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Abstract
As video-based social networks continue to grow
exponentially, there is a rising interest in video re-
trieval using natural language. Cross-modal hash-
ing, which learns compact hash code for encod-
ing multi-modal data, has proven to be widely ef-
fective in large-scale cross-modal retrieval, e.g.,
image-text retrieval, primarily due to its computa-
tion and storage efficiency. However, when applied
to video-text retrieval, existing cross-modal hash-
ing methods generally extract features at the frame-
or word-level for videos and texts individually,
thereby ignoring their long-term dependencies. To
address this issue, we propose Contrastive Trans-
former Cross-Modal Hashing (CTCH), a novel
approach designed for video-text retrieval task.
CTCH employs bidirectional transformer encoder
to encode video and text and leverages their long-
term dependencies. CTCH further introduces su-
pervised multi-modality contrastive loss that ef-
fectively exploits inter-modality and intra-modality
similarities among videos and texts. The experi-
mental results on three video benchmark datasets
demonstrate that CTCH outperforms the state-of-
the-arts in video-text retrieval tasks.

1 Introduction
With the rapid development of the Internet, many video so-
cial networking sites and smartphone video sharing apps have
emerged in recent years, and the number of videos on the In-
ternet has witnessed an explosive growth. Efficient and ac-
curate video retrieval is receiving ever-increasing attention.
When searching with natural language, it is desirable to re-
turn relevant images and videos timely and accurately. As
there is a big semantic gap among different modalities, e.g.,
video and text, it is challenging to perform video-text cross-
modal search.

Hashing [Weiss et al., 2008; Li et al., 2020; Li et al., 2022]
has received a great deal of attention due to its efficient stor-
age and computation over continuous features. The core idea
of hashing is to project high-dimensional data points into

∗Corresponding author.

compact hash codes, while preserving similarity among orig-
inal data in the Hamming space. Cross-modal hashing maps
multi-modal data into a common Hamming space, where ef-
ficient retrieval is performed. The shallow cross-modal hash-
ing methods employ a two-stage strategy, that is, first extract
the hand-crafted feature or deep feature using pre-trained net-
work, and then learn hash code on the extracted feature of
multi-modal data.

Deep cross-modal hashing [Wu et al., 2019; Li et al., 2022;
Yu et al., 2022] has been recently developed to perform la-
tent hash code learning in an end-to-end manner. Conven-
tional cross-modal hashing methods are primarily tailored for
image-text retrieval, and they encounter two main challenges
when extended to video-text retrieval. These methods typ-
ically extract features for each frame and word, pool them
into video and sentence-level features, and are further trained
to obtain hash codes. This overlooks correlations among
the sequential units inherent in videos and sentences, and
exploration of such correlation often helps improve perfor-
mance. Some network structures, e.g., Recurrent Neural Net-
work (RNN) [Lipton, 2015] and Long Short Term Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] can model se-
quence data. However, training LSTM is computationally ex-
pensive and also cannot well capture long-run dependencies
among distant frames due to gradient vanishing [Pascanu et
al., 2013]. In addition, they are not sufficient to capture inter-
modality and intra-modality similarity among video and text
modalities due to their complex data structures. Therefore,
it is still challenging to devise a cross-modal hashing specifi-
cally optimized for video-text retrieval.

To address the above concerns, we propose a novel cross-
modal hashing method, i.e., Contrastive Transformer Cross-
modal Hashing (CTCH) for video-text retrieval. CTCH ap-
plies a new video augmentation strategy and EDA [Wei
and Zou, 2019] to augment video and text respectively.
CTCH builds a network architecture that consists of bidirec-
tional transformer encoder and a hash layer, and is mainly
trained with multi-modality supervised contrastive loss. The
overview of the proposed CTCH is illustrated in Figure 1.
The main contributions of this work are summarized:

• We propose a novel cross-modal hashing method, i.e.,
Contrastive Transformer Cross-modal Hashing (CTCH)
for video-text retrieval. CTCH is among the first at-
tempts of cross-modal hashing that utilizes bidirectional
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Figure 1: Illustration of the proposed CTCH. CTCH employs bidirectional transformer encoder to encode videos and texts, then constructs
a hash layer to transform continuous features into hash code. CTCH devises multi-modality supervised contrastive loss, classification loss,
quantization loss and balanced loss to supervise training.

transformer to effectively capture long-term dependen-
cies in frame and word sequences.

