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Abstract
Table structure recognition (TSR) aims to parse
the inherent structure of a table from its input im-
age. The “split-and-merge” paradigm is a pivotal
approach to parse table structure, where the ta-
ble separation line detection is crucial. However,
challenges such as wireless and deformed tables
make it demanding. In this paper, we adhere to the
“split-and-merge” paradigm and propose SEMv3
(SEM: Split, Embed and Merge), a method that
is both fast and robust for detecting table separa-
tion lines. During the split stage, we introduce a
Keypoint Offset Regression (KOR) module, which
effectively detects table separation lines by directly
regressing the offset of each line relative to its key-
point proposals. Moreover, in the merge stage, we
define a series of merge actions to efficiently de-
scribe the table structure based on table grids. Ex-
tensive ablation studies demonstrate that our pro-
posed KOR module can detect table separation
lines quickly and accurately. Furthermore, on pub-
lic datasets (e.g. WTW, ICDAR-2019 cTDaR His-
torical and iFLYTAB), SEMv3 achieves state-of-
the-art (SOTA) performance. The code is available
at https://github.com/Chunchunwumu/SEMv3.

1 Introduction
Tables serve as efficient tools for organizing and presenting
crucial information in documents. The structure of a table
and the content within its cells collaboratively convey the
information in the table. Table structure typically refers to
the relationships between cells in a table, involving the span-
ning of rows and columns. Table structure recognition (TSR)
aims to extract inherent structure of a table from unstruc-
tured tabular data (table image or scanned document). Table
structure recognition plays a crucial role in document digi-
tization and intelligent document analysis [Chi et al., 2019;
Zheng et al., 2021].

The TSR methods based on deep learning can be broadly
categorized into three paradigms: image-to-markup based,
region based and split-and-merge based. Image-to-markup
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Figure 1: The three types of table separation detection methods.

based TSR methods [Zhong et al., 2020; Smock et al., 2022]
directly generate table structure tokens from table images,
which exhibit weaknesses in handling large tables due to the
length of generation. Region based TSR methods [Long et
al., 2021; Liu et al., 2022] initially detect the cell boxes
and then predict the logical adjacency of the detected table
cells. However, in detecting table cells, they face challenge
in robustly handling cases where visual clues are not obvi-
ous, such as wireless tables or blank cells. Split-and-merge
based TSR methods [Zhang et al., 2024; Wang et al., 2023;
Lyu et al., 2023] initially employs a split sub-network to de-
tect table row and column separation lines. Subsequently,
these separation lines are intersected to delineate the table
grids. A merge sub-network is then utilized to merge the over-
split table grids into table cells. Recently, split-and-merge
based approach for TSR has attracted a lot of research atten-
tion.

In the pipeline of split-and-merge based solution, the re-
sults of table separation line detection highly impact the ac-
curacy of table structure recognition. Due to the diversity in
table styles, accurately detecting table separation lines is chal-
lenging. As illustrated in Fig. 1, the prevailing approaches for
table separation line detection can be categorized according to
the following types. The first type methods [Schreiber et al.,
2017; Zhang et al., 2022; Ma et al., 2023] address the sep-
aration line detection through semantic segmentation, which
require complex mask-to-line post-processing to parse table
separation lines, as shown in Fig. 1(a). The second paradigm
conceives the table separation line detection task within the
framework of instance segmentation [Zhang et al., 2024],
as shown in Fig. 1(b). Each separation line instance has a
similar slender appearance. In order to distinguish different
instances, position-sensitive instance representation features
are important. However, position-sensitive instance informa-
tion is difficult to learn during the training process based on
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instance segmentation loss. This leads to less robust sepa-
ration line detection results compared to our method. The
third paradigm formulates separation line detection as a line
regression problem [Lin et al., 2022].

In order to strengthen the robustness of separation line
detection, we introduce a new Keypoints Offset Regression
module (KOR) in this paper. This module approaches sep-
aration line detection from a line regression perspective, as
shown in Fig. 1(c). Specifically, KOR represents a separa-
tion line as keypoints and regresses the offsets between the
line and its keypoint proposals to accurately locate the line.
Compared to other segmentation-based separation line detec-
tion methods, our approach eliminates the need for complex
mask-to-line post-processing and is more robust. In con-
trast to previous line regression methods [Lin et al., 2022;
Wang et al., 2023; Lyu et al., 2023], we do not directly pre-
dict the absolute coordinates of line keypoints within the ta-
ble image. Instead, we predict the offsets from the proposals,
effectively incorporating the location prior of the keypoints,
which reduces the difficulty of regression.

