
Efficient Screen Content Image Compression via Superpixel-based Content
Aggregation and Dynamic Feature Fusion

Sheng Shen , Huanjing Yue∗ , Jingyu Yang∗

Tianjin University
{codyshens, huanjing.yue, yjy}@tju.edu.cn,

Abstract
This paper addresses the challenge of efficiently
compressing screen content images (SCIs) – com-
puter generated images with unique attributes such
as large uniform regions, sharp edges, and lim-
ited color palettes, which pose difficulties for con-
ventional compression algorithms. We propose
a Superpixel-based Content Aggregation Block
(SCAB) to aggregate local pixels into one super-
pixel and aggregate non-local information via
super-pixel transformer. Such aggregation enables
the dynamic assimilation of non-local information
while maintaining manageable complexity. Fur-
thermore, we enhance our channel-wise context en-
tropy model with a Dynamic Feature Fusion (DFF)
mechanism. This mechanism integrates decoded
slices and side information dynamically based on
their global correlation, allowing the network to dy-
namically learn the optimal weights for global in-
formation usage. Extensive experiments on three
SCI datasets (SCID, CCT, and SIQAD) show our
method’s superior RD performance and inference
time, making it the first network comparable with
the advanced VVC-SCC standard.

1 Introduction
With the surge in screen-content applications like online con-
ferences and webcasting, efficient SCI compression is in-
creasingly needed. Unlike natural images, SCIs contain
large uniform regions, repetitive patterns, and limited color
palettes, challenging traditional compression algorithms such
as JPEG [Wallace, 1992] and JPEG2000 [Rabbani and Joshi,
2002]. The HEVC [Sullivan et al., 2012] extension for screen
content coding (HEVC-SCC)[Liu et al., 2015] introduced in-
novative coding tools to address these challenges, later incor-
porated into the VVC standard [Bross et al., 2021]. Mean-
while, The advent of deep neural networks has revolution-
ized visual signal compression and processing. End-to-end
networks have made significant progress in natural image
compression [Ballé et al., 2016; Ballé et al., 2018; Minnen
et al., 2018; Minnen and Singh, 2020; Cheng et al., 2020;
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Figure 1: Decompressed images with various coding methods for
the image ‘siqad17’ in SIQAD Dataset. We highlight the decoded
patches in the red box area generated by different coding methods.
For each method, its corresponding bit rate, Peak Signal-to-Noise
Ratio (PSNR), and Multi-Scale Structural Similarity Index (MS-
SSIM, in terms of dB) for the whole image is listed below the corre-
sponding patch.

Zou et al., 2022; Liu et al., 2023], even surpassing the lat-
est VVC standards. However, when applied to SCIs, the
rate-distortion (RD) performance tends to deteriorate, as ev-
idenced by our comparative experiments illustrated in Figs.
1, 7, and 9. Therefore, in this work, we focus on LIC based
SCI compression.

To cope with the unique characteristics of SCIs, content
dependent redundancy exploration and energy compaction
methods are required. There are some end-to-end natu-
ral image coding networks exploring this approach by us-
ing window-based self-attention mechanisms. However, they
can only capture the correlations among a small local region,
which degrades their capabilities in using the non-local sim-
ilarities. Meanwhile, the SCIs usually have many repetitive
patterns and the pixels in a local region may be very simi-
lar due to the piece-wise constant properties. Therefore, effi-
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Figure 2: The overall framework of our method. RBS refers to the residual block that uses a convolutional layer with a stride of 2, while RBU
denotes the residual block that employs a deconvolutional layer, also with a stride of 2.

cient non-local and local redundancy exploration is essential
for SCIs. A straightforward solution for exploring non-local
correlations is to employ global self-attention. However, this
approach introduces heavy computational costs.

