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Abstract
Hashing utilizes hash code as a compact image
representation, offering excellent performance in
large-scale image retrieval due to its computational
and storage advantages. However, the prevalence
of degraded images on social media platforms, re-
sulting from imperfections in the image capture
process, poses new challenges for conventional
image retrieval methods. To address this issue,
we propose Contrastive Transformer Masked Im-
age Hashing (CTMIH), a novel deep unsupervised
hashing method specifically designed for degraded
image retrieval, which is challenging yet relatively
less studied. CTMIH addresses the problem by
training on transformed and masked images, aim-
ing to learn transform-invariant hash code in an un-
supervised manner to mitigate performance degra-
dation caused by image deterioration. CTMIH uti-
lizes Vision Transformer (ViT) architecture applied
to image patches to capture distant semantic rel-
evance. CTMIH introduces cross-view debiased
contrastive loss to align hash tokens from aug-
mented views of the same image and presents se-
mantic mask reconstruction loss at the patch level
to recover masked patch tokens. Extensive empiri-
cal studies conducted on three benchmark datasets
demonstrate the superiority of the proposed CT-
MIH over the state-of-the-art in both degraded and
normal image retrieval.

1 Introduction
Hashing [Wang et al., 2017] has been widely applied for effi-
cient retrieval from large-scale image databases due to its su-
periority of low computation and storage costs. It aims to con-
vert high-dimensional image features into low-dimensional
compact hashing codes while preserving similarity struc-
ture among images. Many learning-based hashing methods
[Weiss et al., 2008; Gong et al., 2012; Wang et al., 2017]
have been proposed by employing machine learning on hash
code generation, and are still being actively studied to support
fast and accurate large-scale image retrieval.
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Figure 1: The illustration of degraded image retrieval. The four
example images with different degradations, i.e., flip, color jitter,
grayscale, and blur, are shown. In degraded image retrieval, the goal
is to retrieve similar images from a normal image database given
degraded image queries. To accomplish this, hash codes are uti-
lized to represent both the degraded image queries (represented by
solid shapes) and the normal image database (represented by hollow
shapes). The retrieval process is performed in Hamming space. Im-
age degradation often leads to discrepancies between the hash codes
of degraded images and their original normal images. These dis-
crepancies can significantly reduce retrieval performance.

There has been a recent research focus on deep hash-
ing [Luo et al., 2023] that introduces deep learning [LeCun
et al., 2015] into hashing, and learns image features and
hash code in an end-to-end manner. With powerful learn-
ing capability of deep architectures, e.g., CNN [Krizhevsky
et al., 2012], ViT [Dosovitskiy et al., 2021], deep hash-
ing has shown its significant superiority over conventional
shallow hashing [Weiss et al., 2008; Gong et al., 2012;
Shen et al., 2015]. Supervised deep hashing [Cao et al., 2017;
Li et al., 2017; Liu et al., 2019; Fan et al., 2020] employs
pairwise semantics or class label information to supervise
training, and has achieved promising performance in image
retrieval. However, supervised deep hashing heavily requires
manually annotated labels, which are expensive to collect.
Unsupervised deep hashing without need of semantic labels is
valuable yet challenging in real applications. Until now some
efforts [Shen et al., 2020; Luo et al., 2021; Qiu et al., 2021;
Ma et al., 2022; Yu et al., 2023] have been made towards
unsupervised deep hashing.

Degraded images [Wang et al., 2020; Yang et al., 2022;
Park et al., 2023] are commonly encountered in various sce-
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Figure 2: Illustration of the proposed CTMIH. CTMIH first generates two augmented views of an image by applying image transformation
as image degradations, based on which two masked views are then obtained via the block masking strategy. The architecture of CTMIH
consists of a weight-sharing Siamese network structure, where two branches receive patches from augmented views and masked views. Each
branch employs a Vision Transformer (ViT) encoder and a hash layer to extract patch tokens and hash token, and quantizes hash token to
obtain hash code. CTMIH is trained using the idea of self-distillation, minimizing three losses. The cross-view constrastive loss JC aims to
preserve the cross-view similarity between masked and augmented hash tokens, ensuring consistency across different views. The semantic
mask reconstruction loss JR aims to recover masked patch tokens to their corresponding augmented patch tokens, enhancing the quality of
reconstructed images. The quantization loss JQ reduces quantization error by treating it as a binary classification problem.