• We devise a supervised multi-modality contrastive loss
on constructed inter-modality and intra-modality triplet
sets to effectively exploit structures among videos and
texts at both inter-modality and intra-modality levels.

• The quantitative and qualitative results empirically ver-
ify the superiority of the proposed method over state-of-
the arts in video-text retrieval.

2 Related Work
2.1 Cross-Modal Hashing
Cross-modal hashing aims to map multi-modal data, e.g., im-
ages, texts into a shared Hamming space, where hash codes
of different modalities can be fast compared and matched.
The primary advantage of cross-modal hashing is its ef-
ficiency in supporting efficient cross-modal retrieval, e.g.,
image-text retrieval. Existing cross-modal hashing methods
includes two categories, i.e., shallow cross-modal hashing
[Zhang and Li, 2014; Lin et al., 2015] and deep cross-modal
hashing [Jiang and Li, 2017; Li et al., 2018; Qi et al., 2021;
Jin et al., 2023], based on whether feature learning is per-
formed by deep neural network.

The shallow cross-modal hashing methods learn linear
function to transform multi-modal data into hash code. For
instance, Semantic correlation maximization (SCM) [Zhang
and Li, 2014] extends the canonical correlation analysis in the
supervised manner. Semantics-preserving hashing (SePH)
[Lin et al., 2015] learns the joint binary hash codes by min-
imizing the Kullback–Leibler divergence between the hash
codes and the semantic affinities, and then learns the cross-
view hash functions with the kernel logistic regression. The
shallow cross-modal hashing typically uses hand-crafted fea-
tures, and feature learning is independent of hash code learn-
ing. Therefore, retrieval performance of shallow cross-modal
hashing is expected to be further improved.

Deep cross-modal hashing leverages the power of deep
learning, and integrates feature learning and hash code learn-
ing into a unified framework. Deep cross-modal hashing

(DCMH) [Jiang and Li, 2017] performs an end-to-end learn-
ing framework, using a negative log-likelihood loss to pre-
serve the cross-modal similarities. Self-Supervised Adver-
sarial Hashing (SSAH) [Li et al., 2018] utilizes two adversar-
ial networks to jointly model different modalities and thereby
further capture their semantic relevance and representation
consistence under the supervision of the learned semantic fea-
ture. Existing cross-modal hashing methods primarily focus
on image-text retrieval, while video-text retrieval is becom-
ing increasingly important due to the richer information con-
tained in videos. There are a few attempts [Qi et al., 2021;
Jin et al., 2023] by encoding videos with I3D or LSTM. How-
ever, these methods often require high computational com-
plexity during training. Developing effective cross-modal
hashing for video-text retrieval still remains challenging due
to complex structure of video.

2.2 Video Hashing

In recent years, some deep learning-based hashing methods
have been proposed for video retrieval due to great achieve-
ment of deep neural networks in extracting high-level se-
mantic features. Self-supervised Temporal Hashing (SSTH)
[Zhang et al., 2016] is a pioneer unsupervised video hash-
ing method that models temporal sequence using LSTM.
Specifically, SSTH applies Binary LSTM (BLSTM) to en-
code video to hash code, and minimizes reconstruction loss
of deep autoencoder. Later, based on SSTH, Self-supervised
Video Hashing (SSVH) [Song et al., 2018] is further pro-
posed by using hierarchical binary autoencoder and preserv-
ing similarity. Neighborhood Preserving Hashing (NPH) [Li
et al., 2019] preferentially encoded neighborhood-relevant vi-
sual content of a video into a binary code referring to pre-
extracted neighborhood information. Bidirectional Trans-
former Hashing (BTH) [Li et al., 2021] utilizes a bidirectional
transformer as the backbone model and designs three self-
supervised learning tasks to adequately capture the similarity
structure in video data. However, these hashing methods are
proposed for only video-video retrieval.
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3 Contrastive Transformer Cross-modal
Hashing

3.1 Problem Setup
Given a video-text dataset with N instances O = {Oi}Ni=1,
where Oi = {Vi, Ti}, Vi and Ti are the corresponding video
and text data of the i-th instance, CTCH aims to learn k-
bit hash codes as compact representations for each video and
text. We use CNN features {vm

i }Mm=1 ∈ RM×d of M sam-
pled frames {fmi }Mm=1 to represent a video, where d is the di-
mension of each frame feature. For video modality, we feed
to a bidirectional transformer based hash model to obtain bi-
nary codes Bv ∈ {−1, 1}k, where k is the code length. For
text modality, we use a pre-trained tokenizer to convert text
into token sequences, and then feed to a pre-trained bidirec-
tional transformer based hash model to obtain binary codes
Bt ∈ {−1, 1}k.

