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Abstract
Unsupervised domain adaptive object detection
(DAOD) aims to adapt detectors from a labeled
source domain to an unlabeled target domain.
Existing DAOD works learn feature representa-
tions that are both class-discriminative and domain-
invariant by jointly minimizing the loss across do-
main alignment and detection tasks. However,
jointly resolving different tasks may lead to con-
flicts, one contributing factor being gradient con-
flicts during optimization. If left unaddressed,
such disagreement may degrade adaptation perfor-
mance. In this work, we propose an efficient op-
timization strategy named Conflict-Alleviated Gra-
dient Descent (CAGrad), which aims to alleviate
the conflict between two tasks (i.e., alignment and
detection). Specifically, we alter the gradients by
projecting each onto the normal plane of the other.
The projection operation changes conflicting gra-
dients from obtuse to acute angles, thus alleviat-
ing the conflict and achieving gradient harmoniza-
tion. We further validate our theoretical analy-
sis and methods on several DAOD tasks, includ-
ing cross-camera, weather, scene, and synthetic-to-
real-world adaptation. Extensive experiments on
multiple DAOD benchmarks demonstrate the effec-
tiveness and superiority of our CAGrad approach.

1 Introduction
The rapid expansion of image data has driven significant
advancements in machine learning, particularly in the field
of computer vision [Redmon and Farhadi, 2018; Ren et
al., 2015; Cai and Vasconcelos, 2018; Zhu et al., 2020;
Carion et al., 2020; Liu et al., 2023]. However, a major
limitation of these advancements is the assumption that the
distribution of the training dataset perfectly matches that of
practical application scenarios, an alignment rarely achieved
in real-world settings. To tackle the challenges arising from
this mismatch in domain distributions, Unsupervised Domain
Adaptation (UDA) [Pan and Yang, 2009; Cui et al., 2020;
Ganin and Lempitsky, 2015; Kang et al., 2019] has emerged

∗Corresponding author

Figure 1: The combined update vector g (in red) of a two-task learn-
ing problem with gradient descent (GD) and our approach CAGrad.
The two task-specific gradients are labeled g1 (in blue) and g2 (in
orange). (a) The update vector g is the sum gradient g1 + g2. Due
to the conflict between g1 and g2, the update vector is dominated by
g2. (b) Our CAGrad projects each gradient onto the normal plane
of the other one and uses the projected gradients g̃1 and g̃2 (in gray
arrows) as the update vector g = g̃1 + g̃2.

as a practical solution. UDA aims to reduce the performance
decline caused by the disparity in domain distributions, re-
moving the need for annotated data in the target domain.

In recent years, UDA algorithms have rapidly developed
and achieved significant performance in object detection,
known as domain adaptive object detection (DAOD) [Chen
et al., 2018; He and Zhang, 2019; Xu et al., 2020; Wang et
al., 2021a; Wu et al., 2022]. Specifically, [Chen et al., 2018]
is the first method to achieve domain alignment through the
game between feature detector and domain classifier. [Wang
et al., 2021a] adjusts adversarial domain adaptation mod-
els on detection transformers to reduce distribution shift be-
tween different domains through aligning sequence features.
These approaches are characteristically designed to concur-
rently optimize both domain alignment and detection tasks
throughout the training phase. However, due to the func-
tional differences between various tasks, the optimal gradi-
ent descent directions for these tasks may be uncoordinated
or imbalanced. Directly sharing network parameters, such as
the feature generator, can lead to optimization conflicts and
negatively impact the learning of domain-invariant features.
Figure 1 (a) illustrates a scenario of suboptimal direction up-
dates. The orange arrow represents the optimal gradient di-
rection for domain alignment, and the blue arrow for detec-
tion. In joint optimization, the update gradient (red arrow)
is mostly dominated by detection task, owing to existing con-
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Figure 2: The histograms show gradient inner product frequencies
for DAF and SFA during training, with the x-axis for inner product
values and the y-axis for frequency. Blue marks obtuse angles, and
orange marks acute angles, indicating conflict and non-conflict.

flicts, which diminishes the effectiveness of both tasks. In this
work, we define two gradients to be conflicting if they point
away from one another, i.e., have a negative cosine similarity.