Following the split stage, the over-split table grids are
merged in the merge stage. In order to achieve a precise and
effective merging of these table grids, we introduce the con-
cept of a “merge action” to denote the merging operation for
each table grid. We utilize only simple convolutional layers in
the construction of the merge module to predict the merging
actions of the grids.

We amalgamate the Keypoints Offset Regression module
(KOR) with the merge module, constituting an end-to-end ta-
ble structure recognition system denominated SEMv3. Our
primary contributions are delineated as follows:

• We propose Keypoints Offset Regression module (KOR)
to robustly and quickly detect the table separation line.
KOR represents separation lines with a series of key-
points, locating these keypoints by regressing the offset
from proposals to keypoints.

• We define the merging action of each grid to describe
table structure, which can effectively improve the accu-
racy of merging.

• Our proposed SEMv3 attains state-of-the-art results on
prominent public benchmarks, including ICDAR-2019
cTDaR Historical [Gao et al., 2019], WTW [Long et al.,
2021], and iFLYTAB [Zhang et al., 2024]. SEMv3 ex-
cels in diverse and challenging TSR scenarios, encom-
passing wireless tables, and deformed tables.

2 Related Work
2.1 Image-to-markup Based TSR
Image-to-markup based TSR methods [Zhong et al., 2020;
Nassar et al., 2022; Huang et al., 2023] use encoder-decoder
architecture to generate table structure markups from a ta-
ble image. However, auto-regressive decoding the structure
markups causes error accumulation and inefficient inference.
DRCC [Shen et al., 2023] adopts a cascaded two-step de-
coder architecture, predicting row tags first and then cell tags
for each row in a semi-autoregressive manner. This approach

alleviates the error accumulation problem specific to auto-
regressive models. OTSL [Lysak et al., 2023] introduces a
new table structure representation language, reducing the dif-
ficulty of decoding structure tokens. Nevertheless, Image-to-
markup based TSR methods require a substantial amount of
training data to achieve optimal performance.

2.2 Region Based TSR
Region based TSR methods [Xue et al., 2019; Zou and Ma,
2020; Prasad et al., 2020; Xiao et al., 2022] initially identify
primitive regions, such as text segments or cell boxes, and
subsequently recover the logical relationships among these
primitive regions. To achieve accurate primitive region de-
tection, methods like [Raja et al., 2020; Qiao et al., 2021;
Zheng et al., 2021] leverage the characteristics of cell ar-
rangement to introduce additional constraints. However,
these constraints are effective only for tables without defor-
mations. For a more precise recovery of the logical positions
of primitive regions, FLAG [Liu et al., 2021] and NCGM [Liu
et al., 2022] enhance the feature representation of nodes in the
relational graph. LORE [Xing et al., 2023] employs a cas-
caded structure to regress the logical position of cells. Lim-
ited by cell detection, the performance of these methods in
handling blank cells and wireless tables still needs improve-
ment.

2.3 Split-and-merge Based TSR
Split-and-merge based TSR methods detect table separation
lines to parse table grids, then merge the over-split grids into
table cells. In the split stage, early methods [Schreiber et al.,
2017; Tensmeyer et al., 2019; Zhang et al., 2022] assume
that the table lines are aligned, so they could not handle ta-
bles with deformations. In order to address deformed table
samples, RobusTabNet [Ma et al., 2023] utilized spatial CNN
(SCNN) [Pan et al., 2018] to enhance the feature represen-
tation of separation lines. TRACE [Baek et al., 2023] pre-
dict the mask of visible and non-visible lines separately. But
RobusTabNet and TRACE require complex post-processing
of mask-to-line. SEMv2 [Zhang et al., 2024] addresses
separation line detection in the way of instance segmenta-
tion. SEMv2 aggregates instance convolution kernels with
global information and then obtains separation line instance-
level masks by convolving instance convolution kernels with
instance-independent feature maps. However, the position-
insensitivity of the instance convolution kernels results in less
robust line detection. TSRFormer [Lin et al., 2022] is the first
to define table separation line detection as line regression and
uses Dert to directly regress the position of keypoints. TSR-
Former with DQ-DETR [Wang et al., 2023] introduces dy-
namic object queries to gradually regress keypoints. Never-
theless, this approach reduces the efficiency of line regres-
sion. GridFormer [Lyu et al., 2023] completes splitting by
directly predicting the coordinates of grid corners.