3.2 Data Augmentation
Video Augmentation
A popular video augmentation strategy is to apply random
spatial augmentation approach, e.g., random cropping, color-
jittering, blurring on each frame. However, such strategy
can inevitably disrupt temporal structure, since consecutive
frames may be augmented differently. In this work, we pro-
pose to apply the same spatial augmentation to frames. More-
over, we collect the augmented frames that do not overlap
with original frames to capture a wider range of information.
Algorithm 1 demonstrates the detailed procedure of tempo-
rally consistent spatial augmentation, where the parameters
are first randomly generated for each video and then applied
to all frames.

Text Augmentation
We employ the widely-used Easy Data Augmentation (EDA)
[Wei and Zou, 2019] for text augmentation. Given a sentence,
we apply four augmentation approaches randomly, includ-
ing (1) Synonym Replacement (SR) that randomly replaces
n non stop-words with synonyms, (2) Random Insertion (RI)
that randomly inserts a synonym of a non stop-words into
a random position, (3) Random Swap (RS) that randomly
swaps two words, (4) Random Deletion (RD) that randomly
removes each word with a probability.

3.3 Bidirectional Transformer Encoder
Inspired by the great success of self-attention in capturing
correlations in a sequence [Vaswani et al., 2017], we employ
bidirectional transformer to encode video and text, both of
which are essentially types of sequences.

Video Encoder
Bidirectional Transformer [Devlin et al., 2019] has been
shown powerful to process sequential data and successfully
applied to various video applications [Sun et al., 2019]. Some
other sequential models, e.g., LSTM related networks, are
limited by input sequence length and cannot well preserve
long-term dependency in videos [Pascanu et al., 2013]. In
contrast, bidirectional transformer forms attention between
any two frames in parallel, which is beneficial to model

Algorithm 1 Video augmentation

Crop(f ): Crop f with a random size;
Resize(f ): Resize f to size of 224× 224;
Flip(f ): Flip f horizontally or vertically randomly;
Noise(f ): Add Gaussian noise to f ;
Gray(f ): Convert f to grayscale with a probability of
0.2;
Blur(f ): Apply Gaussian blur to f with a probability of
0.8;
Input: Video clip V = {fm}Mm=1;
Output: V̂ = {f̂m}Mm=1.

1: Randomly generate augmentation parameters;
2: for m ∈ {1 . . .M} do
3: f̂m = Resize(Crop(fm))
4: f̂m = Flip(f̂m)
5: f̂m = Noise(f̂m)
6: f̂m = Gray(f̂m)
7: f̂m = Blur(f̂m)
8: end for

correlations between distant frames. This is the advantage
over LSTM in video analysis. To exploit ordering informa-
tion in the input sequence, we further use positional encod-
ing in transformer. Following [Vaswani et al., 2017], po-
sition feature pi,m of the m-th frame from the i-th video
is generated by sine and cosine functions of different fre-
quencies: (pi,m)2j = sin

(
m/100002j/d

)
, (pi,m)2j+1 =

cos
(
m/100002j/d

)
, where j denotes index of dimension.

The position embedding and visual sequence are of equal
length, and are first added and then fed into video trans-
former. Assume there are L transformer layers, and each
layer is constructed by multi-head attention [Vaswani et al.,
2017]. Specifically, in each transformer layer, given an input
sequence of embedding X, the j-th attention head projects X
to a triplet of (query, key, value) denoted as (Qj , Kj , Vj)
via three learnable parameters, i.e., Wq

j , Wk
j , and Wv

j re-
spectively. A scaled dot-product attention is applied between
Qj and Kj , and its output is then fed to softmax function
to obtain attentional distribution over Vj . Formally, the j-th
attention head computes the output embedding sequence as
follows:

Aj = softmax

(
QjK

⊤
j√

dk

)
Vj (1)

where Qj = XWq
j , Kj = XWk

j , Vj = XWv
j , dk is a

scaling factor. After being passed through L transformer lay-
ers, these input tokens are mapped to a sequence of l-D latent
visual embeddings {hv

i,m}Mm=1. Each of these embeddings
contains not only the visual content in corresponding frame,
but also information flowing from other frames in both direc-
tion within the video.