To validate our observations, we conducted experiments in
cross-domain object detection scenarios. Figure 2 shows the
gradient inner product distribution between two tasks (align-
ment and detection) during training, using DAF [Chen et al.,
2018] and SFA [Wang et al., 2021a] on tasks transitioning
from Cityscapes [Cordts et al., 2016a] to Foggy Cityscapes
[Sakaridis et al., 2018a]. The results revealed a mix of acute
and obtuse angles in gradient distributions, with obtuse an-
gles being common. Conflicting gradients cause the opti-
mizer to favor certain tasks, leading to a poor update direc-
tion for a subset or even all tasks. If left untouched, this will
degrade adaptation performance. Addressing these conflicts
while preserving task functionality is a crucial yet underex-
plored challenge.

In this paper, we introduce a novel and effective module
called Conflict-Alleviated Gradient descent (CAGrad), de-
signed to address the optimization conflicts between domain
alignment and detection tasks. When gradients from these
two tasks conflict, we modify them by projecting each onto
the normal plane of the other, ensuring coordinated devel-
opment of both tasks during joint training while preserv-
ing their specific functions. As depicted in Figure 1 (b),
the strategic integration of gradient magnitude and direction-
homogenization plays a pivotal role in maintaining the sta-
bility of the overall learning process. Moreover, CAGrad
is model-agnostic and requires only a single modification
in gradient application, making it easy to integrate with ex-
isting state-of-the-art DAOD methods for enhanced perfor-
mance. We theoretically prove the local conditions under
which CAGrad improves upon standard multi-task gradient
descent and empirically evaluate it on various challenging
DAOD tasks, including cross-camera, weather, scene, and
synthetic-to-real-world adaptation. Overall, CAGrad proves
to be a powerful tool, capable of not only alleviating gradi-
ent conflicts but also enhancing detection performance. The
main contributions of this paper are summarized as follows:

• We discover the gradient conflict exists in the DAOD
methods,which can cause the optimizer to prioritize cer-
tain tasks over others, leading to difficulties in converg-
ing to a desirable solution.

• We propose an efficient optimization strategy named
Conflict-Alleviated Gradient descent (CAGrad), which
alters the gradients by projecting each onto the normal
plane of the other. Figure 3 is a representative and illus-
trative example that depicts the usage of CAGrad.

• Extensive experiments validate the effectiveness and
universality of CAGrad on various benchmark databases
on several DAOD baselines. More insights and analyses
of our model are also provided to justify the reasonabil-
ity of CAGrad and demonstrate its superiority.

CAGrad is a simple and effective tool that easily integrates
with existing adversarial learning methods for Domain Adap-
tive Object Detection (DAOD), without requiring changes
to the network architecture. This attribute renders CAGrad
highly compatible and user-friendly with various adversarial
domain adaptation approaches.

2 Related Work
Object detection. Object detection, a key area in computer
vision, has seen significant progress over the years. Models
like Faster-RCNN [Ren et al., 2015] and Mask-RCNN [He et
al., 2017] represent successful two-stage approaches, while
one-stage models such as YOLO [Redmon et al., 2016], SSD
[Liu et al., 2016], and FCOS [Tian et al., 2019] are known
for their real-time capabilities. Unlike these CNN-based de-
tectors, DETR [Carion et al., 2020] introduces transformers
to object detection and shows promising results. Deformable
DETR [Zhu et al., 2020] further improves this by speeding
up convergence and efficiently handling multi-scale features.
These developments provide a strong foundation for domain
adaptive object detection research.
Domain Adaptive Object Detection. To circumvent per-
formance degradation caused by distribution shifts, the re-
search of domain adaptive object detection has drawn atten-
tion recently. As a pioneering work, [Chen et al., 2018] pro-
pose the domain adaptive Faster-RCNN method (DAF),which
achieves image-level and instance-level feature alignment.
Inspired by it, MAF [He and Zhang, 2019] introduces a hi-
erarchical adversarial feature alignment strategy that reduces
domain disparity at different scales. HTCN [Chen et al.,
2020] employ CycleGAN for data augmentation, generating
intermediate domain images to facilitate model alignment be-
tween source and target domains. VDD [Wu et al., 2021]
tackles the problem by disentangling domain-invariant and
domain-specific representations using vector decomposition,
while also exploring the extraction of instance-invariant fea-
tures [Wu et al., 2022]. IDF [Lang et al., 2023] propose
a non-adversarial domain discriminator to extract domain-
specific features. Additionally, PTMAF[He et al., 2023] and
PAATF[He et al., 2022] introduce additional constraints dur-
ing the adversarial learning stage. Recently, regarding the
Transformer object detector, existing adaptation techniques
for DETR predominantly rely on model-based approaches
SFA [Wang et al., 2021b], aiming to reduce the distribu-
tion shift between different domains through sequence fea-
ture alignment. AQT [Huang et al., 2022] employs a novel
adversarial token and a stack of cross-attention layers as the
discriminator.
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Figure 3: Conflicting gradients and CAGrad. In (a), the gradients g1 and g2, pertaining to two distinct tasks, exhibit opposing directional
tendencies. This condition potentially results in adverse interference effects. In (b) and (c), we illustrate the CAGrad algorithm in the case
where gradients are conflicting. CAGrad projects task 1’s gradient onto the normal vector of task 2’s gradient, and vice versa. Non-conflicting
task gradients (d) are not altered under CAGrad, allowing for constructive interaction.

