.1, and 0.05, as per [Zeng et al.,
2022; Jin et al., 2023], to cover a range from soft to strict
evaluation standards.

4.2 Implementation Details
In developing our MTPose model, we tailored key parame-
ters for optimal performance. The model operates on images
resized to 256× 192 image size. We used the ViT Backbone
initialized from pretrained by [Xu et al., 2022b] and finetuned
on PoseTrack2018, PoseTrack21 and Sub-JHMDB datasets.
For the frame interval, we set it to 2 for PoseTrack2018 and
Sub-JHMDB, while PoseTrack21 uses an interval of 1 due
to its high density of small person poses and the associated
challenges in capturing joint movements over longer inter-
vals. We have set the motion threshold δ and the default stan-
dard deviation σ0 for Gaussian heatmaps at 3 for all datasets.
The training setup involves a loss weigth γ of 3/4, a batch size
of 64, a learning rate of 3e-4 using the AdamW optimizer, and
is conducted on a single NVIDIA Tesla V100 GPU.

4.3 Comparison With SOTA Methods
We evaluated our MTPose against leading video-based hu-
man pose estimation methods on PoseTrack validation sets
(AP metric) and Sub-JHMDB dataset (PCK metric).

Results on PoseTrack2018 We first compared our MT-
Pose with existing state-of-the-art methods on the Pose-
Track2018 validation set. The evaluation results are pre-
sented in Table 1. The table highlights that MTPose achieved
a notable advancement, demonstrating an mAP of 89.0. Our
model outperformed the prior best-performing method, OT-
Pose [Jin et al., 2022], by a substantial margin of 4.8 mAP.
Particularly noteworthy improvements were observed in chal-
lenging joints, with gains of 7.1 mAP for the wrist and 8.3
mAP for the ankle. MTPose also achieves an operational ef-
ficiency of approximately 14 frames per second on the Pose-
Track18 dataset.

We also conducted an additional experiment to assess the
effectiveness of our model concerning joint movement scales.
This analysis involved computing the average magnitudes of
each joint movement within the dataset (where we also nor-
malized them, considering variations in person size using the
size of the bounding box). By doing this, we were able to
sort each joint according to the magnitude of its movements.
Figure 4 shows the results of this evaluation. Our MTPose
also exhibited significantly higher gains in joints with larger
average movements, highlighting its proficiency in capturing
dynamic joint motion.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
AlphaPose [Fang et al., 2017] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9
MDPN [Guo et al., 2018] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0
Dynamic-GCN [Yang et al., 2021] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9
PoseWarper [Bertasius et al., 2019] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7
PT-CPN++ [Yu et al., 2018] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9
DCPose [Liu et al., 2021] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9
DetTrack [Wang et al., 2020] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5
FAMI-Pose [Liu et al., 2022] 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2
DiffPose [Feng et al., 2023b] 85.0 87.7 84.3 81.5 81.4 82.9 77.6 83.0
TDMI-ST [Feng et al., 2023a] 86.7 88.9 85.4 80.6 82.4 82.1 77.6 83.6
OTPose [Jin et al., 2022] 87.3 89.7 85.3 80.2 82.3 83.0 79.8 84.2
MTPose (Ours) 89.4 92.4 90.1 87.3 85.7 89.7 88.1 89.0

Table 1: Quantitative results on the PoseTrack2018 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
Tracktor++ w. poses [Bergmann et al., 2019] - - - - - - - 71.4
CorrTrack [Rafi et al., 2020] - - - - - - - 72.3
CorrTrack w. ReID [Rafi et al., 2020] - - - - - - - 72.7
Tracktor++ w. corr. [Bergmann et al., 2019] - - - - - - - 73.6
DCPose [Liu et al., 2021] 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5
FAMI-Pose [Liu et al., 2022] 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2
DiffPose [Feng et al., 2023b] 84.7 85.6 83.6 80.8 81.4 83.5 80.0 82.9
TDMI-ST [Feng et al., 2023a] 86.8 87.4 85.1 81.4 83.8 82.7 78.0 83.8
MTPose (Ours) 92.0 91.7 88.7 85.5 86.4 86.6 85.3 88.3

Table 2: Quantitative results on the PoseTrack21 validation set.