Based on the observations above, we introduce a superpixel
based content aggregation strategy, motivated by the HEVC-
SCC intra-block copy technique. Unlike the hard copy mode
of intra-blocks, our method aggregates repetitive and local in-
formation through a soft copy approach (pixel aggregation).
Similar pixels in a local region are first grouped into a super-
pixel to represent regional information, which significantly
reduces the number of image primitives. Correspondingly,
we propose a superpixel based feature aggregation mecha-
nism. In this way, pixels within the superpixel can utilize
global correlations. We then apply the proposed algorithm to
enhance both the feature extraction network and the entropy
model. The contributions of this paper can be summarized as
follows:

1. We propose a Learned Image Compression (LIC) frame-
work for efficiently compressing SCIs. A Superpixel-
based Content Aggregation Block (SCAB) is proposed
to aggregate regional information and explore non-local
correlations via super-pixel based transformer. This
mechanism enables our network to dynamically utilize
non-local redundancy with small computing costs.

2. We introduce a Dynamic Feature Fusion (DFF) module
into the channel-wise context entropy model. The DFF
module dynamically combines decoded slices with side
information based on their global correlation, which is
realized by gating coefficients derived from super-pixel
aggregation result. In this way, our entropy model can
adaptively adjust the probability distribution of unde-
coded channels based on the dynamic fusion result.

3. Experiments demonstrate that our method outperforms
six benchmarking LIC methods on three SCI datasets
(i.e., SCID, CCT, and SIQAD) with different resolu-
tions. In addition, our method is the first network that
can be comparable with the advanced VVC-SCC stan-
dard.

2 Related Work
2.1 Traditional Screen Content Image

Compression
Popular image/video coding standards like JPEG [Wallace,
1992], JPEG2000 [Rabbani and Joshi, 2002], HEVC [Sul-
livan et al., 2012], and VVC [Bross et al., 2021] are de-
signed mainly for camera-captured images and videos. To ad-
dress the unique features of screen content, research has built
upon these standards for screen content coding. The HEVC-
SCC [Liu et al., 2015] extension, for instance, includes tools
like intra block copy (IBC) [Xu et al., 2016], adaptive color
transform, and palette mode, enhancing the codec’s adapt-
ability to SCIs and improving compression efficiency. These
tools, with modifications, are integrated into the VVC stan-
dard.

2.2 Learning-Based Image Compression
LIC has seen significant advancements. Ballé et al. [Ballé et
al., 2016] introduced an end-to-end CNN-based model, later
enhanced with a VAE architecture and hyper-priors [Ballé et
al., 2018]. They also improved the entropy model using a
local context model [Minnen et al., 2018]. Guo et al. [Guo
et al., 2021] proposed a causal context model, while He et
al. [He et al., 2021] and Minnen et al. [Minnen and Singh,
2020] designed models for parallel computation. Various
convolutional neural networks have been explored to boost
image compression, such as the residual network by Cheng
et al. [Cheng et al., 2020] and the INNs by Xie et al. [Xie
et al., 2021]. However, these models struggle with SCIs due
to the local receptive fields of convolutions. Recent LIC so-
lutions have explored the Transformer architecture to cap-
ture long-range dependencies. Attention mechanisms have
been integrated to enhance the transformation and entropy
models of learned LICs. Several studies [Zou et al., 2022;
Zhu et al., 2022; Liu et al., 2023] have attempted to establish
a Swin-Transformer-based LIC model.

LIC for Screen Content
LIC’s application for SCIs is under-explored. Mitrica et
al. [Mitrica et al., 2019] proposed a semantic compression
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scheme for airplane cockpit screen content. Tang et al. [Tang
et al., 2022] extended this with a text semantic-aware scheme
(TSA-SCC) for ultra low bitrate settings. A learned image
codec integrating transform skip was also proposed to en-
hance SCI compression [Wang et al., 2022], but lacks com-
parison with VVC and public dataset validation. A multi-task
learning architecture was presented for SCI encoding perfor-
mance improvement [Zamanshoar Heris and Bajić, 2023], but
it increases model complexity. This paper addresses these
challenges by leveraging repetitive patterns in SCIs. We pro-
pose a super-pixel attention-based end-to-end encoding com-
pression scheme, tailored for SCIs, outperforming the con-
ventional encoding scheme VVC on multiple public datasets.