narios due to imperfections in the image capture process.
These imperfections can result in serious degradations such
as flipping, color jitter, grayscale, and blur, as illustrated in
Figure 1. In practical applications such as pedestrian moni-
toring using surveillance cameras, it is often necessary to use
the degraded pedestrian images as queries to retrieve similar
high-quality images from a large-scale face image database
[Li et al., 2019]. The need for large-scale degraded image
retrieval is evident, however this task is challenging and has
received relatively less attention. Image degradation signifi-
cantly affects semantic similarity of images, and may mislead
training of conventional hashing, leading to reduced retrieval
performance. Therefore, it is imperative to develop new deep
hashing for degraded image retrieval, which remains rela-
tively unexplored and presents substantial challenges.

To address this issue, we propose Contrastive Transformer
Masked Image Hashing (CTMIH) that is specifically de-
signed for degraded image retrieval. The key idea of CTMIH
is to train hashing model on both transformed images and
masked images to learn transform-invariant hash codes in an
unsupervised manner, such that retrieval performance degra-
dation caused by image degradation can be mitigated. The
overview of the proposed CTMIH is illustrated in Figure 2.
The main contributions of this work can be summarised as
follows:

• We address the challenging task of degraded image re-
trieval, which has received relatively less attention. To
tackle this, we propose a new deep unsupervised hashing
method called Contrastive Transformer Masked Image
Hashing (CTMIH).

• CTMIH utilizes ViT to encode image patches and learns
transform-invariant hash code by aligning augmented

and masked hash tokens while recovering masked patch
tokens.

• Extensive empirical evaluations conducted on three
benchmark image datasets demonstrate the superior per-
formance of the proposed method over the state-of-the-
art in both degraded and normal image retrieval.

2 Related Work
Deep Hashing Due to the strong learning capability of
advanced deep architectures, e.g., CNN [Krizhevsky et al.,
2012], ViT [Dosovitskiy et al., 2021], deep hashing [Luo et
al., 2023] has achieved promising performance in large-scale
image retrieval. According to whether semantic supervision
is used or not, deep hashing methods can be roughly divided
into supervised deep hashing and unsupervised deep hashing.
Supervised deep hashing[Cao et al., 2017; Li et al., 2017;
Liu et al., 2019; Fan et al., 2020] typically outperforms unsu-
pervised deep hashing by incorporating additional semantic
labels. However, manual label annotation is time consuming
and expensive, which is not often available in real applica-
tions.