Text Encoder
The bidirectional transformer facilitates deeper understand-
ing of context by allowing simultaneous processing of input
data from both directions. This feature makes it highly ef-
fective at capturing the interdependencies between words in
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a sentence, thereby enhancing the performance of NLP tasks.
With such superiority, this work employs bidirectional trans-
former to encode text. The tokenizer first splits a text cor-
responding to a video into words, and truncates them to a
unified length. Each word is assigned to a unique token in
vocabulary table, and each sentence can be transformed into
a token sequence. Particularly, special classification token
([CLS]) and unknown token ([UNK]) are inserted to indicate
the beginning of a sentence and out-of-vocabulary word re-
spectively. In each sentence, we convert each token into an
embedding, aggregate embeddings of all the tokens, and feed
the aggregation to the bidirectional transformer. Text encoder
has the same structure with video encoder.

Hash Layer
The representation obtained through the transformer is real-
valued, a hash layer is utilized to project the continuous rep-
resentation into discrete hash code. Retrieval can be more
efficient and storage can be saved to a large extent by this
way. Taking video as an example, we project {hv

i,m}Mm=1 to a
sequence of real-valued vectors {zvi,m}Mm=1 via a Fully Con-
nected (FC) layer. It can be formulated as:

{zvi,m}Mm=1 = FC
(
{hv

i,m}Mm=1, k
)

(2)

where FC(·, k) is mapping function of the FC layer that maps
original feature into k-bit hash code. The mean pooling
and quantization are applied on frame-level feature to obtain
video-level hash code, which can be denoted as:

zvi = tanh

(
1

M

M∑
m=1

zvi,m

)
, bv

i = sgn (zvi ) (3)

where sgn is sign function, and sgn(x) = 1 if x ≥ 0 and
sgn(x) = −1 otherwise. Accordingly, the continuous fea-
ture zti and hash code bt

i in text modality can be obtained as
follows:

zti = FC
(
ht
i, k
)
, bi = sgn (zi) (4)

where ht
i denotes the i-th latent text embedding.

3.4 Multi-modal Supervised Contrastive Learning
As a dominant component in self-supervised learning, con-
trastive learning has received increasing interests due to its
success in many research areas, e.g.,computer vision [Qian
et al., 2021], multimedia analysis [Chen et al., 2021]. Con-
trastive learning [Chen et al., 2020] is based on a triplet set
consisting of anchor, positive, and negative samples. The goal
of contrastive learning is to pull anchor and positive sample
together and push apart anchor from negative samples. This
work considers the benefits of contrastive learning in learning
hash codes as compact representation for video and text.

Given a set of N samples {xi,gi}Ni=1, gi is the label vector
of xi. Its augmentated set is denoted as {x̂i,gi}2Ni=1 that has
2N samples, and x̂2i−1 and x̂2i are two random augmenta-
tions of xi(i = 1 . . . N). Assume that i ∈ I = {1 . . . 2N} be
the index of an arbitrary augmented sample, and (x̂i, x̂j) be
a positive pair. The conventional self-supervised contrastive
loss [Chen et al., 2020] is defined as follow:
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Figure 2: Illustration of multi-modality contrastive learning. We
construct inter- and intra-modality triplet sets. Based on the two
sets, we define inter- and intra-modality contrastive losses to pre-
serve inter- and intra-modality similarity structures respectively.

Lself = −
2N∑
i=1

log
exp(x̂i · x̂j/τ)∑

a∈A(i)

exp(x̂i · x̂a/τ)
(5)

where τ is a temperature coefficient that controls dynamic
range of product, A(i) = {a|a ∈ I, a ̸= i}, x̂i and x̂j

are called the anchor and positive respectively, and the other
2(N − 1) samples {x̂k|x̂k ∈ I, k ̸= i, k ̸= j} are called the
negatives. As label information is not incorporated in self-
supervised constrastive loss, its performance is limited.

We propose supervised multi-modal contrastive loss that
fully considers label supervision information to improve rep-
resentation capability of video and text modalities. As shown
in Figure 2, the proposed multi-modal supervised contrastive
loss includes inter- and intra-modality contrastive losses to
preserve inter- and intra-modality similarity structure respec-
tively.