3 Method
3.1 Problem Formulation
Figure 2 presents our proposed network architecture. We
adopt the VAE structure, a classic architecture in the deep im-
age compression framework. It forms the foundation of both
our primary and hyper encoder-decoder pairs. The primary
encoder-decoder pair processes the raw input image x and
the reconstructed image x̂1, while the hyper encoder-decoder
pair models the spatial dependencies among the elements of
the latent representation y. The entire framework can be sum-
marized as follows:

y = ga(x;ϕ)

ŷ = Q(y − µ) + µ

x̂ = gs(ŷ; θ),

(1)

where the analysis function ga with parameters ϕ transforms
x into y, which is then quantized by Q into ŷ. We adopt
a channel-wise entropy model [Minnen and Singh, 2020;
Zou et al., 2022; Liu et al., 2023] that computes Φ = (µ, σ)
for each channel of y, as shown in Equation 2 and Fig-
ure 2. The entropy model partitions y into s evenly slices
y0, y1, ..., ys−1 and enhances the encoding efficiency by ex-
ploiting the dependencies among the slices. This can be ex-
pressed as:

z = ha(y;ϕh)

ŷ = Q(z)

Fmean, Fscale = hs(ẑ, θh)

ri,Φi = Ci(Fmean, Fscale, y<i, yi), 0 ≤ i < s

yi = ri + ŷi,

(2)

where the hyper-prior analysis ha with parameters ϕh obtains
side information z to capture the spatial dependencies among
the elements of y. A factorized density model ψ is used to
encode quantized ẑ as pẑ|ψ(ẑ|ψ) follow the prior work [Ballé
et al., 2018; Minnen et al., 2018], as shown in Equation 3.
Then, the hyper-prior synthesizer hs, with parameters θh, de-
codes ẑ to produce two latent features, Fmean and Fscale, which
are subsequently fed into each slice network Ci. Each slice
yi is processed sequentially to generate ŷ. During this oper-
ation, the decoded slices y<i = {y0, y1, ..., yi−2, yi−1} and

1The encoder is commonly referred to as the analysis transform,
playing the same role as prediction and transform in the traditional
coding process.

(a) (b)

Figure 3: Illustration of prediction and transform in traditional com-
pression process. (a) The hybrid intra prediction and transform in di-
verse Intra Profiles, such as HEVC, VVC, etc., where I signifies the
block to be compressed. Various prediction modes facilitate leverag-
ing reconstructed neighbors to form prediction Ipm (see Equation 4
for details). (b) The most common prediction mode utilized in SCIs,
i.e, the intra block copy (IBC) mode, exemplifying how I can be
decomposed and reconstructed using this method.

the current slice yi are input to the slice network Ci to es-
timate the distribution parameters Φi = (µi, σi), which are
then used to generate bit-streams. As such, we can posit
pŷ|ẑ(ŷ|ẑ) ∼ N(µ, σ2). Furthermore, the residual r is em-
ployed to mitigate the quantization errors (y − ŷ) introduced
by quantization. Finally, the synthesizer gs with parameters θ
reconstructs x̂ from ŷ. Figure 5 provides a clear illustration of
the detailed process of this channel-wise entropy model. The
loss function is defined as follows:

L = R+ λD

= R(ŷ) +R(ẑ) + λD(x, x̂)

= E
[
− log2(pŷ|ẑ(ŷ|ẑ))

]
+ E

[
− log2(pẑ|ψ(ẑ|ψ))

]
+ λD(x, x̂),

(3)

where the trade-off between the rate and distortion in our
compression approach is modulated by a Lagrange multiplier
λ. The average number of bits needed to encode the input
data is represented by R, and distortion, denoted by D, can
be quantified using metrics such as MSE or MS-SSIM. Our
objective is to minimize the loss function defined as Equa-
tion 3.