Previous methodologies have focused on acquiring
domain-invariant and class-discriminative feature representa-
tions through the concurrent optimization of domain align-
ment and object detection tasks. However, these approaches
often overlook the issue of imbalance and uncoordinated op-
timization between tasks, a phenomenon we identify as ’gra-
dient conflict’ in this study. To address this issue, we intro-
duce the Conflict-Alleviated Gradient descent (CAGrad), a
strategy designed to independently manage the gradients of
domain alignment and detection tasks. This approach aims
to harmonize the two tasks throughout the training process,
thereby mitigating the gradient conflict.

3 Proposed Approach
3.1 Problem Definition
In domain adaptive object detection, the labeled source do-
main Ds = {xs

i , y
s
i }

ns
i=1 comprises ns samples across C

classes. In contrast, the unlabeled target domain Dt =
{xt

i}
nt
i=1 contains nt samples of the same classes. Both Ds

and Dt share the same feature and category spaces but differ
in data distributions. Our goal is to use the labeled data from
Ds and the unlabeled data from Dt to train a deep model that
accurately predicts class labels and identifies bounding boxes
in the target domain.

3.2 A General Framework of DAOD
Adversarial learning, pioneered by the Domain Adversarial
Neural Network (DANN) [Ganin et al., 2016], aligns do-
mains effectively. It uses a feature generator G to deceive the
domain discriminator D, which predicts the origin domain of
the generated features. Training involves an adversarial game
between G and D, optimizing parameters θg and θd using a
domain alignment objective function as follows:

Ladv(θg, θd) =Exs
i∼Ds

log [D(G(xs
i ))]

+Ext
i∼Dt

log [1−D(G(xs
i ))]

(1)

To enhance detection performance in the target domain, it is
crucial to first ensure that the detector C accurately identifies

samples from the source domain. Consequently, we describe
the supervised detection loss as follows:

Ldet(θg, θc) =
1

ns

ns∑
i=1

Lce(C(G(xs
i ; θg); θc), y

s
i ) (2)

where Lce represents the standard cross-entropy loss func-
tion. During the training phase, conventional methods typ-
ically optimize both the adversarial (Ladv) and detection
(Ldet) objective functions concurrently to achieve domain-
invariant and class-discriminant feature representations. The
overall minimax objective function is given by:

min
θg,θc

max
θd
Ldet + Ladv (3)

where θg , θd, and θc represent the parameters of the feature
generator, domain discriminator, and category detector, re-
spectively.

3.3 Conflict-Alleviated Gradient Descent
In the realm of DAOD, domain alignment and detection stand
as distinct tasks, each possessing its own set of optimal gradi-
ent descent directions, which may exhibit inconsistency. This
inconsistency can engender conflicts in the optimization of
two loss functions during training, thereby exerting an im-
pact on the ultimate performance of domain adaptation. To
enable seamless coordination in optimizing these two tasks,
we introduce the CAGrad technique.

To streamline our approach, we define the overall loss
function as L = L1 + L2, where L1 = Ladv pertains to
domain alignment and L2 = Ldet relates to detection. Here,
g1 = ∇L1(θ) and g2 = ∇L2(θ) signify the gradients for
each task, while g denotes the gradient of the total loss L.
Our analysis delineates two scenarios based on the correla-
tion between g1 and g2:

In Scenario I, a positive correlation between g1 and g2
(i.e., cos(g1, g2) > 0 or gT1 g2 > 0) suggests an acute an-
gle between the gradients, indicating that they are effectively
aligned. Consequently, no further modification of g1 and g2
is required.
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In Scenario II, a negative correlation between g1 and g2
(i.e., cos(g1, g2) < 0 or gT1 g2 < 0) indicates an obtuse an-
gle between the gradients, suggesting a conflict in their op-
timization directions. To address this effectively, projecting
each gradient onto the normal plane of the other’s gradient
can minimize this conflict and enhance the optimization effi-
ciency. This is achieved by:

g̃1 = g1 −
gT1 g2

||g2||2
g2 (4)

g̃2 = g2 −
gT2 g1

||g1||2
g1 (5)

The Conflict-Alleviated Gradient Descent process is illus-
trated in Figure 3, leading to a combined gradient expression:

g = g̃1 + g̃2 = g1 + g2 −
gT1 g2

||g2||2
g2 −

gT2 g1

||g1||2
g1 (6)

Considering both positive and negative correlations (gT1 g2 >
0 and gT1 g2 < 0), we derive the following theorem.
Theorem 1.In the context of DAOD, conflict resolution in op-
timization can be facilitated by directly altering the gradients
to prevent potential conflicts. The combined gradient expres-
sion, g, post-modification, is given by:

g = g̃1 + g̃2

= g1 + g2 − δ(gT1 g2<0)
gT1 g2

||g2||2
g2 − δ(gT1 g2<0)

gT2 g1

||g1||2
g1

(7)

Here, δ(·) denotes an indicator function, which returns a
value of 1 if the condition is true and 0 if false, defined as:

δ(A) =

{
1, ifA is true,

0, ifA is false
(8)

The proposed CAGrad methodology effectively coordinates
two distinct tasks during optimization.

3.4 Efficient Equivalent Model of CAGrad+DAOD
Using the generalized DAOD model from Eq. 3 in Section
3.2, along with the CAGrad method from Eq. 7, improves
training and helps achieve equilibrium in the DAOD frame-
work. We introduce a more proficient loss function that inte-
grates CAGrad principles into the DAOD model, improving
convergence and performance. In alignment with CAGrad
principles, we reformulate Eq. 7 as follows:

g = (1− δ(gT1 g2<0)
gT2 g1

||g1||2
)g1 + (1− δ(gT1 g2<0)

gT1 g2

||g2||2
)g2

(9)
To streamline the presentation, let us define τ1 and τ2 as:

τ1 = 1− δ(gT1 g2<0)
gT2 g1

||g1||2

τ2 = 1− δ(gT1 g2<0)
gT1 g2

||g2||2

(10)

These constants τ1 and τ2 are derived from the gradients of

Figure 4: The usage illustration of our CAGrad+DAOD. Optimiza-
tion objectives include domain alignment loss and detection loss.
CAGrad module is responsible for harmonization process for the
gradients of the two losses.

Algorithm 1 CAGrad+DAOD Optimization Algorithm

Input: Source data {xs
i , y

s
i }

i=ns
i=1 , Target data {xt

i}
i=nt
i=1 , Op-

timal parameters ϕ = {θg, θc, θd}, learning rate η,
max iteration;

Output: Optimal parameters θg, θc, θd;
1: Initialization Optimal parameters θg, θc, θd;
2: repeat
3: Compute domain alignment loss Ladv (Eq. 1), i.e., L1

and detection loss Ldet (Eq. 2), i.e., L2;
4: Compute original gradients g1 and g2 and judge the

inner product of two gradients gT1 g2;
5: Compute coefficients τ1 and τ2 by Eq. 10;
6: Compute updated total loss L̃ (Eq. 12);
7: Update model parameters: ϕt+1 ← ϕt − η∇ϕtL̃
8: until max iteration is reached;

the original loss functions L1(θ) and L2(θ). With τ1 and τ2
established, we can rewrite Eq. 9 as follows:

g = τ1g1 + τ2g2 (11)
Performing an integral operation on Eq. 11 yields a balanced
DAOD model:

L̃ =

∫
(τ1g1 + τ2g2)dg1dg2 = τ1L1 + τ2L2 (12)

The training objective then becomes:

min
θg,θc

max
θd
L̃ (13)

The CAGrad module, as proposed, essentially recalibrates the
original loss functions L1 and L2 through the computation of
weights τ1 and τ2, which rely on the gradients of the original
loss functions. This methodology culminates in a balanced
and efficient DAOD model. In scenarios where gT1 g2>0, we
note τ1 = 1 and τ2 = 1, leading to a simplification of the
overall loss function to L = L1 + L2, corresponding to the
general DAOD model. Figure 4 serves as an exemplary illus-
tration of the CAGrad+DAOD application, with the complete
update process delineated in Algorithm 1.