In the merge stage, RobusTabNet and TSRFormer predict
the merging relationship between grids using a relational net-
work [Zhang et al., 2017], which do not take advantage of
global features of grid cells structure. SEMv2 predicts a
merging map for each grid, which is redundant. RNN net-
works [Cho et al., 2014] are used in SEM [Zhang et al., 2022]

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1192



Backbone

Col-KOR Grid Feature
Embedding

Table Image 𝐄
𝐅 Merge Action Map Table Structure

C
on

v

Split

Merge

FE

FE

𝐅lr
row

𝐅lr
col

Row-KOR

LSLS

SSXU

SSSS

SSSU

Row Separation Lines

Proposal
Head

Offset Head

Satring Point

Keypoint Proposal

Keypoints

Offset

𝐅sd
row

𝐅sd
col

𝐅lr
row

𝐅sd
row

Row Keypoints Offset Regression

Table Grids

Figure 2: An overview of our approach, SEMv3, which follows the split-and-merge paradigm. In the split stage, we propose the keypoints
offset regression module (KOR) to locate the table separation line. The KOR module detects the table separation lines by regressing the offset
of each line relative to its keypoint proposals. The “FE” stands for feature enhancement module. In the merge stage, we utilize a merge action
to describe the table structure based on table grids.

to predict cell merging map serially. It is time-consuming and
needs additional text information from Off-the-shelf OCR en-
gine.

3 Method
As illustrated in Fig. 2, SEMv3 extracts visual features from
the backbone. The split module predicts the row and column
separation lines by regressing the offsets between proposals
and the keypoints. And then the separation lines are inter-
sected to obtain the table grids. The merge module merges
the over-split grids into cells by predicting the merge actions
based on starting grid of grids.

To obtain the visual features of the input table image,
we use Resnet-34 [He et al., 2016] with FPN [Lin et al.,
2017a] as backbone to generate four different levels of fea-
tures P2,P3,P4,P5. Subsequently, we amalgamate the infor-
mation from all levels of the FPN pyramid into a single output
F ∈ RH

2 ×W
2 ×C . H and W represent the width and height of

the input table image, respectively. C is the number of feature
channel.

3.1 KOR Based Split Module
Within the split module, two parallel branches are attached
to the shared feature map F for the detection of row and col-
umn separation lines, respectively. Each branch includes two
modules: a feature enhancement module to enrich the context
information of F, and a keypoints offset regression module
(KOR) aimed at detecting the separation lines. In the follow-
ing sections, we will elucidate the details of these two mod-
ules by using the row separation line detection branch as an
illustrative example.

Feature Enhancement Module
Inspired by RobusTabNet [Ma et al., 2023], We employ the
Spatial CNN module [Pan et al., 2018] to enhance the feature

F. The spatial CNN module enhances visual features through
efficient row and column messaging. We combine repeat
4 down-sample blocks [Lin et al., 2022] and two cascaded
spatial CNN into feature enhancement module. We obtain
the row start point detection feature Frow

sd ∈ RH
2 ×W

32×C and
the row line regression feature Frow

lr ∈ RH
2 ×W

32×C through
two row feature enhancement modules with non-shared pa-
rameters based on row information passing. Likewise, we
calculate enhanced features Fcol

sd ∈ RH
32×

W
2 ×C and Fcol

lr ∈
RH

32×
W
2 ×C for columns.

Keypoints Offset Regression Module
Separation line representation. To unify the definition of
separation lines in wired tables and wireless tables, we con-
sider the visible cell border line as the separation line in wired
tables. For wireless table, we define median line of separa-
tion region [Schreiber et al., 2017] as row/column separation
line. We represent the ith row separation line with keypoints
{krow

ij |j = 0, ..., N row
k − 1}. N row

k denotes the number of key-
points. N row

k is determined by the width W of input image
and the sampling step size t, as defined in Eq.1.