3.2 Content-Adaptive Transform via Stacked
SCABs

We implement the content adaptive analysis transform by
stacking Superpixel-Context Adaptive Blocks (SCABs), as
depicted in Figure 2. Each SCAB unit comprises a super-
pixel transformer layer and a parallel convolutional residual
layer.

Motivation
Traditional coding algorithms such as HEVC and VVC ex-
hibit outstanding performance. These algorithms combine in-
tra prediction and transform coding, effectively leveraging re-
constructed neighboring regions to adaptively capture the dy-
namic characteristics of the content, thereby efficiently han-
dling the complexity and variability of the image. The pro-
cess can be simply formulated as:
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Ipm =WmNrec

r̂m = Q(ga(I − Ipm)); ga = DCT (·)
rm = gs(r̂m); gs = IDCT (·)
Î = Ipm + rm,

(4)

where ga and gs denote the DCT [Ahmed et al., 1974] and its
inverse IDCT, respectively. Nrec represents the reconstructed
neighbors. Each mode m has a specific Wm to weight the
reconstructed Nrec to form the prediction Ipm. A special case
occurs when the IBC mode (specifically designed for screen
content in HEVC-SCC and VVC-SCC) is applied: Wm be-
comes a one-hot mask, copying the same block as shown in
Figure 3b. The content-adaptive weighting of reconstructed
neighbors allows us to exploit screen content redundancy.
Many CNN-based compression networks [Ballé et al., 2016;
Ballé et al., 2018; Ballé et al., 2020] may not support this fea-
ture due to fixed weights after training. Some studies [Cheng
et al., 2020; Zou et al., 2022; Liu et al., 2023] use window
attention mechanisms for more dynamic and adaptive learn-
ing of neighborhood content, but these mechanisms have a
limited dynamic range and integrate local features based on
each pixel. A better method is to use larger pixel sets to per-
ceive features, as shown in Figure 3b, where IBC performs
content-awareness based on blocks. The symbol “s” finds its
most similar block through block matching. Therefore, if the
pixels representing “s” can form a superpixel, we can better
perceive the surrounding information. Based on this, we pro-
pose a superpixel-based content aggregation for screen con-
tent compression.

Superpixel Based Aggregation Module
As shown in Figure 2, the Superpixel-based Content Aggre-
gation (SCA) module consists of three processes: superpixel
sampling, content aggregation in the superpixel space, and
pixel resampling. Specifically, we first aggregate pixels into
superpixels by using a superpixel sampling algorithm, then
perform attention models in the superpixel space to handle
global dependencies, and finally map the super pixels back to
visual pixels by using a pixel resampling algorithm.

Superpixel Sampling: In the Superpixel Sampling pro-
cess, we use the soft k-means based superpixel algorithm
from SSN [Jampani et al., 2018] to cluster the features F ∈
RB×N×C (where N = H × W is the number of pixels)
into m super pixels S ∈ RB×m×C . Each pixel feature
Fi ∈ RB×1×C is assigned to one super pixel, and the as-
signment map is denoted by M ∈ RN×m. Formally, super-
pixel aggregation follows an Expectation-Maximization-like
process, consisting of a total of T iterations. We initialize the
super pixels S0 by averaging the features in regular grid re-
gions. The grid size is h×w, and the number of super pixels
is m = H

h × W
w . Then we iteratively update the super pixels

and the association with the following two steps:
1. Pixel-superpixel association: The pixel-superpixel asso-

ciation at iteration t is computed as:

Mt
ij = Softmax

(
FiS

t−1
j

T

√
d

)
, (5)

where i denotes the pixels, j denotes the superpixels. d is the

Figure 4: Visualization of super-pixels. Left is the initialized super-
pixels and right is the final learned super-pixels (for example, the
number ‘9’ is grouped into one super-pixel). For each pixel in the
green box, we get its corresponding super-pixel association by only
considering the surrounding super pixels within the red box.

channel number. It is noteworthy that the superpixel aggre-
gation calculates the association between each pixel and only
its 9 surrounding superpixels (as shown in Figure 4), ensuring
the locality of superpixels, which also renders the computa-
tion and memory more efficient [Huang et al., 2022].