4 Experiments and Results
4.1 Experimental Setup
Datasets and Settings. Our methodology is rigorously eval-
uated on a variety of datasets, including KITTI [Geiger et al.,
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2012], Cityscapes [Cordts et al., 2016b], Foggy Cityscapes
[Sakaridis et al., 2018b], Sim10k [Johnson-Roberson et al.,
2016], and BDD100k [Yu et al., 2020], which present a broad
spectrum of challenges for domain adaptive object detection:

• Cross Camera Adaptation. We evaluate the domain
drift between the real domain and the similar domain
caused by different cameras, which is an important fac-
tor leading to domain differences in the real-world. We
employ the training set of KITTI and the Cityscapes as
the source and target domains, respectively.

• Weather Adaptation. In this scenario, we use
Cityscapes as the source dataset, consisting of 2,975
training images and 500 evaluation images. The coun-
terpart, known as Foggy Cityscapes, is derived from
Cityscapes through a fog synthesis algorithm. These
datasets enable us to assess the effectiveness of our
method in adapting object detection models from clear
weather to foggy conditions.

• Scene Adaptation. Cityscapes is again the source
dataset in this instance, with the daytime subset of
BDD100k acting as the target. The BDD100k subset,
encompassing 36,728 training and 5,258 validation im-
ages, is rich in diverse daylight scenes, each annotated
with bounding boxes.

• Synthetic to Real Adaptation. In this scenario, the
source domain is Sim10k, generated through the Grand
Theft Auto game engine, containing 10,000 training im-
ages with 58,701 bounding box annotations. Cityscapes
is employed as the target domain, specifically focusing
on car instances for both training and evaluation.

Implementation Details. We benchmark our approach
against cutting-edge domain adaptation methods across two
categories: (1) The Faster RCNN series, including DAF
[Chen et al., 2018], MAF [He and Zhang, 2019], ATF [He and
Zhang, 2020], HTCN [Chen et al., 2020], UMT [Deng et al.,
2021], PAATF [He et al., 2022], PTMAF [He et al., 2023],
and IDF [Lang et al., 2023]. (2) The Deformable DETR se-
ries, encompassing SFA [Wang et al., 2021b].

We validate the effectiveness and versatility of our method
against various baselines, including DAF, MAF, IDF, and
SFA. By default, we employ ImageNet pre-trained ResNet-
50 [He et al., 2016] and VGG-16 [Simonyan and Zisserman,
2014] as CNN backbones in all experiments. Aligning with
the Faster RCNN series, we train the network using the SGD
optimizer with a momentum of 0.9 and a weight decay of
5 × 10−4. The initial learning rate is set to 1 × 10−3 and is
reduced to 1 × 10−4 after 5 epochs. A total of 15 epochs
are conducted, with a batch size of 2 maintained through-
out. In line with the Deformable DETR series, we utilize
the Adam optimizer [Kingma and Ba, 2015] for training over
50 epochs. The learning rate is initialized at 2 × 10−4 and
reduced by a factor of 0.1 after 40 epochs. A batch size of 4
is employed consistently in all experiments. All these exper-
iments are conducted using RTX3090 NVIDIA GPUs.

4.2 Comparisons with SOTA Methods
Cross Camera Adaptation. In our investigation into cross-
camera adaptation, we focused on the transfer between KITTI

Methods Detector K→ C C→ K
FRCNN FRCNN 30.2 53.8
DAF FRCNN 38.5 64.1
MAF FRCNN 41.0 72.1
ATF FRCNN 42.1 73.5
PAATF FRCNN 42.9 74.1
IDF FRCNN 42.1 74.0
DAF+CAGrad FRCNN 40.7 68.3
MAF+VFDD FRCNN 43.1 74.6
IDF+CAGrad FRCNN 43.5 75.3
DefDETR DefDETR 39.5 -
SFA DefDETR 46.7 -
SFA+CAGrad DefDETR 48.1 -

Table 1: Results of different methods for cross camera adapta-
tion,i.e., KITTI to Cityscapes and Cityscapes to KITTI.