N row
k = ⌈W

t
⌉ (1)

The x-coordinates of the keypoints krow
ij are denoted as xij ,

where xij = j × t. Given that the x-coordinates are fixed,
the position of a row separation line can be defined solely
by the y-coordinates y of its keypoints. To predict these y-
coordinates, we regress the y-axis offset δrow

ij between the
keypoints and their proposals. The first keypoint krow

i0 in the
ith row separation line is designated as the starting point. The
keypoint proposals share the same x-coordinates as the key-
points and have y-coordinates identical to the starting point,
as shown in the Row Keypoints Offset Regression subplot of
Fig. 2.
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Keypoint proposal head. The x-axis coordinate of the
starting point is fixed at 0. Drawing inspiration from
SEMv2 [Zhang et al., 2024] and TSRFormer [Lin et al.,
2022], we classify whether each row has a starting point to
determine the y-axis coordinate of the starting point of the
row separation line. We predict the probability Prow of each
row having a starting point using row-wise average pooling
and a softmax operation on the row start point detection fea-
ture Frow

sd . Subsequently, we apply Non-Maximum Suppres-
sion (NMS) [Zhang et al., 2024] to eliminate duplicate start-
ing point predictions. We then sample Nk keypoint proposals
for each row separation line, which are horizontally aligned
with the starting point.

Keypoint offset head. The deformation of table can re-
sult in that keypoint proposals do not accurately represent the
curved separation line. To address this challenge, we further
predict the offset between the proposals and the ground truth
keypoints. The offset helps in refining the location of the key-
points. We sample features of proposals K′ ∈ RC×N row×N row

k

from the row line regression feature Frow
lr based on the coor-

dinates of the proposals. Here, N row indicates the number
of row separation lines. We obtain the whole separation line
representation features Srow ∈ RC×N row

for each row separa-
tion line by averaging the proposals features belonging to the
same row, as following:

Srow
i =

1

N row
k

N row
k∑

j=1

K′
ij (2)

To ensure that each keypoint can consider the information
of whole line, we concatenate the line representation features
of each row to the feature of the proposals in the channel di-
mension. In Eq.3, K denotes the keypoint feature.

Kij = concatenate(K′
ij , Srow

i ) (3)

Instead of using a fully connected network to predict the
offsets of keypoints, we employ a 1 × 3 convolution layer
on the keypoint feature K to predict the offset δij in the row
separation line detection branch. This operation allows each
keypoint to pay attention to the information of adjacent key-
points, thereby ensuring a smooth separation line.

After predicting row and column separation lines, we cre-
ate the intersection of the row and column separation lines to
obtain quadrilateral boxes of grids B ∈ RM×N×8. M and N
denote the number of rows and columns of the grid, respec-
tively.

3.2 Merge Module
Grids Feature Embedding
The representation feature E′ ∈ RM×N×Cg of the grids is
the sum of visual features extracted by the RoiAlign [He
et al., 2017] algorithm and the absolute position embedding
(PE) [Xu et al., 2020] of the grids. Cg is the number of the
representation feature channel.

E′ = RoiAglin(F,B) + PE(B) (4)

The PE employs a fully connected network to map normal-
ized top-left corner and bottom-right corner coordinates of

S L S L

U X S S

S S S S

U S S S

(b) Merge Action Map(a) Table Grids

Figure 3: Definition of merge action based on grids. (a) The girds
based table structure. The starting grids are painted orange. The
black dashed lines represent the borders within the grid that need to
be merged. (b) The merge action map.

the grid to Cg dimensions. To enhance E′, we introduce a
row/column-based self-attention mechanism, which automat-
ically aggregates features from other grids, resulting in the
enhanced grid representation feature E.

Merge Action Prediction
Inspired by OTSL [Lysak et al., 2023] and Formerge [Nguyen
et al., 2023], we define the merging action of a grid to depict
the table structure, as shown in Fig. 3. The upper-left grid
in a cell serves as the starting grid, as illustrated in Fig 3(a).
As shown in Fig. 3(b), the merging action for starting grids is
Stay, implying that these grids do not need to merge either to
the left or upwards. The merge action for grids in the same
row as the starting grids is Left, suggesting that these grids
need to merge with the ones on their left. The merge action
for grids in the same column as the starting grids is Upward,
indicating that these grids need to merge with the ones above
them. The merge action for the remaining grids in the same
cell is X, which denotes merging both upwards and to the left.
This novel definition of merge action allows us to succinctly
and comprehensively characterize the grid based table struc-
ture with only one merge action map, as shown in Fig. 3(b).

According to the definition of merge action, the starting
grids play a pivotal role in determining the merge action of
the remaining grids within the same cell. To enhance the ac-
curacy of merge action prediction, we introduce an auxiliary
branch for the classification of starting grids. This helps in
identifying the starting grids during the prediction of merge
action. In this branch, we transform E into the starting grid
classification feature, Es, using a convolutional layer. Es is
used to classify the starting grids. Finally, we concatenate Es

and E channel-wise to predict the merge action.