2. Superpixels cluster centers updates: The superpixels are
updated as the weighted sum of pixel features, defined as:

Stj =
1

Ztj

∑
i

(Mt
ij)

TFi, (6)

where Ztj =
∑
iMt

ij is the normalization factor. After T
iterations, the final superpixel clusters ST and the associated
mapping MT are obtained.

Content Aggregation in the Superpixel Space: Given
that superpixels serve as compact representations of visual
content, we employ attention mechanisms to emphasize their
significance, enabling us to prioritize global contextual de-
pendencies over local features. Specifically, we apply the
standard self-attention technique to the sampled superpixels
S ∈ Rm×C , which are defined as follows:

Attn(S) = Softmax

(
q(S)kT(S)√

d

)
v(S), (7)

where q(·), k(·), v(·) are linear functions, respectively. We
omit the multi-head mechanism for clarity.

Pixel Resampling: After aggregating information in the
superpixel space, the pixels composing the superpixels also
receive global information flow. Subsequently, we map them
back to pixels using the association map Mt and incorporate
them into the original input F .

Resampling(Attn(S)) = MtAttn(S). (8)

3.3 Superpixel Based Aggregation Block
We introduce an innovative transformer-style block that sig-
nificantly enhances the screen image encoding process. This
block, inspired by but diverging from the design in [Huang et
al., 2022], consists of three core components: Convolutional
Position Embedding (CPE), Superpixel based Content Ag-
gregation (SCA), and Convolutional Feed-Forward-Network
(ConvFFN). These components are intricately designed to op-
timize the transformation of model features, Ftrans, in the
following manner:
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Figure 5: The proposed channel-wise context entropy model. The
first slice (y1) is compressed using a Gaussian entropy model condi-
tioned solely on the hyperprior, while the entropy model for the rest
slice yi is conditioned on both the hyperprior and the decoded sym-
bols in the former slices ŷ<i. The structures of the Latent Residual
Prediction Layer (LRP) and the Parameters Network are identical,
consisting of “Conv3x3-GELU-Conv3x3-GELU-Conv3x3”.

Ftrans = CPE (Ftrans) + Ftrans
Ftrans = SCA(LN(Ftrans)) + Ftrans

Ftrans = ConvFFN(BN(Ftrans)) + Ftrans,

(9)

where the CPE utilizes a 3×3 depth-wise convolution to pro-
vide positional information. The SCA is tailored to screen
images, leveraging their characteristic structures to improve
global context representation by efficiently capturing long-
range dependencies. The ConvFFN, comprising two 1 × 1
convolutions, one 3×3 depth-wise convolution, and a GELU
non-linear function, is specifically optimized for strengthen-
ing local feature representations in screen images.

Recognizing the importance of both global and local infor-
mation in screen image encoding, we complement our trans-
former with a parallel convolution residual layer, uniquely de-
signed for capturing fine-grained local details often present in
screen content. This dual approach allows our model to ef-
fectively balance between global and local feature extraction.
The entire process, incorporating this local learning aspect, is
formulated as:

Fcnn , Ftrans = Split(Conv1× 1(Fin))

Fcnn , Ftrans = Res (Fcnn ) ,Trans (Ftrans )

Fout = Fin + Conv1× 1 (Cat (Fcnn , Ftrans )) .

(10)

The complete architecture of our Screen Content Aggrega-
tion Block (SCAB) is depicted in Figure 2, illustrating how it
uniquely addresses the challenges of screen image compres-
sion.