Recently unsupervised deep hashing has been a hot re-
search focus, as it overcomes the limitation of manual la-
beling. Some works [Dai et al., 2017; Shen et al., 2020]
learn hash code by performing reconstruction tasks using
some advanced deep architectures, e.g., variational autoen-
coders (VAE) [Kingma and Welling, 2013] and generative
adversarial network (GAN) [Goodfellow et al., 2014]. For
instance, Semantic Structure based unsupervised Deep Hash-
ing (SSDH) [Yang et al., 2018] leverages two half Gaus-
sian distributions to construct semantic structure, and fur-
ther designs a pairwise similarity preservation loss. Bi-half
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Net [Li and van Gemert, 2021] proposes to learn hash code
by maximizing its bit entropy, and designs a parameter-free
layer to force continuous image features to approximate the
optimal half-half bit distribution. In addition, contrastive
learning [Chen et al., 2020; He et al., 2020], as a power-
ful self-supervised method, has been introduced into deep
unsupervised hashing, based on which some hashing meth-
ods have been proposed [Luo et al., 2021; Qiu et al., 2021;
Ma et al., 2022]. Contrastive Quantization with Code Mem-
ory (MeCoQ) [Wang et al., 2022] proposes to use con-
trastive loss to better capture discriminative visual semantics
and further use quantization code memory to enhance con-
trastive learning with lower feature drift. While many deep
hashing methods employ CNN as a backbone, there have
been a few recent works [Qiu et al., 2021; Yu et al., 2022;
Ng et al., 2023] that consider ViT as a backbone to encode
images. Most existing deep unsupervised hashing methods
have been developed for mainly conventional normal image
retrieval, and may not perform well in degraded image re-
trieval, where image queries are degraded.
Degraded Image Analysis There have been a few attempts
[Wang et al., 2020; Yang et al., 2022] on degraded image
analysis, mainly on degraded image classification. Based
on the observation that the distributions of corresponding
patches in high- and low-quality images have uniform mar-
gins, feature de-drifting module (FDM) [Wang et al., 2020]
is proposed to learn the mapping relationship between deep
representations of high- and low-quality images, and is fur-
ther leveraged as a deep degradation prior to degraded image
classification. In addition, a self-feature distillation method
with uncertainty modeling [Yang et al., 2022] is proposed for
degraded image classification. It employs the high-quality
features to distill the corresponding degraded ones and con-
duct uncertainty modeling, increasing importance of feature
regions that are difficult to recover. However, to our knowl-
edge, until now there have been few attempts of learning hash
code for degraded image retrieval.

3 The Proposed Method
3.1 Problem Setup
Generally speaking, the goal of deep hashing for image re-
trieval is to map an ideal image x to hash code b, which
is used to support fast image retrieval in Hamming space.
However, in real-world applications, due to various sources of
degradation, e.g., noise, motion blur, and ColorJitter, we only
observe the degraded image x̃ instead of the ideal one. This
work develops deep hashing for a challenging yet less studied
task, i.e., degraded image retrieval, where image queries are
degraded, while images in database are normal.

In degraded image retrieval, given a degraded image query
x̃, the aim of the proposed method is to learn a deep hash
function H : x̃ −→ b ∈ {−1, 1}L, where b is the hash code,
L is code length. The learned hash code is then employed
to achieve fast and accurate retrieval of the degraded image
query from a normal image database. As the degraded images
have different inherent appearances from normal images, it
can result in obvious retrieval performance degradation us-
ing the conventional hash function. To address this issue, the

Algorithm 1 Image Transformation T
Input: Image X, hyper-parameter δ;
Output: Transformed Image.

1: Crop X with size of 256× 256 randomly;
2: Resize X to size of 224× 224;
3: Flip X horizontally with a probability of 0.5δ;
4: Add colorjitter to X with a probability of 0.8δ;
5: Convert X to grayscale image with a probability of 0.4δ;
6: Apply Gaussian blur to X with a probability of 0.5δ.

key of the proposed method is to learn the transform-invariant
hash function that is robust to image degradation. As such,
the degraded image has similar hash code to its normal im-
age, making it possible to quickly and accurately retrieve im-
ages that are visually or semantically similar to the degraded
image query.

3.2 Formulation

Architecture The most common and natural solution for
mitigating retrieval performance degradation caused by im-
age degradation is to train a deep hashing model with aug-
mented images having various image transformations. For
a given image X, the two random augmentations are ap-
plied, yielding two distorted views: U = T (X, δu) and
V = T (X, δv), where T denotes the transformation function
that performs image degradation, hyper-parameter δu and δv
control the degrees of the two transformation. In this work,
the transformations include random crop, resize, flip, color
jitter, and blur, and the transformation procedure is illustrated
in Algorithm 1. It is clear that large δ leads to heavy im-
age degradation. In addition, motivated by the success of
masked image modeling, the blockwise masking is applied
to two views U and V to obtain masked views Ũ and Ṽ re-
spectively. Specifically, for instance, given U, we first divide
it into K non-overlapping patches uk, where k = 1, . . . ,K ,
and then, with a masking ratio r , perform masking on a ran-
dom subset of patches, which are replaced by e.