Inter-modality Contrastive Loss
Inter-modality contrastive learning is defined based on a
triplet set of anchor, inter-positive, and inter-negative sam-
ples. Inter-modality contrastive learning simultaneously en-
courages embedding of anchor to be close to that of inter-
positive sample and to be far away from those of inter-
negative samples, such that cross-modality correlation can be
effectively exploited in latent embedding space.

Let zvi and ẑvi be original and augmented features of the
i-th video. Similarly, zti and ẑti is the original and augmented
feature of i-th text. In this work, we define a positive index set
as P(i) = {p|p ∈ A(i),gp = gi}, |P(i)| denotes cardinality
of P(i). By regarding zvi and ẑvi as anchors, we have the
following inter-modality contrastive loss:

Lve
m =

N∑
i=1

1

|P(i)|
∑

p∈P(i)

− log
exp(zvi · ztp/τ)∑

a∈A(i)

exp(zvi · zta/τ)

+
N∑
i=1

1

|P(i)|
∑

p∈P(i)

− log
exp(ẑvi · ẑtp/τ)∑

a∈A(i)

exp(ẑvi · ẑta/τ)

(6)

(6) is inspired by SupCon [Khosla et al., 2020], and considers
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Algorithm 2 Contrastive Transformer Cross-modal Hashing

Input: video-text pairs Oi = {Vi, Ti}Ni=1; input dimen-
sion d; code length k; batch size; number of epochs;
learning rate; constants α, β, γ, dk, τ .
Output: Network parameters.

1: for each epoch do
2: for each iteration do
3: Sample a minibatch randomly;
4: Obtain {hv

i,m}Mm=1 and {ht
i} via bidirectional

transformer;
5: Obtain zvi , bv

i , zti, b
t
i via (2), (3) and (4);

6: Calculate multi-modality supervised contrastive
loss Lm via (8);

7: Update network parameters to minimize (13) via
BP algorithm;

8: end for
9: end for

all the samples belonging to the same class as positives. Min-
imizing the first term in (6) enables embeddings among orig-
inal videos and texts in the same class to have high similari-
ties. Similarly, the second term applies to augmented videos
and texts. Accordingly, inter-modality contrastive loss Lte

m
for text can be similarly defined.

Intra-modality Contrastive Loss
Intra-modality contrastive learning defines a triplet set of
anchor, intra-positive, and intra-negative samples. Intra-
modality contrastive learning enables embedding of anchor
to be close to that of intra-positive sample and far away from
those of intra-negative samples, and thus preserves intrin-
sic similarity structure within each modality. Taking video
modality as example, the intra-modality contrastive loss is de-
fined as follows:

Lva
m =

N∑
i=1

1

|P(i)|
∑

p∈P(i)

− log
exp(zvi · ẑvp/τ)∑

a∈A(i)

exp(zvi · ẑva/τ) (7)

Accordingly, intra-modality contrastive loss Lta
m for text

modality can be similarly defined.
To sum up, we have the following multi-modal supervised

contrastive learning loss:
Lm = Lva

m + Lta
m + Lve

m + Lte
m (8)

3.5 Overall Objective
Classification Loss
To fully exploit label information, the learned hash codes are
directly used for classification. Taking video modality as ex-
ample, we consider the widely-used cross-entropy loss:

Lv
c = − 1

N

N∑
i=1

C∑
c=1

gv
ic log ĝ

v
ic − (1− gv

ic) log(1− ĝv
ic) (9)

where ĝv
c = ϕ(FC(bv

i )) denotes label prediction using hash
code of the i-th video, and ϕ is sigmoid function, gv

ic is the
c-th element in gv

i . The final classification loss in both text
and video modalities is defined as follows:

Lc = Lv
c + Lt

c (10)

Quantization Loss
As the network output is not binary, direct binarization will
lead to large quantization error. Thus it is encouraging to en-
able the output close to [−1,+1] to control quantization error.
Based on such idea, we propose the following quantization
loss which is based on the bi-modal Laplacian prior:

Lq = ∥|Zv| − 1∥1 + ∥|Zt| − 1∥1 (11)

As the derivative of absolute function is difficult to compute,
we instead apply its smooth surrogate, i.e., |x| ≈ log coshx.