3.4 Advanced Entropy Coding with Channel-wise
Context Modeling and Dynamic Feature
Fusion

The most popular context modeling is proposed by Min-
nen [Minnen et al., 2018], but it comes with increased decod-
ing complexity. To address this, [Minnen and Singh, 2020]
proposes a context model along the channel dimension, im-
proving decoding efficiency. The latent tensor y is divided
into N slices along the channel dimension with entropy pa-
rameters for each slice conditioned on the previously decoded
ones. However, this approach lacks dynamic integration of
side information from each slice and its decoded counterpart

Figure 6: The deviation maps scaled by the model without (left) and
with (right) DFF. For image ‘siqad16’ (top row), the model without
DFF has a PSNR of 30.18 dB, a bitrate of 0.247 bpp, and a scaled
deviation of ϵ̃ = 0.378; with DFF, it has a PSNR of 30.66 dB,
a bitrate of 0.227 bpp, and a scaled deviation of ϵ̃ = 0.268. For
the image ‘siqad20’ (bottom row), without DFF, the model has a
PSNR of 30.87 dB, a bitrate of 0.281 bpp, and a scaled deviation of
ϵ̃ = 0.363; with DFF, it has a PSNR of 31.32 dB, a bitrate of 0.265
bpp, and a scaled deviation of ϵ̃ = 0.262.

for entropy model parameter estimation, an aspect that could
be further improved for more efficient screen content image
encoding.

To address this issue, we introduce a dynamic feature fu-
sion mechanism (DFF) combined with superpixel aggrega-
tion. As illustrated in Figure 5, we first compress the con-
catenated features using a 1x1 convolution. A gating mech-
anism then dynamically determines weights to enhance the
entropy parameter estimation process by adapting to the de-
coded slices and side information. Simultaneously, the em-
bedded Superpixel Context Aggregation (SCA) module al-
lows the learning process to incorporate global information.
Finally, the learned weights are multiplied back into the input
branch, followed by another convolution to map the channels
back to their original size.

To validate that our proposed DFF introduces minimal de-
viation, we follow the approach by Xie et al. [Xie et al.,
2021]. This involves analyzing pixel-wise differences be-
tween the compressed ŷ and the original latent y, and mea-
suring the information loss during compression by evaluating
the deviation between ŷ and y. The mean absolute pixel de-
viation ϵ is defined as:

ϵ =
1

H ×W

H∑
h=1

W∑
w=1

|yc,h,w − ŷc,h,w| . (11)

We further introduce a scaling factor γ to normalize the
deviation, accounting for different pixel value ranges in dif-
ferent models:

ϵ̃ =
ϵ

γ
=

1
H×W

∑H
h=1

∑W
w=1 |yc,h,w − ŷc,h,w|

1
H×W

∑H
h=1

∑W
w=1 |yc,h,w|

. (12)

Figure 6 illustrates the scaled deviation map of y for
‘siqad16’ and ‘siqad20’ from the SIQAD dataset, using mod-
els both with and without DFF. The result indicates that the
model with DFF incurs less information loss, thus producing
higher-quality decompressed images.
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Figure 7: Performance evaluation on the SIQAD dataset. Comparative results of various models. Note that “cheng et al. CVPR 2020*”
denotes the use of models pre-trained on natural images, while all other models represent the results of fine-tuning on the SCI2K dataset.

4 Experimental Evaluation
4.1 Experimental Setup
Training Settings
We select the SCI2K [Shen et al., 2022] as our training
dataset, where image samples are randomly cropped into
256 × 256 × 3 patches. The network is optimized with the
Adam optimizer, a batch size of 8, and trained on a single
RTX 3090 GPU for 5M steps. The initial learning rate is
10−4, reduced to 10−5 after 4.5M steps.