(K) and Cityscapes (C), with detailed results outlined in Ta-
ble 1. Notably, CAGrad facilitated enhancements in detec-
tion accuracy across various models DAF, MAF, IDF, and
SFA. Specifically, IDF combined with CAGrad surpassed the
baseline IDF by significant margins of 1.4% and 1.3% in
the K→C and C→K tasks, respectively. SFA augmented
with CAGrad exhibited an increment of 1.4% in K→C and
an impressive 8.6% in comparison to the source-only De-
formable DETR model. This underscores CAGrad’s capac-
ity to seamlessly enhance existing alignment-based DAOD
methods, thereby elevating their efficacy in image detection
tasks.
Weather Adaptation. In assessing the robustness of our tar-
get detector under varied weather conditions, we executed
a cross-domain model transition from Cityscapes to Foggy
Cityscapes. The outcomes, as tabulated in Table 2, reveal that
upon integrating CAGrad, models such as DAF, MAF, IDF,
and SFA reported mAP values of 33.6%, 37.0%, 43.7%, and
43.5% respectively. Remarkably, the implementation of CA-
Grad significantly bolstered the cross-domain efficacy of the
Deformable DETR, achieving a noteworthy absolute mAP in-
crement of 2.2% (from 41.3% to 43.5%). This improvement
attests to CAGrad’s ability to rectify the discord and imbal-
ance between domain alignment and detection tasks in the
optimization phase, thereby effectively enhancing detection
accuracy.
Scene Adaptation. The adaptability of models to varying
scenes is crucial. Our proposed method, CAGrad, demon-
strates its effectiveness in scene adaptation, as shown in Table
3. It can be observed that after applying CAGrad, the mAP of
DAF, SWAD and SFA reaches 26.5%, 27.5%, and 31.6%, re-
spectively. Notably, performance improvements are observed
across all categories within the target dataset.
Synthetic to Real Adaptation. Within the synthetic-to-real
adaptation domain, the efficacy of CAGrad was rigorously
evaluated, as delineated in Table 4. Impressively, CAGrad
surpassed the baseline models DAF, MAF, IDF, and SFA by
margins of 2.1%, 2.4%, 1.6%, and 2.0%, respectively.

4.3 Analysis and Discussions
Convergence Analysis. Figure 5 illustrates the test accu-
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Methods Detector person rider car truck bus train mcycle bicycle mAP
FRCNN FRCNN 24.1 33.1 34.3 4.1 22.3 3.0 15.3 26.5 20.3
DAF FRCNN 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
MAF FRCNN 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
ATF FRCNN 34.6 48.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7
HTCN FRCNN 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
UMT FRCNN 33.0 45.9 48.6 34.1 56.5 46.8 30.4 37.3 41.7
PAATF FRCNN 37.9 49.6 52.8 27.0 46.6 48.7 33.6 39.5 42.0
PTMAF FRCNN 37.3 49.4 52.2 26.7 49.5 34.5 34.9 41.2 40.7
IDF FRCNN 37.4 50.1 52.8 31.3 50.6 42.0 33.7 41.7 42.4
DAF+CAGrad FRCNN 30.6 40.6 43.8 25.8 38.4 32.6 24.3 32.4 33.6
MAF+CAGrad FRCNN 31.2 41.8 46.0 25.7 42.3 42.1 30.5 36.1 37.0
IDF+CAGrad FRCNN 38.4 51.4 54.7 33.5 51.0 43.1 35.0 42.5 43,7
DefDETR DefDETR 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
SFA DefDETR 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3
SFA+CAGrad DefDETR 48.0 50.2 65.7 26.2 47.8 32.2 32.0 46.1 43.5

Table 2: Results of different methods for weather adaptation, i.e., Cityscapes to Foggy Cityscapes. FRCNN and DefDETR are abbreviations
for Faster RCNN based on the VGG-16 and Deformable DETR based on the ResNet-50, respectively.

Methods Detector person rider car truck bus mcycle bicycle mAP
FRCNN FRCNN 29.3 28.2 45.7 15.5 16.6 16.0 22.1 24.8
DAF FRCNN 26.9 22.1 44.7 17.4 16.7 17.1 18.8 23.4
SWDA FRCNN 30.2 29.5 45.7 15.2 18.4 17.1 21.2 25.3
DAF+CAGrad FRCNN 30.6 28.5 46.5 19.5 19.1 18.4 22.8 26.5
SWDA+CAGrad FRCNN 33.1 31.7 46.9 19.3 19.7 18.7 23.0 27.5
DefDETR DefDETR 38.9 26.7 55.2 15.7 19.7 10.8 16.2 26.2
SFA DefDETR 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9
SFA+CAGrad DefDETR 43.0 30.3 59.1 23.0 25.4 16.8 23.5 31.6

Table 3: Results of different methods for scene adaptation,i.e., Cityscapes to BDD100k daytime subset.