Results on PoseTrack21 We next evaluated MTPose on
the PoseTrack21 validation set (Table 2). Our method
achieved a significant improvement, reaching 88.3 mAP,
which represents a notable 4.5 mAP gain over the existing
state-of-the-art method, TDMI-ST [Feng et al., 2023a]. How-
ever, unexpectedly, we observed the largest gains in the head
joint on PoseTrack21, a joint typically less prone to move-
ment. This result differs from the observations on Pose-
Track2018. Q. Why do the trends in the evaluation results
differ between PoseTrack2018 and PoseTrack21? A. The
differences in evaluation trends between PoseTrack2018 and
PoseTrack21 may be attributed to the distinct characteristics
of the PoseTrack21 dataset. Specifically, the higher preva-
lence of small person poses in PoseTrack21 is likely a key
factor. The nature of these poses often makes them less vis-
ible and more transient, presenting a challenge in effectively
generating our motion-aware heatmaps. This aspect of the
dataset may have contributed to the observed variations in
performance trends.

Results on PoseTrack21 Motion Subset In response to
this observed divergence, we conducted additional experi-
ments using a specifically created PoseTrack21 Motion sub-
set. This subset was compiled by selecting the top-5 videos
with the largest average joint movements aiming to create
a motion-intensive environment for evaluation. We com-
puted the joint movements in the videos in the same way
as we did in our previous experiments on PoseTrack2018.
For comparison, we reproduced HRNet, DCPose, and FAMI-
Pose [Sun et al., 2019; Liu et al., 2021; Liu et al., 2022]
using publicly available codes. Unfortunately, we were un-

able to reproduce DiffPose and TDMI-ST [Feng et al., 2023a;
Feng et al., 2023b] as their codes were not publicly accessi-
ble. In comparison to those baselines, our MTPose’s evalu-
ation results on this motion subset further confirm the effec-
tiveness of the proposed approach. We achieved an mAP of
83.4 in this Motion subset, a decrease of 4.9 mAP from the
overall PoseTrack21 dataset results. In contrast, FAMI-Pose
experienced a more pronounced drop of 7.8 mAP, decreasing
from 81.2 mAP to 73.4 mAP. This outcome indicates that de-
spite the challenges posed by PoseTrack21’s dataset charac-
teristics, MTPose remains robust in handling extensive mo-
tion scenarios. The Motion subset findings underscore our
model’s dynamic strengths, indicating that pronounced gains
in less mobile joints, like the head in the full PoseTrack21
dataset, are influenced by the dataset’s challenges rather than
our approach’s limitations.

Results on Sub-JHMDB Table 3 shows the performance
of MTPose on the Sub-JHMDB dataset. Our model signifi-
cantly outperforms other top-down heatmap regression meth-
ods, achieving an average improvement of 3.4 in the PCK.
Notably, the advantage of MTPose is more evident at stricter
PCK thresholds, demonstrating greater improvements as the
threshold tightens from 0.2 to 0.1 and then 0.05. In direct
comparison with DCPose, MTPose records substantial gains
in average PCK, with increases of 4.0, 7.5, and 14.5, respec-
tively. Moreover, MTPose demonstrates comparable perfor-
mance to post-processing methods such as HANet, which rely
on direct joint coordinate input for refinement [Zeng et al.,
2022; Jin et al., 2023].
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Strategy Method PCK@0.2 PCK@0.1 PCK@0.05
Head Shoulder Elbow Wrist Hip Knee Ankle Avg. Avg. Avg.