3.3 Training Object
Starting points detection loss. We supervise the prediction
of starting points using binary cross-entropy loss LBCE. This
is represented as:

Lrow
sp =

1

H/2

H/2∑
i=1

LBCE(P̂i
row

,Prow
i ) (5)

Although the starting point has a width of only 1 pixel, we
enlarge the range of starting points for ease of training. Here,
P̂

row
i represents the ground truth distribution of starting points
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for the ith row separation line. In wireless tables, P̂
row
i is set to

1 if the ith row is located in the separation region. For wired
tables, P̂

row
i is 1 if the ith row is located in the neighborhood

of starting points with a width of 8. We also calculate the loss
Lcol

sp for column starting points.
Keypoints offset regression loss. δ̂row

ij denotes to the
ground truth offset between the jth keypoint proposal in the
ith row separation line. The loss of row line keypoints offset
is calculated with L2 loss, as:

Lrow
δ =

1

N rowN row
k

N row∑
i=1

N row
k −1∑
j=0

∥δ̂row
ij − δrow

ij ∥2 (6)

We define the column line keypoints offset loss Lcol
δ in the

same manner.
Merge action classification loss. We use focal loss in in

both predicting starting grids and merge actions.

Lsg =
1

NM

N∑
i=1

M∑
j=1

Lfocal(P̂
sg
ij ,Psg

ij). (7)

Lma =
1

NM

∑
a

N∑
i=1

M∑
j=1

Lfocal(P̂
a

ij ,Pa
ij). (8)

The loss for starting grid classification and merge action
prediction are denoted as Lsg and Lma respectively. P̂

sg
is set

to 1 if a grid is a starting grid. The symbol a represents a
merge action, which can take one of four values: S, L, U, or
X. The term Lfocal refers to the focal loss [Lin et al., 2017b].

Overall loss. All the modules in SEMv3 are trained end-
to-end. The overall loss function is a summation of several
component losses, as shown below:

L = Lrow
sp + Lcol

sp + Lrow
δ + Lcol

δ + Lma + Lsg (9)

4 Experiment
4.1 Implementation
We use Resnet-34 pretrained on ImageNet [Krizhevsky et al.,
2012] with FPN as backbone. And the feature F channel
number C is 256, grid feature channel number Cg is 512.
The sampling step size t is 32. Models are trained end-to-end
for 100 epochs. We use Adam [Kingma and Ba, 2014] as
the optimizer. The initial learning rate is 1 × 10−4, and the
learning rate is adjusted to 1 × 10−6 according to the cosine
annealing strategy [Loshchilov and Hutter, 2016]. All exper-
iments are implemented in Pytorch v1.7.1 and conducted on
4 Nvidia Tesla V100 GPUs with 24GB RAM memory. Dur-
ing the training process, the ground truth grid boxes coordi-
nates are used when extracting grid represent feature using
RoIAlign.

4.2 Datasets and Metric
We evaluate the performance of our method on several public
datasets. These datasets encompass a wide range of challeng-
ing scenarios related to table structure recognition.

Methods P R F1

TabStructNet [2020] 82.2 78.7 80.4
FLAGNet [2021] 85.2 83.8 84.5
NCGM [2022] 84.6 86.1 85.3
SEMv2 [2024] 89.2 82.8 85.9
LORE [2023] 87.9 88.7 88.3
SEMv3 90.3 88.4 89.3

Table 1: Comparsion with state-of-the-art methods on ICDAR-2019
cTDaR Historical.

Methods P R F1

Cycle-CenterNet [2021] 93.3 91.5 92.4
NCGM [2022] 93.7 94.6 94.1
TSRFormer-DQ [2023] 94.5 94.0 94.3
SEMv2 [2024] 93.8 93.4 93.6
LORE∗ [2023] 94.5 95.9 95.1
SEMv3 94.8 95.4 95.1

Table 2: Comparsion with state-of-the-art methods on WTW. The
method with * means the IoU of cell matching is 0.5 when evoluting.

ICDAR-2019 cTDaR Historical [Gao et al., 2019] dataset
contains 600 training samples and 150 testing samples from
archival historical documents. This dataset presents sev-
eral challenges, including a limited number of training sets,
unclear row and column separation lines, and deformation
in the table area. We use the cell adjacency relationship
(IoU=0.6) [Göbel et al., 2012; Gao et al., 2019] as the evalu-
ation metric of this dataset.