Balanced Loss
To enable hash code to be balanced, hashing enforces each bit
to be mean-zero [Yang et al., 2018]. We define the balance
loss as follow:

Lb = ||Zv1||2F + ||Zt1||2F (12)

Total Loss
To this end, the overall objective function of the proposed
CTCH is defined as follows:

L = Lm + αLc + βLq + γLb (13)

where α, β, γ are trade-off parameters that control relative
importances of four losses. The backpropagation algorithm
is used to optimize network. The training procedure of the
proposed CTCH is illustrated in Algorithm 2.

4 Experiment
4.1 Datasets
The experiments are conducted on three benchmark video
text datasets, which have been widely used for video-text
analysis. The three datasets are detailed as follows:

MSR-VTT [Xu et al., 2016] is the largest general video
captioning dataset. It contains 10,000 video clips with 41.2
hours and 200,000 clip-sentence pairs in 20 categories, and
20 natural sentences annotated manually for each video clip.
Following [Xu et al., 2016], we randomly choose 6,513 and
2,990 clips for training and testing respectively.

ActivityNet Captions v1.2 [Krishna et al., 2017] is a large-
scale video dataset for human action understanding. It con-
tains more than 13,000 videos from 100 activity categories
collected from YouTube, with an average of 137 untrimmed
videos per class and 1.41 activity instances per video. We ran-
domly choose 4,816 and 2,382 videos for training and testing
respectively.

Charades [Sigurdsson et al., 2016] is a dataset composed
of 9848 videos of daily indoors activities collected through
Amazon Mechanical Turk. The dataset contains 66,500 tem-
poral annotations for 157 action classes, 41,104 labels for 46
object classes, and 27,847 textual descriptions of the videos.
Since test set does not provide labels, we use validation set
for testing. We choose 7985 and 1863 videos for training and
testing respectively.

4.2 Experiment Setting
Baselines
To our knowledge, there are few hashing methods specifically
designed for video-text retrieval. We compare CTCH with
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Figure 3: mAPs of all the methods on three video-text retrieval tasks on three benchmark datasets.

eight state-of-the-art methods, including two shallow cross-
modal hashing methods, i.e., SCM [Zhang and Li, 2014],
SePH [Lin et al., 2015], two deep cross-modal hashing meth-
ods, i.e., DCMH [Jiang and Li, 2017], DSMHN [Jin et al.,
2023], and four deep video hashing methods, i.e., SSTH
[Zhang et al., 2016], SSVH [Song et al., 2018], NPH [Li et
al., 2019] and BTH [Li et al., 2021]. For SCM and SePH,
following [Qi et al., 2021], we mean pool features extracted
by VGG-16 to represent video. For DCMH and DSMHN,
we use I3D [Carreira and Zisserman, 2017] as backbone to
encode video. SSTH, SSVH, NPH, and BTH are developed
only for video, we use the same text encoder as DCMH, and
train them using loss of DCMH.

Setup

Following [Zhang et al., 2016], we first sample 25 frames re-
sized to 224×224 for each video, and extract 4096-D frame
features with VGG-16 [Simonyan and Zisserman, 2015] pre-
trained on ImageNet [Russakovsky et al., 2015]. Video trans-
former includes four layers with 256-D attention head, and
the scaling factor dk is set to 256. We first concatenate all
texts belonging to the same video, then tokenize concatenated
text as input. Text transformer has the same structure as video
transformer, and its pre-trained model is provided by Hugging
Face. The batch size, number of epochs, and learning rate are
set to 256, 200, and 1 × 10−4 respectively. The parameters
α, β, and γ are set to 400, 0.05 and 0.05 respectively. The
temperature coefficient is set to 0.2. The proposed CTCH is
optimized using Adam optimizer.
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Figure 4: PR curves with 64-bit hash code on MST-VTT.

Evaluation Metrics
Following [Zhang et al., 2016], we consider the widely-used
mean Average Precision (mAP) and Precision-Recall (PR)
curve as evaluation metrics [Over et al., 2010].