As illustrated in Figure 2, Siamese network structure with
two branches sharing network weights is employed in CT-
MIH, and the patches of augmented views and masked views
are fed into the two branches. Existing deep hashing methods
mainly employ CNN as the backbone that performs convolu-
tion operations on a small neighborhood of an image, and
struggles to relate concepts spatially apart. Vision Trans-
former (ViT) [Dosovitskiy et al., 2021] can effectively cap-
ture distant semantic relevance in an image by applying self-
attention to a series of patches in an image. Inspired by the
powerful capability of ViT on image modeling, we propose
to employ ViT as an encoder in each branch, which receives
image patches as sequential data and generates their latent
representations. Following ViT encoder, a hash layer consists
of a fully-connected layer and the sign function. For instance,
given augmented view U and its masked view Ũ, hash layer
outputs their hash tokens hu and hũ, and patch tokens pu

k and
pũ
k , where k = 1, . . . ,K , and finally binarizes hu to obtain

hash code bu = sign(hu).
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Cross-view Debiased Contrastive Learning For conven-
tional hashing methods, a degraded image tends to produce
different hash code compared to its original counterpart due
to changes in appearance, leading to unsatisfactory perfor-
mance in degraded image retrieval. To mitigate this issue,
a possible solution is to leverage contrastive learning (CL)
[Chen et al., 2020; He et al., 2020] that aims to distinguish
between semantically similar and dissimilar pairs of sam-
ples. Based on a triplet set that consists of anchor, positive,
and negative samples, CL encourages the anchor and positive
sample to be pulled closer together while pushing away the
anchor from the negative samples. This work considers the
benefit of CL that can well align the hash tokens of the two
views augmented from one image, and push away the hash
tokens of different images.

Specifically, given the i-th image Xi, the hash tokens of its
two augmented views are denoted as hu

i and hv
i , and its two

masked views are denoted as hũ
i , hṽ

i . Taking hu
i as anchor,

we regard another masked view hṽ
i as positive sample, and

{hṽ
j}nj=1,j ̸=i as negative samples, where n is batch size. In

this work, we contrast augmented and masked views with the
purpose of distilling knowledge of unmasked views to help
learn the hash token of masked views. Our idea is to en-
able the positive pairs to be close and the negative pairs to
be apart. Treating hu

i as anchor, we minimize the following
conventional CL loss:

− log
o
(
hu
i ,h

ṽ
i

)
o
(
hu
i ,h

ṽ
i

)
+
∑n

j=1,j ̸=i o
(
hu
i ,h

ṽ
j

) (1)

where function o
(
hu
i ,h

ṽ
i

)
= exp (hui⊤hṽ

i/τ) measures the
similarity between two embeddings, τ is a temperature coef-
ficient that controls dynamic range of product. The ℓ2 nor-
malization is applied on input embeddings before computing
the inner product, such that the inner product is equivalent to
cosine similarity.

As can be seen in (1), in conventional CL, negative points
are randomly sampled from the whole set as true labels are
unavailable. However, some of these negative samples may
actually belong to the same class as anchor, referred as sam-
pling bias, and this bias has been shown to degrade perfor-
mance. To mitigate this gap, debiased CL is employed to cor-
rect sampling bias of negative samples, and its loss is defined
as follows:

JC(h
u
i ,h

ṽ
i ) = − log

o
(
hu
i ,h

ṽ
i

)
o
(
hu
i ,h

ṽ
i

)
+ nφ

(
hu
i , {hṽ

j}nj=1

) (2)

where the negative similarity term can be modified as:

φ
(
hu
i , {hṽ

j}nj=1

)
=

1

ϱ−

( 1

n

n∑
j=1

o
(
hu
i ,h

ṽ
j

)
−ϱ+o

(
hu
i ,h

ṽ
i

) )
(3)

where ϱ− and ϱ+ represent the class probability that two im-
ages belong to same and different classes respectively, and
we have ϱ− + ϱ+ = 1. Similarly, we can further define
JC(h

v
i ,h

ũ
i ).