Methods Detector car AP
FRCNN FRCNN 34.6
DAF FRCNN 38.9
MAF FRCNN 41.1
HTCN FRCNN 42.5
PAATF FRCNN 43.7
PTMAF FRCNN 43.2
IDF FRCNN 43.9
DAF+CAGrad FRCNN 41.0
MAF+CAGrad FRCNN 43.5
IDF+CAGrad FRCNN 45.5
DefDETR DefDETR 47.4
SFA DefDETR 52.6
SFA+CAGrad DefDETR 54.6

Table 4: Results of different methods for synthetic to real adapta-
tion,i.e., Sim10k to Cityscapes.

racy’s convergence trajectories relative to iteration counts in
tasks transitioning from Cityscape to Foggy Cityscape. Here,
the test accuracy of the baseline models is depicted by the
blue curve, while the red curve shows the test error for base-
line models enhanced with CAGrad. It is evident that, when
compared to the baseline alone, the combination of baseline
and CAGrad achieves quicker convergence and a reduced test

Figure 5: Convergence curves of various baselines and base-
line+CAGrad on the test error (%). Clearly, the test performance
is improved with CAGrad.

error. This effectively demonstrates CAGrad’s significant role
in facilitating the optimization process, steering both domain
alignment and detection tasks towards more favorable out-
comes.
Detection Results. In Figure 6 (a), we show some visual re-
sults by SFA (baseline) and our SFA+CAGrad, accompanied
with the ground-truth. As can be seen, in all three scenarios,
SFA+CAGrad improves the detection performance. It suc-
cessfully mitigates the false positives generated by SFA and
detects challenging objects overlooked by SFA.
Visualization of Feature Distribution. Figure 6 (b) presents
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Figure 6: (a) A qualitative assessment juxtaposes SFA+CAGrad against the preceding SOTA technique and Ground Truth (GT) across four
distinct scenarios. The regions highlighted in red underscore the enhanced performance achieved by our approach. (b) In Cityscapes to Foggy
Cityscapes, instance-level feature t-SNE results. Colors in the first row represent classes, while orange signifies the source domain and blue
signifies the target domain in second row.

Figure 7: Inner product distributions (histogram) of two gradients
before and after CAGrad on Cityscape to Foggy Cityscape. Clearly,
the between-task gradient conflict is eliminated after harmonization.

the t-SNE visualizations illustrating the feature distributions
generated by IDF (baseline) and IDF+CAGrad in the context
of weather adaptation. The features processed using CAGrad
demonstrate a more pronounced clustering effect, with a di-
minished presence of samples straddling class boundaries.
This enhances the discriminative capacity of the features.
Furthermore, these visualizations corroborate the efficacy of
the CAGrad mechanism in learning enhancement.
Effectiveness Analysis. Figure 7 presents the inner product
distributions of gradients between domain alignment and de-
tection tasks after applying CAGrad to DAF and SFA during
the entire training and updating process. Compared to Fig-
ure 2, after applying CAGrad, as shown in Figure 7, the in-
ner products of both gradients are positive. This means that
the gradient angles of the two tasks have been coordinated

into acute angles. The proposed CAGrad avoids optimiza-
tion conflicts by separately adjusting the gradients of the two
tasks to achieve optimal coordination. Experimental results
fully illustrate the effectiveness of the proposed CAGrad.

5 Conclusion

This research addresses the challenge of optimization con-
flict in unsupervised domain adaptive object detection mod-
els, specifically between the alignment and detection tasks.
To address this challenge, we introduce an innovative yet
straightforward technique, the Conflict-Alleviated Gradient
descent (CAGrad), which effectively resolves gradient con-
flicts for each task. Furthermore, we propose a rapidly op-
timizable equivalent model, CAGrad+DAOD, implementing
swift integration of CAGrad. This approach ensures that
both the alignment and detection tasks are harmoniously bal-
anced during DAOD optimization. A comprehensive array
of experimental evaluations and model analyses substantiate
that CAGrad markedly enhances the performance of existing
alignment-based DAOD models, contributing to state-of-the-
art outcomes. Additionally, CAGrad demonstrates scalability
and is underpinned by a solid theoretical framework.
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