4.3 Comparisons with State-of-the-arts
Figure 3 shows the mAPs of all the methods on two video-
text retrieval tasks on three benchmark datasets. In addition,
the PR curves with 64 bits on MSR-VTT are shown in Fig-
ure 4. DCMH and DSMHN use I3d as backbone, and require
very large batch size for training on ActivityNet, which has
100 categories. Therefore, the results of the two methods on
ActivityNet are not reported. From these results, we have the
following interesting observations:

• The proposed CTCH has best mAPs in most cases. For
instance, on MSR-VTT, CTCH improves the best base-
line, i.e., NPH by 3.18%, 4.16%, 2.78% and 4% with 16,
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Method V → T T → V
32 bits 64 bits 32 bits 64 bits

CTCH-Cla 0.4519 0.4664 0.6422 0.6576
CTCH-InterC 0.1186 0.1616 0.1337 0.1283
CTCH-IntraC 0.4592 0.4689 0.6492 0.6563
CTCH-Aug1 0.4695 0.4739 0.6442 0.6546
CTCH-Aug2 0.4552 0.4729 0.6488 0.6578
CTCH-Aug3 0.4716 0.4845 0.6591 0.6637

CTCH 0.4705 0.4884 0.676 0.6808

Table 1: mAPs of ablation study in terms of loss and video augmen-
tation on MSR-VTT.

32, 64 and 128 bits respectively for V → T task, and by
7.23%, 9.78%, 5.16% and 5.95% with 16, 32, 64 and
128 bits respectively for T → V task. The PR curves of
CTCH are higher than those of the baselines.

• Deep hashing methods outperform shallow hashing
methods in most cases. Among deep methods, BTH and
NPH exhibit the best performances, showcasing supe-
rior capabilities of bidirectional transformer and LSTM
in capturing long-term dependencies in sequences.

• Video hashing methods outperform image hashing
methods. This indicates that for video-text retrieval
tasks, video hashing can extract more useful semantic in-
formation from the videos than image cross-modal hash-
ing.

4.4 Ablation Study
Analysis on Loss
We compare four variants of the proposed method with dif-
ferent losses, including (1) CTCH-Cla: a variant that removes
classification loss; (2) CTCH-InterC: a variant that removes
inter-modal contrastive loss; (3) CTCH-IntraC: a variant that
removes intra-modal contrastive loss. Table 1 reports mAPs
of the variants on two retrieval tasks on MSR-VTT. As can
be observed, CTCH significantly outperforms CTCH-InterC,
demonstrating the importance of inter-modality contrastive
loss. Meanwhile, CTCH further improves CTCH-IntraC and
CTCH-Cla, verifying the effectiveness of intra-modality con-
trastive and classification losses.

Analysis on Augmentation Strategy
We compare three variants of the proposed method using dif-
ferent augmentation strategies, including (1) CTCH-Aug1: a
variant that chooses non-overlapping frames and apply ran-
dom augmentation; (2) CTCH-Aug2: a variant that chooses
the same frames and apply uniform augmentation; (3) CTCH-
Aug3: a variant that chooses non-overlapping frames with-
out augmentation. From Table 1, we see that the proposed
CTCH outperforms the three variants. It shows the augmenta-
tion strategy in the proposed method that uniformly augments
non-overlapping frames allows to capture more information,
providing better retrieval performance.

4.5 Parameter Analysis
We study the sensitivity of one trade-off parameter, i.e., α in
the proposed method, which are varied from [1, 5000]. Fig-
ure 5 shows the mAPs results with respect to different α with
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Figure 5: mAPs of CTCH with different α on MST-VTT.
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Figure 6: Top-5 retrieved results of BTH and the proposed CTCH
on one randomly selected query video and text from MSR-VTT. The
correct and incorrect retrieved results are marked by tick and cross
respectively.

64-bit hash code on MSR-VTT. We clearly see that CTCH
remains relatively stable with change of α.

4.6 Case Study

This section presents case study on video-text retrieval. Fig-
ure 6 illustrates the top-5 results retrieved of the proposed
CTCH and the competitive BTH on MSR-VTT. From this fig-
ure, we see that the proposed CTCH is capable of retrieving
more correct results than BTH.

5 Conclusion

In this work, we propose a new cross-modal hashing method
designed for video-text retrieval. CTCH effectively explores
long-term dependencies among video frames and text words
via bidirectional transformer. CTCH exploits inter-modality
and intra-modality similarities among videos and texts by
minimizing multi-modality supervised contrastive loss. Ex-
tensive empirical results demonstrate the superiority of the
proposed method and verify the effectiveness of each compo-
nent. In the future, we consider learning hash code on incom-
plete video and text data.
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