WTW [Long et al., 2021] contains 14581 wired table im-
ages collected from real business scenarios. There are seven
difficult cases in this dataset: inclined tables, curved tables,
occluded or blurred tables, tables with extreme aspect ra-
tios, overlaid tables, multi-colored tables, and irregular ta-
bles. Metric on WTW is the cell adjacency relationship
(IoU=0.6) [Göbel et al., 2012; Gao et al., 2019].

iFLYTAB [Zhang et al., 2024] contains 12,103 training
samples and 5,188 testing samples. The dataset includes a
variety of complex examples from both electronic documents
and natural scenes. Based on the table data collection sce-
narios and table characteristics, iFLYTAB is further divided
into four subsets: Wired-Digital (WDD), Wired-Camera-
Capture (WDC), Wireless-Digital (WLD), and Wireless-
Camera-Capture (WLC). We use the cell adjacency relation-
ship [Göbel et al., 2012] followed SEMv2 [Zhang et al.,
2024] as the evaluation metric. To evaluate the performance
of the split stage, we use grid detection with an IoU of
0.9 [Long et al., 2021] as the metric. F1-G represents the
F1-score for grid detection, in Table 5.

SciTSR [Chi et al., 2019] and PubTabNet [Zhong et al.,
2020] are from scientific literature PDF, where table samples
have aligned axis. The test subset of SciTSR, SciTSR-comp,
is composed of 716 complex tables containing span-cells. We
evaluate our method with the cell adjacency relationship met-
ric [Göbel et al., 2012] on SciTSR-comp. TEDS and TEDS-
Struct [Zhong et al., 2020] is used to evaluate performance
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Figure 4: Qualitative table structure recognition results of our approach. (a1-a3) are from WTW. (b1) and (b2) are from ICDAR-2019 cTDaR
Historical. (c1-c4) are from the wired subset of iFLYTAB. (c5) is from the wireless subset of iFLYTAB.

Methods P R F1

SEM [2022] 81.7 74.5 78.0
SEMv2 [2024] 93.8 93.3 93.5
SEMv3 94.4 94.2 94.4

Table 3: Comparsion with state-of-the-art methods on iFLYTAB.

on PubTabNet.

4.3 Comparison with State-of-the-arts

Our method focuses on robustly recovering the table struc-
ture from deformed and wireless tables in challenging scenar-
ios. On the following three challenging datasets, our method
achieves SOTA. On ICDAR-2019 cTDaR Historical dataset,
we achieve 88.9% F1 score, as shown in Table 1. On WTW
dataset, we achieve performance with SOTA, as shown in Ta-
ble 2. Notably, LORE who is the second best on these two
datasets takes 0.5 for IoU when evaluating models while we
take 0.6. On iFLYTAB dataset, as shown in Table 3, we im-
prove SEMv2 by 0.9% F1 score. As shown in Fig. 4, Our
approach performs well on challenging table samples, e.g.,
deformed tables, blurred tables, wireless tables.

Our model also demonstrates comparable performance to
SOTA in simpler scenarios involving electronic documents.
However, the testing dataset of SciTSR has been manually
rectified in various ways, resulting in an unfair compari-
son on the SciTSR dataset. On the PubTabNet, the perfor-
mance of our method is slightly inferior to that of LORE,
which belongs to the region-based methods. In the split-and-
merge based methods, we achieve performance comparable
to SOTA.

Methods SciTSR-COMP PubTabNet

P R F1 TEDS TEDS-S

RobusTabNet 99.0 98.4 98.7 - 97.0
TSRFormer 99.1 98.7 98.9 - 97.5
LORE 99.4 99.2 99.3 98.1 -
TSRFormer-DQ 99.1 98.6 98.8 - 97.5
SEMv2 98.7 98.6 98.7 - 97.5
SEMv3 99.1 98.9 99.0 97.3 97.5

Table 4: Comparsion with state-of-the-art methods on SciTSR and
PubTabNet in the digital document scenario. TEDS-S stands for
TEDS-Struct.