To this end, by considering all the n images, we have the

following debiased CL loss:

JC =
1

n

n∑
i=1

(
JC(h

u
i ,h

ṽ
i ) + JC(h

v
i ,h

ũ
i )
)

(4)

Semantic Mask Reconstruction Learning Masked image
patch reconstruction is a popular self-supervised pretext task
with the idea of auto-encoding [Zhou et al., 2021], and has
been previously achieved by predicting raw pixels. This
work leverages the benefits of masked image modeling to ex-
plore internal local structures in an image and better train
ViT. Specifically, for instance, given one augmented view
Ui and the corresponding masked view Ũi of the i-th im-
age, their patch token sequences are denoted as {pu

ik}
K
k=1

and
{
pũ
ik

}K

k=1
. In this work, we employ the idea of self-

distillation, and instead of recovering raw pixels, propose to
semantically recover the masked patch token using original
patch token, i.e., enable the masked and its original tokens
to be close. Specifically, given the i-th image, we recover its
k-th image patch by minimizing the following cross-entropy
(CE) loss:

JR

(
pu
ik,p

ũ
ik

)
= −mikp

u⊤
ik logpũ

ik (5)

where mik is set to 1 if the k-th patch of the i-th image is
masked, and set to 0 otherwise. It simplifies masked recov-
ering by turning it into a classification problem that is opti-
mized by CE loss, and preserves more semantic information
of patch token.

By considering all the image patches of all the n images,
we have the following semantic mask reconstruction loss:

JR =
n∑

i=1

K∑
k=1

JR

(
pu
ik,p

ũ
ik

)
+ JR

(
pv
ik,p

ṽ
ik

)
(6)

3.3 Training and Inference
Training To obtain high-quality hash code, quantization
loss is introduced to reduce quantization error. Motivated
by the observation that hashing aims to predict the sign of
each bit, this problem can be naturally regarded as the binary
classification. Specifically, we employ a pre-defined Gaus-
sian distribution estimator g(h) = exp(− (h−µ)2

2σ2 ) to evalu-
ate binary likelihood of each hash bit, where µ and σ denote
mean and standard deviation respectively. We then define
G(·) = {g+, g−}, where with the same σ, g+ and g− are
defined with µ = 1 and µ = −1 respectively. The quanti-
zation loss is calculated as binary cross-entropy classification
loss (BCE). Taking hu

i for example, its quantization loss is
defined as follows:

JQ(h
u
i ) =

1

L

L∑
l=1

(
Q
(
y+l , g

+
l

)
+Q

(
y−l , g

−
l

) )
(7)

where BCE loss is defined as Q(y, g) = −y log g + (1 −
y) log(1 − g), g+l = g+(hu

il) and g−l = g−(hu
il) denote

the two estimated likelihoods of l-th hash bit of hu
i , y+l =

1
2 (sign(hu

il) + 1) and y−l = 1 − y+l denote the likelihood la-
bels, L is the code length. In this way, the quantization error
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Method Refernce Backbone MS COCO NUS-WIDE ImageNet
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SH NeurIPS 08 VGG 0.524 0.529 0.544 0.528 0.523 0.548 0.214 0.325 0.406
ITQ TPAMI 13 VGG 0.598 0.646 0.667 0.612 0.618 0.646 0.327 0.461 0.549

SSDH IJCAI 18 VGG 0.540 0.564 0.592 0.673 0.692 0.707 0.176 0.217 0.248
GreedyHash NeurIPS 18 VGG 0.549 0.570 0.617 0.637 0.646 0.688 0.147 0.307 0.434
Bi-half Net AAAI 21 VGG 0.638 0.711 0.734 0.736 0.756 0.766 0.439 0.537 0.591

MeCoQ AAAI 22 VGG 0.692 0.738 0.753 0.744 0.776 0.788 0.599 0.646 0.710
OH ACM MM 23 VGG 0.656 0.667 0.692 0.711 0.742 0.771 0.654 0.674 0.705