Model Settings
Our network is implemented using the open-source Compres-
sAI PyTorch library [Bégaint et al., 2020]. Six models are
trained from scratch to match different bitrates by adjusting
λ. The number of channels, M , for the latent variable y is set
to 320, and for z it’s 192. These settings balance computing
cost and model performance. The number of slices s of the
entropy model is set to 5. Additional hyperparameters within
the entropy model align with the settings described in [Min-
nen and Singh, 2020]. For the distortion measurement us-
ing MSE loss, λ2 is chosen from the set {0.00013, 0.00025,
0.00067, 0.0018, 0.0035, 0.0067, 0.013}. They were chosen
based on preliminary experiments that yield good balance be-
tween compression rate and quality. For the MS-SSIM loss,
λ is chosen from the set {2.4, 4.58, 8.73, 16.64, 31.73, 60.5}.

Testing
During testing, we use three common datasets for SCI quality
estimation: CCT3, SCID4, and SIQAD5. These representative

2In the implementation, the actual loss function is given by λ ×
2552 ×D+R, which is specifically tailored for optimization in the
context of Mean Squared Error (MSE). When optimizing with the
Multi-Scale Structural Similarity Measure (MS-SSIM), as suggested
in [Bégaint et al., 2020], the actual loss function is modified to λ×
(1−D) +R.

3https://sites.google.com/site/minxiongkuo/uca
4http://smartviplab.org/pubilcations/SCID.html
5http://smartviplab.org/pubilcations/SCI GSS.html

SCI datasets are also used in the SCI coding quality assess-
ment research community[Min et al., 2021]. The CCT dataset
contains samples with a resolution of 915 × 1627, the SCID
dataset provides images with a resolution of 720×1280, and
the SIQAD dataset contains 24 screen images with 2k spatial
resolution approximately. We use both PSNR and MS-SSIM
to quantify the quality of decoded images, and bpp to measure
the compressed bitrate.

4.2 Evaluation on Rate-Distortion Performance

CCT SCID SIQAD Average

VVC 0.00 0.00 0.00 0.00
VVC-SCC -43.01 -34.12 -33.57 -36.90

Minnen et al. 94.26 33.71 8.21 45.39
Cheng et al. 40.38 -7.02 -28.73 1.54
Zou et al. 48.07 -2.46 -24.25 7.12
Liu et al. 16.83 -22.04 -39.36 -14.86
Ours -17.00 -35.94 -51.04 -34.66

Table 1: Averaged BD-rate saving against the VVC anchor on dif-
ferent datasets. Lower values are better.

Anchor and Comparative Methods
We compare our model with several notable LIC solutions,
such as Minnen et al. (2018) [Minnen et al., 2018], Cheng
et al. (2020) [Cheng et al., 2020], Zou et al. (2022) [Zou
et al., 2022], and Liu et al. (2023) [Liu et al., 2023]. We
use VVC Intra, with its reference software VTM-20.0, as the
anchor for calculating BD-rate gains. We also present results
of VVC-SCC Intra with screen content coding options. R-
D curves are plotted in Figures 7 and BD-rate gains against
the VVC anchor are in Table 1. For fairness, all compared
methods are finetuned on the SCI2K dataset for 300 epochs
based on their best pretrained models.

Quantitative Performance
As for the results on SIQAD dataset, our proposed method
outperforms all other LIC solutions for the distortion mea-
sured by both PSNR and MS-SSIM, as shown in Figure 7.
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Figure 8: Ablation results on SIQAD. (a) Backbone ablation by
comparing with Swin Transformer Blocks. (b) The ablation studies
on DFF module (“w/o fusion” means removing DFF in the channel-
wise context entropy model).