H
ea

tm
ap

R
e g

re
ss

io
n

Thin-slicing Net [Song et al., 2017] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1 - -
LSTM PM [Luo et al., 2018] 98.2 96.5 89.6 86.0 98.7 95.6 90.0 93.6 - -
DKD [Nie et al., 2019] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0 - -
SimpleBaseline [Xiao et al., 2018] 97.5 97.8 91.1 86.0 99.6 96.8 92.6 94.4 81.3 56.9
HRNet* [Sun et al., 2019] 99.4 97.0 98.8 95.3 94.5 94.4 88.4 95.0 89.3 63.1
DCPose* [Liu et al., 2021] 99.4 97.3 99.1 95.3 95.3 94.4 90.0 95.4 90.0 67.8
FAMI-Pose [Liu et al., 2022] 99.3 98.6 94.5 91.7 99.2 91.8 95.4 96.0 - -
MTPose (Ours) 100. 100. 100. 100. 100. 100. 97.0 99.4 97.5 82.3

+Post-
Process

SimpleBaseline + DeciWatch [Zeng et al., 2022] 99.8 99.5 99.7 99.7 98.7 99.4 96.5 98.8 94.1 79.4
SimpleBaseline + HANet [Jin et al., 2023] 99.9 99.7 99.7 99.7 99.2 99.9 98.8 99.6 98.3 91.9

Table 3: Quantitative Results on the Sub-JHMDB Dataset. Entries marked with “*” indicate reproduced results, as these methods were not
originally evaluated on this dataset in their respective papers.

Figure 4: This figure depicts the mAP gains relative to average joint
movement magnitude on the PoseTrack validation sets. Joints with
significant motion, such as the elbow, wrist, and knee are shown in
red, while less mobile joints like the head, shoulder, and hip are in
blue. The green trendline highlights MTPose’s significant perfor-
mance improvements in joints with larger average movements.

Method Head Shou. Elb. Wri. Hip Knee Ank. Mean
HRNet [Sun et al., 2019] 81.3 75.6 69.8 63.0 74.2 69.2 63.3 71.6
DCPose [Liu et al., 2021] 83.4 76.9 69.5 65.1 75.5 69.8 65.6 73.0
FAMIPose [Liu et al., 2021] 84.0 77.1 71.5 64.1 75.7 69.7 66.4 73.4
MTPose (Ours) 88.0 87.0 82.9 78.5 85.1 80.7 79.2 83.4

Table 4: Experiment on PoseTrack21 Motion Subset.

4.4 Ablation Study
To assess the impact of motion-aware heatmaps, we con-
ducted an ablation study. This experiment compared the per-
formance of original heatmaps (circular heatmaps with stan-
dard σ for both x and y axes) and Sigma-adjusted heatmaps
(circular heatmaps with σ adjusted based on joint move-
ment magnitude), to our Motion-aware heatmaps (elliptical
heatmaps aligned with joint movement direction). Table 5
presents the results of this study. It reveals that adjusting the
heatmap size according to motion magnitude does contribute
to performance improvement. However, generating elliptical
heatmaps that align with the direction of joint movement is
particularly beneficial. This approach not only boosts over-
all performance but also significantly improves accuracy for
joints that frequently move, such as the wrist and ankle.

Figure 5: Qualitative results of our MTPose (a), FAMI-Pose (b), and
DCPose (c) on PoseTrack21 Motion Subset.

Heatmaps Adjust σ Rotate θ Wrist Ankle Mean
Original 86.1 86.8 87.8
Sigma-adjusted 86.5 (+0.4) 87.2 (+0.4) 88.4 (+0.6)
Motion-aware 87.3 (+1.2) 88.1 (+1.3) 89.0 (+1.2)

Table 5: Ablation study on PoseTrack2018 validation set.

5 Conclusion

In this paper we propose a novel heatmap regression method
to estimate 2D human poses in videos using the motion cues
that capture the movements of joint keypoints in human mo-
tions. To do this, we introduce a new style of heatmaps what
we call Motion-Aware Heatmaps based on the estimated
joint movement to reflect the motion uncertainty of each joint
point. In addition, we present a new architecture with the
simple but effective architecture to integrate useful informa-
tion in the joint motion cues to boost up the pose estimation
performance. Through comprehensive experimental valida-
tion on three public benchmark datasets, our approach has
demonstrated a notable improvement in pose estimation ac-
curacy, particularly excelling in scenarios involving dynamic
joint movements. The results underscore our method’s effec-
tiveness in predicting joints with significant motion and its
robustness in various motion contexts.
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