CIBHash IJCAI 21 ViT 0.767 0.796 0.813 0.781 0.801 0.813 0.732 0.768 0.795
WCH ACCV 22 ViT 0.741 0.775 0.794 0.781 0.804 0.819 0.733 0.775 0.796
SDC BMVC 23 ViT 0.765 0.801 0.823 0.764 0.796 0.809 0.734 0.779 0.814

CTMIH Ours ViT 0.809 0.834 0.846 0.795 0.816 0.826 0.820 0.860 0.869

Table 1: mAPs of all the hashing methods for degraded image retrieval on the three benchmark datasets. The bold and underlined indicate
best and second best, respectively.

is reduced by minimizing the above binary classification loss.
Considering the hash tokens of all the n images, we have the
following quantization loss:

JQ =
n∑

i=1

JQ(h
u
i ) + JQ(h

v
i ) (8)

To this end, by summarizing the three losses, i.e., JC , JR,
JQ, we have the following objective function of the proposed
method:

J = JC + αJR + βJQ (9)

where α and β are two non-negative parameters to balance
each term.

Inference Once the proposed CTMIH is trained, and given
an image query, we first divide it into several patches and
further feed it into the ViT encoder and hash layer without
masking to generate its hash code. For degraded image re-
trieval, the image query is required to be degraded. We per-
form transformations on a normal image to obtain a degraded
image query, which is detailed in the experiment setup.

4 Experiments
4.1 Experimental Setup
Datasets The experiments are conducted on three bench-
mark image datasets, which are detailed as follows:

MSCOCO [Lin et al., 2014] is a large-scale image dataset
for object detection, segmentation, and captioning. Follow-
ing previous works, a subset of 122,218 images from 80 cate-
gories is used, where the 5,000 images are randomly selected
as the query set and the remaining images are used as the
database. The 10,000 images are randomly selected from the
database for training.

NUS-WIDE [Chua et al., 2009] is a multi-label dataset con-
sisting of 269,648 images from 81 categories. A subset with
images from the 21 most frequent categories is used. The
100 images are randomly sampled from each category as the
query set and the remaining images are used as the database.
The 500 images for each category are randomly sampled from
the database for training.

ImageNet [Russakovsky et al., 2014] is a single-label im-
age dataset, where each image is labeled by one of 1, 000

categories. A subset with 143,495 images in 100 categories
is used, where 100 images from each category are randomly
sampled for training, 5,000 images are sampled as the query
set, and the remaining images are used as the database.
Baselines We compare the proposed method with vari-
ous state-of-the-art unsupervised hashing baselines, includ-
ing two shallow hashing methods, i.e., SH [Weiss et al.,
2008] and ITQ [Gong et al., 2012], five CNN based deep
hashing methods, i.e., SSDH [Yang et al., 2018], Greedy-
Hash [Su et al., 2018], Bi-half Net [Li and van Gemert, 2021],
MeCoQ [Wang et al., 2022], OH [Yu et al., 2023], three ViT
based deep hashing methods, i.e., CIBHash [Qiu et al., 2021],
WCH [Yu et al., 2022], SDC [Ng et al., 2023].
Experimental Setting For all the methods, the images are
resized to 224 × 224 × 3. For shallow hashing methods,
the 4,096-dimensional feature extracted by the VGG-F model
pre-trained on ImageNet is used for training. For deep hash-
ing methods, the raw image is directly used as for training.
For the proposed method, we apply Algorithm 1 on each
image in the training set to generate two augmented views,
where δu and δv are set to 0.5 and 1 respectively. To gener-
ate the degraded image query, we apply Algorithm 1 on each
image in the query set by setting δ to 0.5 by default. The stan-
dard ViT-Base is used as the backbone, and the size and num-
ber of patches are set to 16 and 196 respectively. The mask-
ing ratio r is set to 0.3, class probability ϱ+ is set to 0.05, and
temperature τ is set to 0.5. The two hyper-parameters α and
β are set to 0.1 and 0.1 respectively. The batch size is set to
32, the number of epochs is set to 100, and the learning rates
of ViT and hash layer are set to 10−5 and 10−3 respectively.
The proposed method is trained using Adam optimizer.
Evaluation Metrics Following [Zhang et al., 2017], we
consider the widely-used mean Average Precision (mAP@K)
and Precision curve as evaluation metrics, and K is set to
5000 for NUS-WIDE and MSCOCO, and 1000 for ImageNet.