We convert MS-SSIM to −10 log10(1 − MS-SSIM) to ease
the comparison. Remarkably, our proposed method surpasses
the state-of-the-art H.266 screen content coding tool, VVC-
SCC, especially at lower bit rates (below 0.2 bpp). Our
model achieves this by effectively prioritizing the most visu-
ally significant information for compression, thereby retain-
ing higher image quality even at lower bitrates. For a quan-
titative evaluation, we employ BD-rate derived from PSNR-
BPP curves as the metric. Remarkably, our method exceeds
VVC (VTM-20.0) by 17.00%, 35.94%, and 51.04% in BD-
rate on the CCT, SCID, and SIQAD datasets, respectively.
These results are summarized in Table 1. More comparisons
are reported in supplementary.

Qualitative Visualization
We perform a meticulous qualitative analysis by visually
comparing the results generated by our proposed model with
those generated by CNN-based models [Minnen et al., 2018;
Cheng et al., 2020] and Transformer-based models [Zou et
al., 2022; Liu et al., 2023], using images from the SIQAD
dataset, specifically the ‘siqad17’. Figure 1 illustrates the re-
sults of this comparative analysis. We focus on two distinct
local regions to assess detail reconstruction. Our method out-
performed others in the upper local region of ‘siqad17’, gen-
erating fewer artifacts, especially in the reconstruction of the
characters “O” and “V”, and enhancing the clarity of back-
ground elements like the drainage pipe. For more visual re-
sults, see the supplementary material.

4.3 Ablation Studies
SCAB Module
We demonstrate the effectiveness of our proposed SCAB
through an ablation study, comparing our model with an al-
ternative using Swin Transformer blocks [Liu et al., 2021].
Unlike Swin Transformer blocks that focus on local atten-
tion, SCAB calculates global attention over superpixels for
more holistic information capture. The study results, pre-
sented in Figure 8, show that our model with SCAB blocks
significantly improves efficiency and performance over the
“SwinT” model that employs Swin Transformer blocks.

DFF Module
To highlight the efficacy of the DFF Module within our pro-
posed entropy model, we conducted ablation studies and
present the results in Figure 6 and Figure 8(b). After re-
moving the DFF module, the RD performance is degraded,
as shown in Figure 8(b). Furthermore, the visualization of

residual errors in Figure 6 also shows that the probabilities
estimated using the DFF module are more accurate, resulting
in smaller latent feature errors. These results confirm the cru-
cial role of the DFF module in improving the performance of
the entropy model.

4.4 Complexity and Efficiency Analysis
We evaluate the computational complexity and decoding
quality of various image compression methods [Minnen et
al., 2018; Cheng et al., 2020; Zou et al., 2022; Liu et al.,
2023], including our proposed method, based on the SIQAD
dataset. Figure 9 visualizes the trade-off between the model
complexity (parameters and inference time) and the compres-
sion performance (BD-rate) for various models. Our pro-
posed method achieves an impressive balance by maintain-
ing faster inference times and a relatively smaller model size
while also reaching lower BD-rates. For detailed informa-
tion, see the supplementary material.

Figure 9: Compression performance vs. computing complexity.
The figure depicts the trade-off between compression performance,
measured by the average BD-rate relative to VVC, and computing
complexity, indicated by inference time (encoding+decoding) and
amount of parameter numbers, for various compression methods.
The BD-rate is averaged over all test images in the SIQAD dataset.
Notably, “Cheng et al. 2020*” represents the model pre-trained on
natural images. For representation purposes, VVC and VVC-SCC
are assigned negligible parameter sizes as they do not possess pa-
rameters.

5 Conclusion
In this work, we propose a new end-to-end network for
screen content image compression. Specifically, a superpixel-
based content aggregation block is proposed to aggregate lo-
cal regional information through superpixel grouping and the
global redundancy is explored via super-pixel based trans-
former. Additionally, we also introduce a dynamic feature fu-
sion mechanism to enhance the channel-wise context entropy
model. The DFF module adaptively adjusts the probability
distribution of undecoded channels, optimizing information
utilization during decoding. Comprehensive experiments on
three datasets validate the superiority of our method in terms
of both RD performance and efficiency.
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