4.4 Ablation Studies
To verify the effectiveness of our split and merge mod-
ule, we undertake ablation experiments through several sys-
tems designed as shown in Table 5. In the split stage, the
Instance Segmentation (IS) based separation line detection
module from SEMv2, employs dynamic convolution to gen-
erate a segmentation mask for each separation line. We add
a new convolutional layer to generate instance-independent
features, following the original SEMv2 settings. In this pa-
per, we introduce the KOR module to detect separation lines
by regressing the offset between the key points and their pro-
posals. In the merge stage, we propose a merge action based
merging module(MA). Also, we implemented the ParaDec
merge module in SEMv2 to predict the merge map (MP) for
each grid.

The Robustness of the Split Module
To establish the robustness of our split module, we compare
the performances of IS and KOR under same merge mod-
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System
Split Merge WLC WLD WDC WDD Total

IS KOR MP MA F1 F1-G F1 F1-G F1 F1-G F1 F1-G F1

T1 � × � × 90.8 18.5 92.4 24.0 95.3 59.1 95.5 51.8 93.3
T2 × � � × 91.7 37.1 92.8 53.7 95.5 64.6 95.3 63.6 93.6
T3 � × × � 91.6 20.4 93.1 27.2 96.5 60.6 96.3 53.0 94.0
T4 × � × � 92.5 37.9 93.4 59.9 96.4 64.6 96.3 63.2 94.4

Table 5: The ablation experiments of the split module and merge module on the iFLYTEK and its different subsets. “KOR” refers to the
keypoints offset regression-based method proposed in this paper, while “IS” represents the instance segmentation-based split module from
SEMv2. “MA” is the new merge module introduced in this paper, and “MP” is the merge module from SEMv2. The F1 score used here is a
metric for cell adjacency relationships. The F1-G score evaluates grid detection and reflects the performance of table separation line detection
in the split stage.

(a) (b)

Figure 5: Qualitative split results of different split modules. (a) is
the prediction of table grids from KOR, (b) is the prediction of ta-
ble grids of table grids from IS. The red dashed box indicates low-
quality results.

ules. T1 and T2 serve to compare the performance of IS and
KOR under the MP merge module. On the other hand, T3 and
T4 illustrate the performance of IS and KOR under the MA
merge module. Under both merge module settings, our KOR
consistently achieves superior split results, as evidenced by
the F1-G. This is particularly notable with the wireless tables
(WLD and WLC), where KOR performs almost twice as well
as IS. As depicted in Fig. 5, the split results of T1 and T2
on the wireless tables clearly demonstrate that KOR produces
split lines of higher quality. Furthermore, our KOR proves
to be more stable compared to the IS split results when the
merge module changes.

The Speed of the Split Module
The IS split module generates a mask for each table separa-
tion line, leading to a computational cost that increases lin-
early with the number of rows and columns. Conversely, our
method consistently represents the position of lines with a
single offset map, meaning the computational cost does not
significantly increase with the growth in rows and columns.
We evaluated the inference time of both split modules on the
SciTSR test dataset, with images resized to 512 × 512. As
illustrated in Fig. 6, the x-axis represents the sum of the num-
ber of rows and columns with a step of 10, while the y-axis
represents the inference time. The inference time of our KOR
is less affected by the increase in the number of rows and
columns. Particularly in cases with a large number of rows
and columns, KOR is significantly faster than IS.
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Figure 6: Comparison of inference time for different split modules.

The Effectiveness of the Merge Module

As shown in Table 5, MA always outperforms MP when the
split module is kept constant. MA have a positive gain on
the detection accuracy of separation lines with IS. Our merge
module can significantly reduce the memory occupancy. The
space complexity of MA is O(NM), but MP has a space
complexity of O(N2M2). Benefiting from our modeling of
the merge action, we can merge over-split grids with high ac-
curacy using a much simpler network structure than SEMv2.

5 Conclusion

In this paper, we introduce SEMv3, a fast and robust ta-
ble structure recognizer that adheres to the split-and-merge
paradigm. In the split stage, we propose a split module (KOR)
based on keypoints offset regression for robust and fast de-
tection of split lines. KOR detects separation lines by re-
gressing the offset between the keypoint proposals and the
line. During the merge phase, we define a grid-based merge
action to effectively characterize the table structure. Our
method achieves state-of-the-art performance on the ICDAR-
2019 cTDaR Historical, WTW, iFLYTAB datasets, demon-
strating its effectiveness on table samples in challenging sce-
narios, such as wireless tables and deformed tables. Ablation
experiments show that our split module KOR is fast, robust,
and achieves significant improvement on wireless tables. Our
merge module is also efficient.
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