4.2 Comparisons with State-of-the-art
Results on Degraded Image Retrieval This section evalu-
ates the performance of degraded image retrieval. The mAPs
of the proposed CTMIH and ten state-of-the-art hashing base-
lines on three benchmark datasets are reported in Table 1. In
addition, precision curves of all the methods with respect to
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Figure 3: Precision curves of all the hashing methods with respect to 32 bits on three benchmark datasets.

Method MS COCO NUS-WIDE ImageNet
SH 0.585 ↘ 0.061 0.638 ↘ 0.110 0.338 ↘ 0.124
ITQ 0.658 ↘ 0.060 0.718 ↘ 0.102 0.439 ↘ 0.112

SSDH 0.556 ↘ 0.016 0.696 ↘ 0.023 0.229 ↘ 0.053
GreedyHash 0.586 ↘ 0.037 0.675 ↘ 0.038 0.231 ↘ 0.084
Bi-half Net 0.645 ↘ 0.007 0.750 ↘ 0.014 0.540 ↘ 0.101

MeCoQ 0.755 ↘ 0.063 0.770 ↘ 0.026 0.705 ↘ 0.051
OH 0.748 ↘ 0.092 0.796 ↘ 0.085 0.672 ↘ 0.018

CIBHash 0.793 ↘ 0.026 0.790 ↘ 0.009 0.783 ↘ 0.051
WCH 0.760 ↘ 0.019 0.788 ↘ 0.007 0.761 ↘ 0.028
SDC 0.810 ↘ 0.045 0.787 ↘ 0.023 0.764 ↘ 0.030

CTMIH 0.818 ↘ 0.009 0.799 ↘ 0.004 0.832 ↘ 0.012

Table 2: mAPs of all the hashing methods for normal image retrieval
on the three benchmark datasets. The mAP drops on degraded image
retrieval compared to normal image retrieval are also reported.

32 bits are shown in Figure 3. From Table 1 and Figure 3, we
can clearly observe that 1) the proposed CTMIH outperforms
all the baselines in all the 10 cases. Specifically, it outper-
forms the baselines averagely by 3.3%, 1.1%, 7.4% on MS
COCO, NUS-WIDE, ImageNet respectively. In addition, the
precision curves of CTMIH are generally above those of the
baselines. 2) among all the baselines, CIBHash, WCH, SDC
with ViT backbone outperform the other deep hashing base-
lines with VGG backbone by a margin, followed by shallow
hashing baselines. The empirical results clearly demonstrate
the superiority of the proposed CTMIH for degraded image
retrieval.

Results on Normal Image Retrieval This section evalu-
ates the performance of conventional normal image retrieval,
where the image queries are normal. The mAPs of all the
hashing methods with respect to 16 bits are reported in Ta-
ble 2. From this table, we see that the proposed CTMIH
outperforms all the baselines, indicating that the proposed
method also works well on conventional normal image re-
trieval. In addition, compared to normal image retrieval, the
mAP drops of the proposed method on degraded image re-
trieval are lower than those of the baselines. This suggests
that the proposed CTMIH is superior in mitigating the per-
formance degradation caused by image degradation.

4.3 Further Analysis
Evaluation on Varying Degrees of Image Degradation
The section evaluates the sensitivity of the deep hashing
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Figure 4: mAPs of all the deep hashing methods with respect to
varying degrees of image degradation on ImageNet.

Method MS COCO NUS-WIDE ImageNet
Naive CL 0.719 0.698 0.674
w/o JQ 0.765 0.731 0.757
w/o JR 0.792 0.779 0.806
w/o JC 0.428 0.535 0.413
CTMIH 0.809 0.795 0.820

Table 3: The mAPs of the proposed method and four variants on
three datasets.

methods with respect to varying degrees of image degra-
dation. We vary the parameter δ from the range of
[0, 0.2, 0.4, 0.6, 0.8, 1.0] to generate image queries with vary-
ing degrees of degradation, where the sample image query is
shown in Figure 4. Figure 4 reports the mAPs of all the deep
hashing methods with varying degrees of degradation on Im-
ageNet. From this figure, we can clearly observe that mAP
of the proposed CTMIH is not relatively insensitive to the
change of δ, compared to the deep hashing baselines. Specif-
ically, as the degree of image degradation increases, the mAP
of the proposed CTMIH decreases by 1.3%, while the mAPs
of the baselines have shown a decrease ranging from 5.2% to
20.1%. The above results clearly demonstrate that the pro-
posed CTMIH is robust to image degradation, and performs
well on degraded image retrieval.

Ablation Study This section empirically evaluates the ef-
fectiveness of each loss in the proposed CTMIH. We compare
the proposed method with a baseline that is trained with con-
ventional contrastive loss without masking strategy, and its
three variants without each of three losses (w/o). The mAPs
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Figure 5: The t-SNE visualization of ImageNet using ten hashing methods. The different colors indicate different labels and a total of 10
classes with 1,000 samples from each class are randomly sampled for visualization.

Figure 6: The visualization of attention maps of the proposed CT-
MIH on 5 randomly selected degraded images from ImageNet.
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Figure 7: Top-10 retrieved results of the four deep hashing methods
on a normal image and its degraded image queries from ImageNet.

of these methods with respect to 16 bits on the three datasets
are reported in Table 3. From Table 3, we can clearly observe
that removing JQ, JR, JC results in an average decrease of
5.7%, 1.6%, 34.9% in mAP respectively on the three datasets,
where the debiased contrastive loss has the greatest impact
on performance. In addition, CTMIH obviously outperforms
naive CL baseline by 11.10% on average.

Embedding Visualization This section qualitatively com-
pares different hashing methods by visualizing learned hash
codes of degraded images. We conduct experiment on Ima-
geNet, randomly selecting 10,000 samples that belong to 10
classes, and setting code length to 32. The hash codes learned
by ten methods are visualized into a 2-dimensional space with
t-SNE [van der Maaten and Hinton, 2008], as illustrated in
Figure 5. From Figure 5, we see that the visualization re-
sults are generally consistent with the quantitative empirical

results.

Attention Map Visualization This section qualitatively
evaluates the effectiveness of the proposed CTMIH by visu-
alizing its attention maps. Figure 6 illustrates the attention
maps generated by CTMIH for 5 randomly selected degraded
images from ImageNet. From the figure, we can observe that
the generated attention maps focus on the key components of
images through masking reconstruction task. It indicates that
the proposed CTMIH can effectively identify and prioritize
important regions in the image.

Case Study This section presents a case study comparing
the performance of the proposed CTMIH with three base-
lines, namely CIBHash, WCH, and SDC, for both degraded
and normal image retrieval tasks. Figure 7 illustrates the top-
10 retrieved images of one randomly selected normal image
and its degraded image queries from ImageNet. A retrieved
sample is marked in green if its label matches that of the
query, and it is marked in red otherwise. From the results
shown, we can observe that CTMIH outperforms the three
baselines in terms of retrieving correct images in both tasks.
These findings further confirm the effectiveness of the pro-
posed CTMIH for both degraded and normal image retrieval
tasks.

5 Conclusions

This work presents a preliminary attempt to learn hash code
from degraded images, and proposes Contrastive Transformer
Masked Image Hashing (CTMIH) for this challenging yet
less studied degraded image retrieval. The proposed CTMIH
aims to learn transform-invariant hash code through unsu-
pervised training on transformed and masked images, mit-
igating performance degradation caused by image degrada-
tion. CTMIH aligns hash tokens of augmented views from
the same image by performing constrastive learning, and re-
covers masked patch tokens with the idea of masked image
prediction. The extensive empirical studies demonstrate the
proposed CTMIH performs effectively on both degraded and
normal image retrieval.
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